Supporting Information

MIL-101(Cr)/Aminoclay Nanocomposites for Conversion of CO₂ into Cyclic Carbonates

Jyoti,^a Sarita Kumari,^a Samiran Chakraborty,^a Prakash Kanoo,^{ab} Vinod Kumar^a and Anindita Chakraborty^{*,a}

^aDepartment of Chemistry, School of Basic Sciences, Central University of Haryana, Mahendergarh 123031, Haryana, India

^bSpecial Centre for Nano Sciences, Jawaharlal Nehru University, New Mehrauli Road, New Delhi, Delhi 110067, India

Table of Contents

PXRD pattern of AC 3
FT-IR spectra of AC, PMIL and MIL-101(Cr)/AC-14
TGA profiles of synthesized materials4
FESEM images and the particle size distribution histograms5-7
EDX spectrum of MIL-101(Cr)/AC-2
Dispersion test of PMIL and MIL-101(Cr)/AC-2
Pore size distribution plots9
Temperature programmed desorption profiles of MIL-101(Cr)/AC-210
¹ H NMR spectra for the cycloaddition reaction using MIL-101(Cr)/AC-2 as a catalyst with epichlorohydrin
FT-IR spectra of EPH and reaction mixture of the product formed in the cycloaddition reaction with EPH using catalyst MIL-101(Cr)/AC-2
Optimization table for cycloaddition of CO2 to epichlorohydrin using different catalysts 13
¹ H NMR spectra for the cycloaddition reaction using different catalysts with epichlorohydrin
PXRD patterns of MIL-101(Cr)/AC-2 before catalytic run and after 5 th cycle of the catalysis 16
FT-IR spectra of MIL-101(Cr)/AC-2 before catalytic run and after 5 th cycle of the catalysis 16
Optimization table for cycloaddition of CO_2 to styrene oxide using PMIL and MIL-101(Cr)/AC-2 as catalysts
Different substrates and their dimensions18
¹ H NMR spectra for the cycloaddition reaction using MIL-101(Cr)/AC-2 as a catalyst with different substrates
A comparison of the catalytic activity of different MIL-101(Cr)-based MOF catalysts with MIL- 101(Cr)/AC-2

PXRD pattern of AC

Fig. S1 PXRD pattern of AC. The d_{001}, d_{002} and d_{130} peaks are highlighted.

FT-IR spectra of AC, PMIL and MIL-101(Cr)/AC-1

Fig. S2 FT-IR spectra of (a) AC, (b) PMIL and (c) MIL-101(Cr)/AC-1.

TGA profiles of synthesized materials

Fig. S3 TGA profiles of PMIL, AC, MIL-101(Cr)/AC-1, MIL-101(Cr)/AC-2 and MIL-101(Cr)/AC-3.

FESEM images and the particle size distribution histograms

Fig. S4 FESEM image of PMIL.

Fig. S5 FESEM image of MIL-101(Cr)/AC-1.

Fig. S6 The particle size distribution histogram plot of MIL-101(Cr)/AC-1.

Fig. S7 FESEM image of MIL-101(Cr)/AC-2.

Fig. S8 The particle size distribution histogram plot of MIL-101(Cr)/AC-2.

Fig. S9 FESEM images of MIL-101(Cr)/AC-3.

EDX spectrum of MIL-101(Cr)/AC-2

Fig. S10 EDX spectrum of MIL-101(Cr)/AC-2.

Dispersion test of PMIL and MIL-101(Cr)/AC-2

Fig. S11 Dispersion of samples in methanol (a) as-synthesized PMIL after 15 minutes and (b) MIL-101(Cr)/AC-2 after 4 days.

Pore size distribution plots

Fig. S12 Pore size distribution plots of PMIL, MIL-101(Cr)/AC-1, MIL-101(Cr)/AC-2 and MIL-101(Cr)/AC-3. Inset shows the presence of large pores at the MOF-clay interface in case of MIL-101(Cr)/AC-2 composite.

Temperature programmed desorption profiles of MIL-101(Cr)/AC-2

Fig. S13 Temperature programmed desorption profiles of MIL-101(Cr)/AC-2 (a) NH_3 desorption and (b) CO_2 desorption.

¹H NMR spectrum for the cycloaddition reaction using MIL-101(Cr)/AC-2 as a catalyst with epichlorohydrin

Fig. S14 The ¹H NMR spectra (in CDCl₃) (a) Purified product for the cycloaddition reaction of epichlorohydrin with CO₂ using **MIL-101(Cr)/AC-2** as a catalyst. Reaction condition: 9.2 mmol of epichlorohydrin, 0.92 mmol of TBA⁺Br⁻ (co-catalyst), 30 mg of catalyst, 30 °C, 1 bar of CO₂, 6 h. Conversion = **99.9%** (b) Pure epichlorohydrin (reactant) before CO₂ cycloaddition reaction. Comparing both spectra (a and b) reveals that, in the purified product spectrum there is no traces of the reactant, indicating the completion of the reaction.

FT-IR spectra of EPH and reaction mixture of the product formed in the cycloaddition reaction with EPH using catalyst MIL-101(Cr)/AC-2

Fig. S15 FT-IR spectra of (a) EPH and (b) Reaction mixture of the product formed in the cycloaddition reaction with EPH using catalyst **MIL-101(Cr)/AC-2**.

Optimization table for cycloaddition of CO_2 to epichlorohydrin using different catalysts

Table S1 Cycloaddition of CO_2 with epichlorohydrin using as-synthesized **PMIL** and MIL-101(Cr)/AC composites as catalysts^a

$$\bigcirc CI + CO_2 \xrightarrow{Catalyst, TBA^+Br^-} \bigcirc \bigcirc O \\ 30 \ ^\circ C, 1 \ bar \xrightarrow{O} CI$$

Entry	Catalysts	Time (h)	Conversion (%)
1	AC	6	10
2	$Cr(NO_3)_3.9H_2O$	6	27
3	PMIL	3	18
4	PMIL	4	20
5	PMIL	5	26
6	PMIL	6	30
7	PMIL	12	80
8	PMIL	24	98
9	PMIL	26	99.9
10	MIL-101(Cr)/AC-1	3	17
11	MIL-101(Cr)/AC-1	4	30
12	MIL-101(Cr)/AC-1	5	35
13	MIL-101(Cr)/AC-1	6	44
14	MIL-101(Cr)/AC-1	12	78
15	MIL-101(Cr)/AC-1	24	99.9
16	MIL-101(Cr)/AC-2	3	63
17	MIL-101(Cr)/AC-2	4	69
18	MIL-101(Cr)/AC-2	5	92
19	MIL-101(Cr)/AC-2	6	99.9
20	MIL-101(Cr)/AC-3	3	6
21	MIL-101(Cr)/AC-3	4	22
22	MIL-101(Cr)/AC-3	5	31.5
23	MIL-101(Cr)/AC-3	6	42
24	MIL-101(Cr)/AC-3	12	79
25	MIL-101(Cr)/AC-3	16	99.9
26	PMIL+AC ^b	6	5
27	TBAB ^c	6	20
28	TBAB ^d	6	30
29	MIL-101(Cr)/AC-2 ^e	6	NIL

^aReaction conditions: 9.2 mmol (851 mg) epichlorohydrin, 30 mg catalyst and 0.92 mmol TBA⁺Br⁻ under 1 bar CO₂ and 30 °C. Conversion (%) were calculated from the ¹H NMR spectra by integration of epoxide peaks (a) versus cyclic carbonate peaks (a'). ^bPhysical mixture; ^cwithout catalyst; ^dwithout catalyst at 40 °C; ^ewithout co-catalyst

¹H NMR spectra for the cycloaddition reaction using different catalysts with epichlorohydrin

Fig. S16 The ¹H NMR spectrum (in CDCl₃) of the purified product for the cycloaddition reaction of epichlorohydrin with CO₂ using **MIL-101(Cr)/AC-1** as a catalyst. Reaction condition: 9.2 mmol of epichlorohydrin, 0.92 mmol of TBA⁺Br⁻ (co-catalyst), 30 mg of catalyst, 30 °C, 1 bar of CO₂, 24 h. Conversion = **99.9%**

Fig. S17 The ¹H NMR spectrum (in CDCl₃) of the purified product for the cycloaddition reaction of epichlorohydrin with CO₂ using **MIL-101(Cr)/AC-3** as a catalyst. Reaction condition: 9.2 mmol of epichlorohydrin, 0.92 mmol of TBA⁺Br⁻ (co-catalyst), 30 mg of catalyst, 30 °C, 1 bar of CO₂, 16 h. Conversion = **99.9%**

PXRD patterns of MIL-101(Cr)/AC-2 before catalytic run and after 5th cycle of the catalysis

Fig. S18 PXRD patterns of (a) MIL-101(Cr)/AC-2 before catalytic run and (b) after 5th cycle of the catalysis.

FT-IR spectra of MIL-101(Cr)/AC-2 before catalytic run and after 5th cycle of the catalysis

Fig. S19 FT-IR spectra of (a) after 5th cycle of the catalysis and (b) MIL-101(Cr)/AC-2 before catalytic run.

Optimization table for cycloaddition of CO₂ to styrene oxide using PMIL and MIL-101(Cr)/AC-2 as catalysts

Table S2 Cycloaddition of CO_2 to styrene oxide using as-synthesized **PMIL** and **MIL-101(Cr)/AC-2** as heterogeneous catalysts^a

Entry	Catalysts	Time (h)	Conversion (%)
1	PMIL	6	NIL
2	PMIL	12	NIL
3	PMIL	24	5
4	PMIL	42	12
5	PMIL	48	15
6	MIL-101(Cr)/AC-2	6	36.7
7	MIL-101(Cr)/AC-2	12	60
8	MIL-101(Cr)/AC-2	24	71.4
9	MIL-101(Cr)/AC-2	42	92.5
10	MIL-101(Cr)/AC-2	48	99.9

^aReaction conditions: 9.2 mmol (1105 mg) styrene oxide, 30 mg activated catalyst and 0.92 mmol (296 mg) TBA⁺ Br⁻ under 1.0 bar CO₂ and 40 °C. Conversion (%) were calculated from the ¹H NMR spectra by integration of epoxide peaks (a) versus cyclic carbonate peaks (a').

Different substrates and their dimensions

Table S3 Different substrates and their dimensions¹

Substrates	Dimensions
<u></u>	4.34 X 3.41 Å ²
1,2-epoxy propane	
	5.648 X 3.39 Å ²
1,2-epoxy butane	
	8.198 X 3.39 Å ²
1,2-epoxy hexane	
	~8.901 X 3.140 Å ²
Allyl glycidyl ether	
	~10.46 X 3.14 Å ²
Butyl glycidyl ether	

¹H NMR spectra for the cycloaddition reaction using MIL-101(Cr)/AC-2 as a catalyst with different substrates

Fig. S20 The ¹H NMR spectrum (in CDCl₃) of the purified product for the cycloaddition reaction of styrene oxide with CO₂ using **MIL-101(Cr)/AC-2** as a catalyst. Reaction condition: 9.2 mmol of epichlorohydrin, 0.92 mmol of TBA⁺Br⁻ (co-catalyst), 30 mg of catalyst, 40 °C, 1 bar of CO₂, 48 h. Conversion = **99.9%**

Fig. S21 The ¹H NMR spectrum (in CDCl₃) of the purified product for the cycloaddition reaction of propylene oxide with CO₂ using **MIL-101(Cr)/AC-2** as a catalyst. Reaction condition: 9.2 mmol of epichlorohydrin, 0.92 mmol of TBA⁺Br⁻ (co-catalyst), 30 mg of catalyst, 30 °C, 1 bar of CO₂, 6 h. Conversion = **99.9%**

Fig. S22 The ¹H NMR spectrum (in CDCl₃) of the purified product for the cycloaddition reaction of 1,2-epoxybutane with CO₂ using **MIL-101(Cr)/AC-2** as a catalyst. Reaction condition: 9.2 mmol of epichlorohydrin, 0.92 mmol of TBA⁺Br⁻ (co-catalyst), 30 mg of catalyst, 40 °C, 1 bar of CO₂, 6 h. Conversion = **99.9%**

Fig. S23 The ¹H NMR spectrum (in CDCl₃) of the purified product for cycloaddition reaction of allyl glycidyl ether with CO₂ using **MIL-101(Cr)/AC-2** as a catalyst. Reaction condition: 9.2 mmol of epichlorohydrin, 0.92 mmol of TBA⁺Br⁻ (co-catalyst), 30 mg of catalyst, 40 °C, 1 bar of CO₂, 12 h. Conversion = **99.9%**

Fig. S24 The ¹H NMR spectrum (in CDCl₃) of the purified product for cycloaddition reaction of butyl glycidyl ether with CO₂ using **MIL-101(Cr)/AC-2** as a catalyst. Reaction condition: 9.2 mmol of epichlorohydrin, 0.92 mmol of TBA⁺Br⁻ (co-catalyst), 30 mg of catalyst, 40 °C, 1 bar of CO₂, 15 h. Conversion = **99.9%**

A comparison of the catalytic activity of different MIL-101(Cr)-based MOF catalysts with MIL-101(Cr)/AC-2

Table S4 A comparison of the catalytic activity of different MIL-101(Cr)-based MOF catalysts with MIL-101(Cr)/AC-2 towards the cycloaddition of CO_2 with EPH, PO and SO

Entry	Catalysts	Substrates ^a	Temperature (°C)	Pressure (bar)	Time (h)	Conversion (%)	Ref.
1	MIL-101(Cr)	EPH	80	10	2.5	11	2
2	MIL-101(Cr)	РО	100	10	2.5	15.5	3
3	MIL-101(Cr)	PO	80	8	4	77.2	4
4	MIL-101(Cr)	PO	25	8	24	91	5
		SO	25	8	48	98	
5	MIL-101(Cr)	SO	90	5	3	41.2	6
6	MIL-101(Cr)	EPH	50	1	68	32	7
7	MIL-101-NH ₂	PO	80	20	8	23.4	8
8	MIL-101-Br	PO	80	20	8	25.1	
9	MIL-101-NH ₂	EPH	90	10	2	17	9
10	MIL-101-CH ₂ Cl	PO	80	8	4	90.8	4
11	MIL-101-N(n-Bu)₃Br ^b	PO	80	20	8	99.1	8
12	Co-POM@MIL-101 ^c	EPH	90	20	2	94	10
		SO	90	20	2	88	
13	MIL-101-TSIL ^d	SO	110	20	6	93.1	11
		EPH	110	20	2	81	
14	4 Cr-MIL-101-	EPH	120	20	2	98.3	12
	[BuPh₃P]Br ^e	РО	120	20	2	97.8	
		SO	120	20	2	68.5	<u> </u>
15	MIL-101(Cr)-DABCO	EPH	100	15	0.67	98.8	13
	IL [†]	РО	100	15	0.67	97	
		SO	100	15	0.67	44.5	
16	MIL-101-tzmOH-Br ^g	EPH	120	10	2	97	14
		РО	80	10	10	92	
		SO	80	10	10	57	
17	MIL-101-H/pmtzm-	SO	80	10	10	73	9
	Br ⁿ	РО	80	10	2	94	
		EPH	80	10	2	95	
18	MIL-101-IL(BuBr) ⁱ	EPH	110	10	6	92	15
		PO	110	10	6	80	
19	Mim-6@MIL-101 ^J	EPH	100	10	2.5	95.5	3
		РО	100	10	2.5	92.5	
		SO	100	10	2.5	53.4	
20	MIL-101-tz-TMA-Br ^k	EPH	80	10	4	99	16
21	PIL-COOH@MIL-101	EPH	70	10	2.5	92.7	2
		PO	70	10	2.5	88	

		SO	90	10	2.5	80	
22	MIL-101-IMBr-6 ^m	EPH	80	8	4	92.3	4
		PO	80	8	4	95.8	
		SO	80	8	4	54.7	
23	MIL-101-IM ⁿ	PO	80	8	4	94.3	
24	IL@MIL-101-SO ₃ H°	EPH	90	1	24	98	17
25	polyILs@MIL-101 ^p	EPH	70	1	24	94	18
26	MIL-101-IP ^q	EPH	50	1	68	32	7
27	MIL-101-ImEtOH ^r	SO	90	5	3	95.6	6
28	MIL-101-	EPH	80	10	2	99	19
	TzNMe ₂ (EtOH)-Br ^s						
29	MIL-101-	РО	80	10	1	99	
	TzmNMe ₂ (EtOH)-Br ^t	SO	80	10	5	71	
30	MIL-101(Cr)/AC-2	EPH	30	1	6	99.9	This
		PO	30	1	6	99.9	work
		SO	40	1	48	99.9	

^aSubstrates: EPH (Epichlorohydrin), PO (Propylene Oxide), SO (Styrene Oxide); ^bN(n-Bu)₃Br: tributylammonium bromide; ^cCo-POM: Co-Polyoxometalates; ^dTSIL: 1-methylene-3-(4-carboxylbenzyl) imidazolium bromide; ^e[BuPh₃P]Br: nbutyltriphenylphosphonium bromide; ^fDABCO: 1,4-Diazabicyclo[2.2.2]octane, IL: 2-Bromoethanol; ^gtzmOH-Br: hydroxylfunctionalized 1,2,3-triazolium bromide; ^hpmtzm: 4(methypyridinium)-1,2,3-triazolylium; ⁱIL: pyridine-based ionic liquids, BuBr: 1-bromobutene; ^jMim: 1,1'-(Hexane-1,6-diyl)-bis(3-methylimidazolium) Dibromide; ^ktz-TMA-Br: N,N,N-trimethyl-1H-1,2,3-triazol-4-aminium bromide; ^lPIL: Hydrogen bond donor functionalized poly(ionic liquids); ^mIMBr: Imidazolium bromide, ⁿIM: imidazole; ^oIL: 1-methyl-3-(2-aminoethyl)imidazolium bromide; ^ppolyILs: imidazolium-based poly(ionic liquids); ^qIP: lonic polymer; ^rImEtOH: 2-(1-imidazol-1-yl) ethanol;

^sTzNMe₂(EtOH)-Br:

Entries 1-6 in **Table S4** indicates the catalytic activity of pristine MIL-101(Cr) which exhibits either poor catalytic activity or need higher temperature and high pressure to complete the reactions. Although, it's effectiveness could be improved by the modification in catalyst i.e., by changing substitution in ligand **(Entry 9, Table S4)** or the post-modification in the framework of MIL-101 (in respect of bdc linker) using different groups i.e., NH₂, Br and CH₂Cl **(Entries 7, 8, 10 & 11, Table S4)**, inclusion of polyoxometalates and ionic liquids inside the porous framework **(Entries 12-29, Table S4)**. However, these approaches still require either relatively high temperature and pressure or longer reaction time or the combination of the all the parameters to exhibit a decent catalytic conversion.

References

- 1. R. Das, T. Ezhil, A. S. Palakkal, D. Muthukumar, R. S. Pillai and C. M. Nagaraja, *J. Mater. Chem. A*, 2021, **9**, 23127.
- 2. Y. Jiang, D. Li, Y. Zhao and J. Sun, J. Colloid Interface Sci., 2022, 618, 22.
- 3. Y. Jiang, Z. Wang, P. Xu and J. Sun, Cryst. Growth Des., 2021, 21, 3689.
- 4. D. Liu, G. Li and H Liu, Appl. Surf. Sci., 2018, 428, 218.
- 5. O. V. Zalomaeva, A. M. Chibiryaev, K. A. Kovalenko, O. A. Kholdeeva, B. S. Balzhinimaev and V. P. Fedin, *J. Catal.*, 2013, **298**, 179.
- 6. Y. Liu, J. Li, Z. Zhang, Y. Hou, L. Wang and J. Zhang, *Inorg. Chem.*, 2022, **61**, 17438.
- B. Aguila, Q. Sun, X. Wang, E. O' Rourke, A. M. Al-Enizi, A. Nafady and S. Ma, *Angew. Chem. Int. Ed.*, 2018, **57**, 1.
- D. Ma, B. Li, K. Liu, X. Zhang, W. Zou, Y. Yang, G. Li, Z. Shi and S. Feng, *J. Mater. Chem. A*, 2015, **3**, 23136.
- W.-S. Liu, L.-J. Zhou, G. Li, S.-L. Yang and E.-Q. Gao, ACS Sustainable Chem. Eng., 2021, 9, 1880.
- A. Marandi, M. Bahadori, S. Tangestaninejad, M. Moghadam, V. Mirkhani, I. Mohammadpoor-Baltork, R. Frohnhoven, S. Mathur, A. Sandleben and A. Klein, *New J. Chem.*, 2019, 43, 15585.
- M. Bahadori, S. Tangestaninejad, M. Bertmer, M. Moghadam, V. Mirkhani, I. Mohammadpoor–Baltork, R. Kardanpour and F. Zadehahmadi, ACS Sustainable Chem. Eng., 2019, 7, 3962.
- 12. M. Y. Zorainy, M. G. Alalm, S. Kaliaguine and D. C. Boffito, *J. Mater. Chem. A*, 2021, **9**, 22159.
- 13. J. Long, W. Dai, M. Zou, B. Li, S. Zhang, L. Yang, J. Mao, P. Mao, S. Luo and X. Luo, *Microporous Mesoporous Mater.*, 2021, **318**, 111027.
- 14. L.-J. Zhou, W. Sun, N.-N. Yang, P. Li, T. Gong, W.-J. Sun, Q. Sui and E.-Q. Gao, *ChemSusChem*, 2019, **12**, 2202.
- 15. F. Li, Y. Chen, A. Gao, W. Tong, C. Ji, Y. Cheng and Y.-H. Zhou, *New J. Chem., 2022,* **46**, 18418.

- 16. L.-F. Xiong, L.-J. Zhou, R. Bu, S.-L. Yang and E.-Q. Gao, *Microporous Mesoporous Mater.*, 2022, **330**, 111601.
- 17. Y. Sun, H. Huang, H. Vardhan, B. Aguila, C. Zhong, J. A. Perman, A. M. Al-Enizi, A. Nafady and S. Ma, *ACS Appl. Mater. Interfaces*, 2018, **10**, 27124.
- 18. M. Ding and H.-L. Jiang, ACS Catal., 2018, 8, 3194.
- 19. L.-F. Xiong, R. Bu, S.-L. Yang and E.-Q. Gao, *Microporous Mesoporous Mater.*, 2022, **339**, 111984.