SUPPLEMENTARY INFORMATION

Crystal structure of KMnPO₄F with short and long range order inside the layered magnetic system

Olga V. Yakubovich,^{1*} Larisa V. Shvanskaya,^{1,2} Galina V. Kiriukhina,^{1,3} Sergei Simonov,⁴ Anatoliy S. Volkov,⁵ Olga V. Dimitrova,¹ Vladimir V. Korolev,^{1,2} Yevgeniy A. Ovchenkov,^{1,2} Alexander N. Vasiliev^{1,2}

¹Moscow State University, Moscow 119991, Russia ²National University of Science and Technology, Moscow 119049, Russia ³Institute of Experimental Mineralogy, RAS, Chernogolovka 142432, Russia ⁴Institute of Solid State Physics, RAS, Chernogolovka 142432, Russia ⁵Skolkovo Institute of Science and Technology, Moscow 121205, Russia

Fig. S1. Experimental and calculated powder XRD pattern of KMnPO₄F (the vertical ticks indicate the Bragg positions).

Mn1—F1	1.825 (2)	K1—O4 ⁱⁱⁱ	2.931 (3)
Mn1—O5	1.887 (3)	K1—O3 ^{viii}	3.088 (3)
Mn1—O2 ⁱ	1.919 (3)	K1—O3 ^{ix}	3.106 (3)
Mn1—O4 ⁱⁱ	1.919 (3)	K1—O5 ^{vii}	3.160 (3)
Mn1—O3 ⁱⁱⁱ	2.092 (3)	K1—O4 ⁱ	3.249 (3)
K1—F1	2.590 (3)	P1—O3	1.529 (3)
K1—F1 ^{iv}	2.712 (3)	P1—O5	1.534 (3)
K1—O5 ^v	2.760 (3)	P1—O4	1.538 (3)
K1—F1 ^{vi}	2.839 (3)	P1—O2	1.552 (3)
K1—O2 ^{vii}	2.879 (3)		

Table S1. Selected geometric parameters for KMnPO₄F (Å)

Symmetry code(s): (i) x+1/2, -y+1/2, -z+1; (ii) -x+1, y+1/2, -z+1/2; (iii) x-1/2, -y+1/2, -z+1; (iv) x-1/2, -y+3/2, -z+1; (v) -x+3/2, -y+1, z+1/2; (vi) x+1/2, -y+3/2, -z+1; (vii) -x+1/2, -y+1, z+1/2; (viii) x, y+1, z; (ix) -x+1, y+1/2, -z+3/2.

Fig. S2. The spin configurations considered in DFT calculations for KMnPO₄F. Green and magenta atoms represent spin up and spin down orientations of Mn^{3+} ; PO_4^{3-} groups are shown by grey tetrahedra. The lowest energy configuration 6 is marked in red.

Table S2. Crystal chemical data, synthesis conditions and magnetic properties of phosphates related to the AMPO₄F morphotropic series

BaCu ²⁺ PO ₄ Cl	a 7.885(2) V 495.9(2)	orthorhombic	Cu^{2+} 0.57	Cu-O3 1.937(4)	Cu-O4 2.076(4)	Synthesis from flux at 800° C.	Etheredge
	<i>b</i> 8.650(1) ρ 4.44	$P2_{1}2_{1}2_{1} (D_{2}^{4})$	$S = 0.5, 3d^9$	O1 1.981(4)	Cl 2.773(4)		& Hwu,
	c 7.270(1) Z 4	chiral		O2 1.981(4)	Cl' 3.259(4)		1995
BaFe ³⁺ PO ₄ F ₂	a 5.2440(2) V 470.52(3)	monoclinic	Fe^{3+} 0.64 ₅	Fe1-F2 1.926(4)x2	Fe2-F1 1.992(4)x2	Hydrothermal synthesis at 230° C.	Jiang et
	<i>b</i> 12.7889(5) ρ	$P2_{1}/n (C_{2h}^{5})$	$S = 2.5, 3d^5$	O1 1.950(4)x2	F1 1.964(4)x2	A spin-flop transition at 2 K (field	al., 2019
	c 7.1765(2) Z 4	centrosym-		O3 2.003(4)x2	O2 2.023(4)x2	at $Bsf = 3.1$ T), stemming from	
	β 102.142(2)	metric				the antiferromagnetic ordering of	
						chain formed by F sharing	
						octahedra.	
BaMn ³⁺ PO ₄ F ₂ *	a 5.1463(9) V 461.1	monoclinic	$Mn^{3+} 0.65$	Mn1-O2 1.870(5)x2	Mn2-F1 1.858(4)x2	Hydrothermal synthesis at 234° C.	Pei et al.,
	<i>b</i> 12.691(2) ρ 4.69	$P2_{1}/c (C_{2h}^{5})$	$S = 2, 3d^4$	O4 2.014(5)x2	O3 1.936(5)x2	Antiferromagnetic long-range	2016
	c 7.871(1) Z 4	centrosym-		F2 2.024(4)x2	F2 2.042(5)x2	ordering at 14 K.	
	β 116.24(3)	metric					
BaMn ³⁺ PO ₄ FCl *	a 7.221(1) V 521.60	- '' -	$Mn^{3+} 0.65$	Mn-O1 1.881(3)	Mn-O3 1.924(3)	Hydrothermal synthesis at 234° C.	Pei et al.,
	<i>b</i> 8.535(1) ρ 4.35		$S = 2, 3d^4$	O2 1.884(3)	F 2.108(2)	Antiferromagnetic long-range	2016
	c 8.870(1) Z 4			O4 1.916(3)	Cl 2.640(1)	ordering at 9.8 K.	
	β 107.41(3)						

* Low-temperature X-ray diffraction data.

References

- 1. K. M. S. Etheredge, S. J. Hwu, Inorg. Chem. 1995, 34, 11, 3123-3125.
- 2. J. Jiang, S. Lee, B. Zhu, Y. Yu, J. C. Waerenborgh, K.-Y. Choi, & M. Lü, Inorg. Chem. 2019, 58, (1), 133-142.
- 3. D.-T. Pei, W. Sun, Y.-X. Huang, Z.-M. Sun, Y. Pan, J.-X. Mi, J.Solid State Chem., 2016, 234, 29-35.