Dinuclear NHC-gold(I)-thiolato and -alkynyl complexes: synthesis,

anticancer activity, and catalytic activity in lactonization reactions

Xinyuan Ma, †^{a,c} Yuan Zhao †^a, Isabella Caligiuri,^b Flavio Rizzolio,^{b,c} Nestor Bracho Pozsoni,^a Kristof Van Hecke,^a Thomas Scattolin^{*d}, and Steven P. Nolan ^{a*}

^aDepartment of chemistry and centre for sustainable chemistry Ghent University, Krijgslaan 281. S-3. 9000 Ghent (Belgium). E-mail: <u>steven.nolan@ugent.be</u>.

^bPathology Unit, Centro di Riferimento Oncologico di Aviano (C.R.O.) IRCCS via Franco Gallini 2, 33081, Aviano, Italy.

^cDipartimento di Scienze Molecolari e Nanosistemi, Università Ca' Foscari, Campus Scientifico Via Torino 155, 30174 Venezia-Mestre (Italy).

^dDipartimento di Scienze Chimiche, Università degli Studi di Padova, via Marzolo 1, 35131 Padova (Italy). E-mail: <u>thomas.scattolin@unipd.it</u>

^eChemical Science and Technology Research Institute, Sinochem Group, 20 Xueyuan Road, Haidian District, 100083 Beijing.

Table of Contents

X-ray Crystallography	S2
NMR spectra	S4
References	S18

X-ray Crystallography

The crystal that was of suitable quality for single crystal X-ray diffraction analysis were obtained by slow vapor diffusion of the antisolvent (pentane) into saturated solutions of the complexes (in dichloromethane) at 4 °C. CCDC 2341052 contain the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/structures.

Figure S1 X-ray molecular structure of 2a, showing thermal displacement ellipsoids at the 50% probability level and hydrogen atoms omitted for clarity.

Identification code	2a
Empirical formula	$C_{50}H_{56}Au_2N_4S_2$
Formula weight	1171.04
Temperature/K	100(2)
Crystal system	triclinic
Space group	P-1
a/Å	9.7037(2)
b/Å	14.9460(4)
c/Å	16.9881(5)
α/°	110.305(2)
β/°	101.236(2)
γ/°	92.613(2)
Volume/Å	3 2249.19(11)
Ζ	2
pcalcg/cm ³	1.729
μ/mm ⁻¹	6.647
F(000)	1148.0

Table S1	Crystal	data and	structure	refinement	for	2a
----------	---------	----------	-----------	------------	-----	----

Crystal size/mm ³	$0.35 \times 0.26 \times 0.07$		
Radiation	Mo K $\alpha(\lambda = 0.71073)$		
2Θ range for data collection/°	5.148 to 57.522		
Index ranges	$-13 \le h \le 12, -19 \le k \le 20, -20 \le l \le 22$		
Reflections collected	44349		
Independent reflections	10251 [Rint = 0.0727, Rsigma = 0.0691]		
Data/restraints/parameters	10251/6/531		
Goodness-of-fit on F ²	1.027		
Final R indexes [I>= 2σ (I)]	$R_1 = 0.0384, wR_2 = 0.0683$		
Final R indexes [all data]	$R_1 = 0.0592, wR_2 = 0.0767$		
Largest diff. peak/hole / e Å-3 2.00/-1.43			

NMR spectra

¹H, ¹³C {1H} apt of [(IPr)^{o-xylene}(AuSPh)₂] (2a)

¹H, ¹³C {1H} apt of [(IPr)^{*m*-xylene}(AuSPh)₂] (2b)

¹H, ¹³C {1H} apt and 2D NMR of [(IMes)^{o-xylene}(AuSPh)₂] (2c)

S7

¹H, ¹³C {¹H} apt of [(IPr)^{o-xylene}{Au((phenylethynyl)}₂] (3a)

¹H, ¹³C {¹H} apt and 2D NMR of [(IPr)^{o-xylene}{Au(4-methoxyphenyl)buta-1,3-diyn-1-yl)}₂] (3b)

¹H NMR of alkynoic acid (4)¹

10.5 10.0 9.5 9.0 8.5 8.0 7.5 7.0

6.5 6.0 5.5 5.0 1H(ppm)

4.5 4.0

3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0 -0.5 -1

Stability studies of complexes 2a-e in DMSO-d₆

2a, ¹H NMR (300 MHz, DMSO-*d*₆) Time = 0h

2a, ¹H NMR (300 MHz, DMSO-*d*₆) Time = 24h

. 0 10.5 10.0 9.5 9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0 -0.5 -1. IH(ppm)

2b, ¹H NMR (300 MHz, DMSO-*d*₆) Time = 0h

2b, ¹H NMR (300 MHz, DMSO-*d*₆) Time = 24h

. 0 10.5 10.0 9.5 9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0 -0.5 -1. IH(ppm)

References

1. D. Gasperini, L. Maggi, S. Dupuy, R. M. P. Veenboer, D. B. Cordes, A. M. Z. Slawin and S. P. Nolan, *Adv. Synth. Catal.*, **2016**, *358*, 3857–3862.