Supporting Information

Aggregation-Induced Enhanced Fluorescence Emission of Chiral Zn(II) complexes Coordinated by Schiff-Base Type Binaphthyl Ligands

Daiki Tauchi,^a Katsuya Kanno, ^a Masashi Hasegawa,^b Yasuhiro Mazaki,^b Kazunori Tsubaki,^c Ken-ichi Sugiura,^d Takuya Shiga,^e Seiji Mori, ^a and Hiroyuki Nishikawa^{*a}

^a Graduate School of Science and Engineering, Ibaraki University, 2-1-1 Bunkyo, Mito, Ibaraki 310-8512, Japan
E-mail: hiroyuki.nishikawa.sci@vc.ibaraki.ac.jp
^b Graduate School of Science, Kitasato University, 1-15-1 Minami-Ku, Kitasato, Sagamihara, Kanagawa 252-0373, Japan
^c Graduate School of Life and Environmental Science, Kyoto Prefectural University, 1-5 Sakyo-Ku, Kyoto 606-8522, Japan
d Graduate School of Science, Tokyo Metropolitan University, 1-1 Minami-Ohsawa, Hachioji, Tokyo, 192-0397, Japan
e Faculty of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba 305-8577, Japan

Table of contents

Synthetic procedure of the ligands3
Figure S1. ¹ H-NMR spectrum of <i>R</i>-Zn 4
Figure S2. ¹ H-NMR spectrum of S-Zn
Figure S3. ¹³ C-NMR spectrum of <i>R</i>-Zn 6
Figure S4. ¹³ C-NMR spectrum of <i>S</i> -Zn6
Figure S5. COSY and NOESY spectra of <i>R</i> -Zn······7
Figure S6. COSY and NOESY spectra of <i>S</i> -Zn8
Figure S7. Crystal structure of <i>S</i> -Zn9
Figure S8. Absorption and emission spectra of <i>S</i> -Zn
Figure S9. Absorption spectra of <i>R</i>-Zn and <i>S</i>-Zn in 0.1 wt% KBr pellet12
Figure S10. Emission decay profiles of \mathbf{R} -Zn and \mathbf{S} -Zn in CH ₂ Cl ₂ solutions
Figure S11. Emission decay profiles of <i>R</i>-Zn and <i>S</i>-Zn in powders
Figure S12. CD and UV-vis spectra of R -Zn and S -Zn in CH ₂ Cl ₂ solutions
Figure S13. CPL spectra of R -Zn and S -Zn in CH ₂ Cl ₂ solutions and powders15
Figure S14. Simulated UV-vis and CD spectra from TD-DFT calculations17
Figure S15. Molecular orbitals of <i>R</i>-Zn related to the excitation listed in Table S319
Figure S16. Optimized molecular structures of <i>R</i>-Zn and <i>S</i>-Zn 20
Table S1. Crystallographic data for <i>R-Zn</i> and <i>S-Zn</i>
Table S2. Spectroscopic data for <i>R</i>-Zn and <i>S</i>-Zn 16
Table S3. Selected TD-DFT calculated excitation energies for <i>R-Zn</i>
Table S4. Cartesian coordinates of the optimized equilibrium structure of <i>R</i>-Zn 21

Synthetic procedure of the ligands

The Schiff-base type chiral ligands were synthesized from commercially available BINOL as shown in Scheme 1 according to the previous report.¹

Scheme 1

PPTS = pyridinium *p*-toluenesulfonate, DHP = 3,4-dihydro-2H-pyran

(R)-/(S) -2'-methoxy-[1,1'-binaphthalen]-2-ol (*R***-/S-2**)

R-2: ¹H-NMR (500 MHz,CDCl₃): δ 8.07(1H, d), 7.92(2H, d), 7.86(1H, d), 7.50(1H, d),
7.39(2H, m), 7.30(2H, m), 7.21(1H, t), 7.17(1H, d), 7.05(1H, d), 4.93(1H, s), 3.82(3H, s) *S*-2: ¹H-NMR (500 MHz,CDCl₃): δ 8.07(1H, d), 7.92(2H, d), 7.86(1H, d), 7.50(1H, d),
7.40(2H, m), 7.30(2H, m), 7.21(1H, t), 7.17(1H, d), 7.05(1H, d), 4.95(1H, s), 3.83(3H, s)

(*R*)-/(*S*) -(2-(2'-methoxy-[1,1'-binaphthalen]-2-yl)oxy)tetrahydro-2H-pyran (*R*-/*S*-3) *R*-3: ¹H-NMR (500 MHz,CDCl₃): δ 7.96(2H, m), 7.87(2H, t), 7.59(1H, dd), 7.44(1H, m), 7.33(2H, m), 7.21(4H, m), 3.76(3H, s), 1.15-1.58(8H, m). *S*-3: ¹H-NMR (500 MHz,CDCl₃): δ 7.96(2H, m), 7.87(2H, t), 7.59(1H, dd), 7.44(1H, m), 7.33(2H, m), 7.21(4H, m), 3.74(3H, s), 1.13-1.60(8H, m).

(R)-/(S) -2-hydroxy-2'-methoxy-[1,1'-binaphthalene]-3-carbaldehyde (*R***-/S-1**)

*R***-1**: ¹H-NMR (500 MHz,CDCl₃): δ10.47(1H, s), 10.19(1H, s), 8.32(1H, s), 8.03(1H, d), 7.99(1H, m), 7.89(1H, d), 7.49(1H, d), 7.38-7.33(3H, m), 7.26(1H, t), 7.17-7.12(2H, m), 3.81(3H, s)

S-1: ¹H-NMR (500 MHz,CDCl₃): δ10.48(1H, s), 10.20(1H, s), 8.33(1H, s), 8.03(1H, d), 7.99(1H, m), 7.89(1H, d), 7.49(1H, d), 7.39-7.33(3H, m), 7.26(1H, t), 7.18-7.12(2H, m), 3.81(3H, s)

(a) L. Jin, Y. Huang, H. Jing, T. Chang and P. Yan, *Tetrahedron: Asymmetry*, 2008, 19, 1947-1953;
 (b) F. Meng, Y. Li, W. Zhang, S. Li, Y. Quan and Y. Cheng, *Polym. Chem.*, 2017, 8, 1555-1561.

Figure S1. (a) ¹H-NMR spectrum of R-Zn (500 MHz, d_6 -DMSO, 298 K, Me₄Si) and (b) expanded NMR spectrum of R-Zn.

Figure S2. (a) ¹H-NMR spectrum of *S*-Zn (500 MHz, d_6 -DMSO, 298 K, Me₄Si) and (b) expanded NMR spectrum of *S*-Zn.

Figure S3. ¹³C-NMR spectrum of *R*-Zn (500 MHz, *d*-chloroform, 298 K, Me₄Si).

Figure S4. ¹³C-NMR spectrum of *S*-Zn (500 MHz, *d*-chloroform, 298 K, Me₄Si).

Figure S5. (a) COSY and (b) NOESY spectra of R-Zn (500 MHz, d_6 -DMSO, 298 K, Me₄Si).

Figure S6. (a) COSY and (b) NOESYspectrum of *S*-Zn (500 MHz, *d*₆-DMSO, 298 K, Me₄Si).

(a)

Figure S7. Crystal structure of *S*-Zn. (a) Molecular structure of *S*-Zn; Molecule A (left) and molecule B (right); (b) crystal structure of *S*-Zn (green dotted line : CH... π interactions, orange dotted line : CH...O interactions); (c) crystal structure of *S*-Zn projected along *b*-axis.

	<i>R</i> -Zn	S-Zn
Formula	$C_{69.5}H_{54}N_3O_8Zn_{1.5}$	$C_{69.5}H_{54}N_3O_8Zn_{1.5}$
Formula weight	1157.21	1157.21
Color	Yellow	Yellow
Crystal size/ mm	$0.330 \times 0.170 \times 0.090$	$0.240 \times 0.210 \times 0.060$
Crystal system	Monoclinic	Monoclinic
Space group	<i>C</i> 2	<i>C</i> 2
<i>a</i> (Å)	35.6573(7)	35.7404(7)
<i>b</i> (Å)	8.2326(2)	8.2238(2)
<i>c</i> (Å)	18.9983(4)	18.9816(4)
β / °	90.879(2)	90.815(2)
<i>V</i> (Å ³)	5576.3(2)	5578.5(2)
Ζ	4	4
<i>F</i> (000)	2404	2404
$D_{ m calc}(m g/cm^3)$	1.378	1.378
Abs coeff (mm ⁻¹)	0.713	0.713
Flack parameter	-0.004(3)	-0.003(4)
$R_1^{\rm a} (l > 2\sigma(l))$	0.0415	0.0403
R_w^{b} $(l \geq 2\sigma(l))$	0.0964	0.0952
$R_1^{\rm a}$ (all data)	0.0484	0.0464
R_{w}^{b} (all data)	0.0996	0.0979

 Table S1. Crystallographic data for *R*-Zn and *S*-Zn.

$${}^{a}R_{1} = \sum ||F_{0}| - |F_{c}|| / \sum |F_{0}| \text{ for } I > 2\sigma(I) \text{ data}$$
$${}^{b}R_{w} = \left\{ \sum w(|F_{0}| - |F_{c}|)^{2} / \sum w|F_{0}|^{2} \right\}^{2}$$

Figure S8. Absorption spectrum of *S*-Zn (red, 1.0×10^{-5} M in CH₂Cl₂), the calculated spectrum (orange), and emission spectra in 1.0×10^{-4} M CH₂Cl₂ solution (blue) and in powder (green) excited at 300 nm.

Figure S9. Absorption spectra of *R*-Zn(red) and *S*-Zn(blue) in 0.1 wt% KBr pellet.

Figure S10. Emission decay profiles of *R*-Zn (left) and *S*-Zn (right) in CH_2Cl_2 solutions excited at 370 nm and fit (green solid line).

Figure S11. Emission decay profiles of *R*-Zn (left) and *S*-Zn (right) in powders excited at 370 nm and fit (green solid line).

Figure S12. CD spectra (upper) and UV-vis spectra (lower) of R-Zn (red) and S-Zn (blue) in 10⁻⁵ M CH₂Cl₂ solution.

Figure S13. (a) CPL spectra (upper) and emission spectra (lower) of R-Zn (red) and S-Zn (blue) in CH₂Cl₂ solution; (b) CPL spectra (upper) and emission spectra (lower) of R-Zn (red) and S-Zn (blue) in powders.

	Sample	<i>R</i> -Zn	S-Zn
	CH_2Cl_2 soln. ($\lambda_{ex} = 300$ nm)	11.9%	12.0%
Quantum yıeld	Powder ($\lambda_{ex} = 300 \text{ nm}$)	26.2%	25.1%
	$CH_2Cl_2 \text{ soln.}$ ($\lambda_{ex} = 300 \text{ nm}, \lambda_{det} = 540 \text{ nm}$)	8.7	8.7
Lifetime / ns	Powder ($\lambda_{ex} = 300 \text{ nm}, \lambda_{det} = 540 \text{ nm}$)	8.7	9.1
	CH ₂ Cl ₂ solution	0.0137	0.0138
$k_{\rm f}/{\rm ns}^{-1}$	Powder	0.0301	0.0276
	CH ₂ Cl ₂ solution	0.101	0.101
$k_{\rm nr}$ / ns ⁻¹	Powder	0.0848	0.0823
$g_{ m abs}$	g _{abs} CH ₂ Cl ₂ solution		2.0×10 ⁻³
	CH_2Cl_2 soln. ($\lambda_{ex} = 300$ nm)	0.86×10 ⁻³	-0.62×10-3
g _{cpl}	Powder ($\lambda_{ex} = 300 \text{ nm}$)	-0.84×10 ⁻³	1.0×10 ⁻³

Table S2. Spectroscopic data of CH_2Cl_2 solutions and powder samples of *R*-Zn and *S*-Zn.

 $k_{\rm f} = \Phi/\tau, \, k_{\rm nr} = (1 - \Phi)/\tau$

Figure S14. Simulated (a) UV-vis and (b) CD spectra of *R*-Zn from TD-DFT calculations.

Excited state	Experiment (nm)	Excitation Energy (nm) (Oscillator strength, R_{vel})	Transitions (% weight)
1	430-473 (broad)	470 (0.2013, 5.2199)	$194 \to 195 (47.9)$
2	379	392 (0.2292, 35.0748)	$193 \to 196 (46.5)$
14	282	277 (1.5248, 433.2627)	$194 \to 200 \ (30.2)$
			$194 \to 199 \ (7.5)$
			$189 \rightarrow 195 \ (4.9)$
18	250-263	262 (0.9268, -470.5516)	$193 \rightarrow 199~(22.1)$
			$190 \to 196 \ (6.1)$
			$193 \to 200 \ (4.4)$
30	236	228 (0.6831, 1186.6658)	$191 \to 201 \ (10.6)$
			$190 \to 195 \ (6.2)$
			$193 \rightarrow 201 \ (5.6)$

Table S3. Selected excitation energies and main weights of transition for *R*-Zn calculated by TD-DFT method.

Figure S15. Molecular orbitals of *R*-Zn related to the excitation listed in Table S3.

Figure S16. Optimized molecular structures of (a) *R*-Zn and (b) *S*-Zn

Atom	Х	у	Z
Zn	0.020188	-0.121184	-1.872875
0	1.561358	-0.167426	-0.724837
0	3.222343	0.263139	2.901076
N	0.345237	1.743876	-2.548143
С	-0.628784	2.354383	-3.430651
Н	-1.607473	2.385132	-2.9291
Н	-0.34237	3.378519	-3.718545
Н	-0.740699	1.742727	-4.339079
С	1.37007	2.417906	-2.177283
Н	1.474662	3.444439	-2.564108
С	2.446732	1.998552	-1.295496
С	3.468216	2.919066	-1.118727
Н	3.406003	3.883208	-1.630896
С	4.583844	2.65616	-0.307534
С	5.629775	3.608687	-0.142268
Н	5.54558	4.566907	-0.661671
С	6.714113	3.332313	0.645193
Н	7.513799	4.065451	0.769093
С	6.796706	2.075568	1.302659
Н	7.666574	1.853706	1.925885
С	5.806748	1.139162	1.165977
Н	5.891269	0.178675	1.675223
С	4.655637	1.392414	0.358345
С	3.612559	0.449079	0.200529
С	2.495598	0.71871	-0.614134
С	3.648697	-0.861842	0.903498
С	3.873576	-2.07584	0.190656
С	4.105629	-2.092701	-1.21472

Table S4. Cartesian coordinates of the optimized equilibrium structure of *R*-Zn calculated by DFT method (total energy: -3961.78619128 a.u.).

Н	4.119142	-1.145711	-1.754861
С	4.310783	-3.271028	-1.88564
Н	4.487477	-3.258394	-2.963854
С	4.299211	-4.5084	-1.193929
Н	4.462633	-5.439216	-1.741486
С	4.08685	-4.527399	0.159743
Н	4.078449	-5.472194	0.709253
С	3.870851	-3.322178	0.883013
С	3.650996	-3.323195	2.281547
Н	3.648782	-4.27571	2.81679
С	3.440867	-2.153559	2.965291
Н	3.270952	-2.181262	4.040797
С	3.434631	-0.915284	2.273514
С	3.016598	0.291627	4.2921
Н	2.876381	1.345752	4.564122
Н	2.115898	-0.272325	4.587504
Н	3.885248	-0.103114	4.84548
0	-1.640661	0.046028	-0.77995
0	-3.241399	-0.209853	2.9037
N	-0.494022	-1.848341	-2.644218
С	0.413397	-2.519687	-3.546784
Н	1.397349	-2.670283	-3.070321
Н	0.030314	-3.50586	-3.858316
Н	0.583514	-1.916397	-4.454988
С	-1.576919	-2.488323	-2.250153
Н	-1.73344	-3.494254	-2.668759
С	-2.591428	-2.069702	-1.349163
С	-3.659904	-2.928408	-1.070482
Н	-3.678504	-3.909952	-1.552602
С	-4.734003	-2.607082	-0.197846
С	-5.789255	-3.502637	0.045211

Н	-5.773111	-4.482617	-0.437447
С	-6.851368	-3.157264	0.885069
Н	-7.656515	-3.87684	1.052383
С	-6.89484	-1.90607	1.501336
Н	-7.730914	-1.635092	2.148137
С	-5.855368	-0.998381	1.27769
Н	-5.886393	-0.014019	1.746578
С	-4.765648	-1.323122	0.455037
С	-3.681685	-0.425014	0.216414
С	-2.595277	-0.775771	-0.656259
С	-3.608961	0.89147	0.881178
С	-3.743072	2.102355	0.134151
С	-4.046464	2.103306	-1.256104
Н	-4.191475	1.150199	-1.76667
С	-4.167923	3.278221	-1.954685
Н	-4.403218	3.25292	-3.021229
С	-3.998309	4.525381	-1.305206
Н	-4.094631	5.452678	-1.874016
С	-3.727408	4.559814	0.038299
Н	-3.606946	5.513493	0.558285
С	-3.601838	3.359703	0.789412
С	-3.348859	3.377804	2.182626
Н	-3.238175	4.34049	2.687117
С	-3.244686	2.214334	2.900879
Н	-3.04597	2.256765	3.970727
С	-3.372774	0.961675	2.250943
С	-3.018282	-0.223533	4.29457
Н	-2.968931	-1.279353	4.589283
Н	-2.066094	0.264148	4.561118
Н	-3.840603	0.261435	4.846119

Atom	X	У	Z
Zn	0.020167	0.121169	-1.872797
0	-1.640692	-0.046026	-0.779882
0	1.561344	0.167374	-0.724762
0	-3.241457	0.209783	2.90376
0	3.22259	-0.26312	2.901065
N	0.345185	-1.743897	-2.548069
N	-0.494013	1.848341	-2.644126
С	3.441119	2.153579	2.965218
Н	3.271287	2.181302	4.040737
С	3.651191	3.323204	2.281438
Н	3.649018	4.275728	2.816663
С	3.870939	3.322161	0.882887
С	4.086879	4.527369	0.159578
Н	4.078518	5.472174	0.709073
С	4.299138	4.508347	-1.19411
Н	4.462515	5.439154	-1.741695
С	4.310662	3.270963	-1.885798
Н	4.487276	3.258309	-2.964025
С	4.105561	2.092647	-1.214842
Н	4.119035	1.145647	-1.754967
С	3.873613	2.07581	0.190552
С	3.648789	0.861824	0.903433
С	3.434829	0.915291	2.273465
С	3.016989	-0.291587	4.292111
Н	2.876801	-1.345708	4.564163
Н	3.885697	0.103163	4.845394
Н	2.116319	0.272369	4.587601
С	3.612605	-0.44911	0.200488
С	4.65569	-1.392446	0.358261

Table S5. Cartesian coordinates of the optimized equilibrium structure of *S*-Zn calculated by DFT method (total energy: -3961.78619127 a.u.).

С	5.806845	-1.139187	1.165829
Н	5.891398	-0.178692	1.675054
С	6.796804	-2.075596	1.302475
Н	7.666706	-1.853729	1.925654
С	6.714171	-3.332351	0.645034
Н	7.513859	-4.065492	0.768907
С	5.629793	-3.60873	-0.142369
Н	5.545566	-4.566957	-0.661755
С	4.583859	-2.6562	-0.307598
С	3.468194	-2.91911	-1.11874
Н	3.405958	-3.883254	-1.630901
С	2.446706	-1.998594	-1.29547
С	2.495599	-0.718751	-0.614111
С	1.370014	-2.417941	-2.177223
Н	1.474581	-3.444479	-2.564042
С	-0.628863	-2.354396	-3.430553
Н	-0.740789	-1.742742	-4.338981
Н	-0.342468	-3.378536	-3.718449
Н	-1.607542	-2.38513	-2.928982
С	-1.576884	2.488351	-2.250036
Н	-1.733374	3.494297	-2.668619
С	-2.591401	2.069743	-1.34905
С	-3.659849	2.928477	-1.070346
Н	-3.678415	3.910035	-1.552438
С	-4.73396	2.607159	-0.197724
С	-5.789185	3.502742	0.045356
Н	-5.773006	4.482737	-0.437271
С	-6.851314	3.157376	0.885196
Н	-7.656439	3.876973	1.052528
С	-6.894832	1.906164	1.501421
Н	-7.730919	1.635191	2.148207
С	-5.855388	0.998448	1.277753

Н	-5.886449	0.014071	1.746609
С	-4.76565	1.32318	0.455119
С	-3.681714	0.425045	0.216476
С	-2.595289	0.775795	-0.656179
С	-3.60904	-0.891461	0.8812
С	-3.372872	-0.961719	2.250965
С	-3.743192	-2.102317	0.134133
С	-4.046568	-2.103212	-1.256126
Н	-4.191533	-1.150083	-1.766663
С	-4.168068	-3.2781	-1.954745
Н	-4.403349	-3.252756	-3.021291
С	-3.998513	-4.525288	-1.305303
Н	-4.094867	-5.452563	-1.874143
С	-3.727629	-4.559774	0.038204
Н	-3.607213	-5.513474	0.558161
С	-3.602017	-3.359692	0.789356
С	-3.349056	-3.377847	2.182572
Н	-3.238418	-4.340552	2.687035
С	-3.244843	-2.214404	2.900863
Н	-3.046143	-2.256877	3.970712
С	-3.018369	0.22341	4.294635
Н	-2.968977	1.279219	4.589383
Н	-3.840723	-0.261539	4.846151
Н	-2.066209	-0.264322	4.561189
С	0.413427	2.519681	-3.546676
Н	0.583552	1.916392	-4.454878
Н	0.030357	3.505858	-3.858212
Н	1.397372	2.670269	-3.070197