Electronic Supplementary Information

1,2,3-triazol-5-ylidene- vs 1,2,3-triazole-based tricarbonylrhenium(I) complexes: Influence of a mesoionic carbene ligand on the electronic and biological properties

Corinne Vanucci-Bacqué, Mariusz Wolff, Béatrice Delavaux-Nicot, Abanoub Mosaad Abdallah, Sonia Mallet-Ladeira, Charles-Louis Serpentini, Florence Bedos-Belval, Kar Wai Fong, Xiao Ying Ng, May Lee Low, Eric Benoist^{*} and Suzanne Fery-Forgues^{*}

Synthesis and chemical characterization

Figure S1. ¹ H NMR spectrum of Re-T-Phe in DMSO- <i>d</i> ₆	3
Figure S2. ¹³ C Jmod NMR and HSQC spectra of Re-T-Phe in DMSO- <i>d</i> ₆	4
Figure S3. ¹ H NMR and ¹³ C Jmod NMR spectra of Re-T-Tol in DMSO- <i>d</i> ₆	5
Figure S4. HSQC spectra of Re-T-Tol in DMSO-d ₆	6
Figure S5. ¹ H NMR spectrum of Re-T-BOP in DMSO- <i>d</i> ₆	6
Figure S6. ¹³ C Jmod NMR and HSQC spectra of Re-T-BOP in DMSO- <i>d</i> ₆	7
Figure S7. ¹ H NMR and ¹³ C Jmod NMR spectra of Re-Tol in DMSO- <i>d</i> ₆	8
Figure S8. HSQC spectra of Re-Tol in DMSO-d ₆	9
Figure S9. HRMS data for Re-T-Phe	9
Figure S10. HRMS data for Re-T-Tol	10
Figure S11. HRMS data for Re-T-BOP	10
Figure S12. HRMS data for Re-Tol	11
Figure S13. ATR FTIR spectrum of complex Re-T-Phe and Re-T-Tol	12
Figure S14. ATR FTIR spectrum of complexes Re-T-BOP and Re-Tol	13
Table S1. FT-IR data for all complexes as microcrystalline powders	13

Crystallographic data

Table S2. Selected crystallographic data of pyridyl-triazolylidene-based complexes Re-T-Phe, Re-T-Tol	
and Re-T-BOP , and pyridyl-triazole-based complexes Re-Phe and Re-Tol	14
Table S3. Selected bond lengths of the complexes	15
Table S4. Selected angles of the complexes	16
Table S5. Octahedral distortion parameters for Re-Phe, Re-Tol, Re-T-Phe and Re-T-Tol	17
Table S6. Short contacts detected in structures of Re-Phe, Re-Tol, Re-T-Phe and Re-T-Tol	17
Table S7. Geometrical parameters for C–H··· π interactions detected in Re-Phe , Re-T-Phe and Re-T-Tol	17
Table S8. Geometrical parameters for $\pi \cdots \pi$ interactions detected in Re-Tol , Re-T-Phe and Re-T-Tol	18
Figure S15. One-dimensional chain of Re-T-Phe showing intermolecular C-H···O interactions along the <i>c</i> axis	18
Figure S16. C–H··· π and π – π interactions in complexes Re-T-Phe	18
Figure S17. One-dimensional chain of Re-T-Tol showing intermolecular C–H…Cl interactions along the <i>c</i> axis	19
Figure S18. C–H··· π and π – π interactions in complex Re-T-Tol	19
Figure S19. One-dimensional zig-zag chain of Re-Phe	19
Figure S20. Two dimensional network of Re-Phe showing intermolecular C-H…Cl interactions in the <i>ac</i> plane	20
Figure S21. C–H··· π interactions in Re-Phe	20
Figure S22. One-dimensional chain of Re-Tol showing intermolecular C-H…Cl interactions along the c axis	21
Figure S23. Two dimensional network of Re-Tol showing the intermolecular C-H…O interactions in the ab plane	21
Figure S24. $\pi_{(trz)} \cdots \pi_{(py)}$ interactions in Re-Tol	. 22
Figure S25. Crystal packing of Re-T-Phe, Re-T-Tol, Re-Phe and Re-Tol	22
Figure S26. Hirshfeld surfaces plotted over the normalized contact distance (dnorm), shape index, and curvedness	23
Figure S27. Two-dimensional fingerprint plots for interactions in crystal packing of Re-Phe	. 24
Figure S28. Two-dimensional fingerprint plots for interactions in crystal packing of Re-Tol	. 25
Figure S29. Two-dimensional fingerprint plots for interactions in crystal packing of Re-T-Phe	. 26
Figure S30. Two-dimensional fingerprint plots for interactions in crystal packing of Re-T-Tol	. 27

Calculations

Table S9. Calculated bond lengths and angles in the ground, singlet and triplet excited states for Re-Tol28Table S10. Calculated bond lengths and angles in the ground, singlet and triplet excited states for Re-T-Tol29Table S11. Calculated bond lengths and angles in the ground, singlet and triplet excited states for Re-T-BOP30

Figure S31. DFT-optimized structure of Re-T-BOP	30
Table S12. Dihedral angle values between the triazole or triazolylidene ring and R calculated using DFT for the	
ground state, and first singlet and triplet excited states of Re-Tol, Re-T-Tol and Re-T-BOP	31
Table S13. The frontier molecular orbital compositions and energy levels for Re-Tol (in gas phase)	31
Table S14. The frontier molecular orbital compositions and energy levels for Re-Tol (in DCM)	31
Table S15. The frontier molecular orbital compositions and energy levels for Re-T-Tol (in gas phase)	32
Table S16. The frontier molecular orbital compositions and energy levels for Re-T-Tol (in DCM)	32
Table S17. The frontier molecular orbital compositions and energy levels for Re-T-BOP (in gas phase)	33
Table S18. The frontier molecular orbital compositions and energy levels for Re-T-BOP (in DCM)	33
Table S19. The main electronic transitions for Re-Tol, calculated with TDDFT method (in gas phase)	34
Table S20. The main electronic transitions for Re-Tol, calculated with TDDFT method (in DCM)	34
Table S21. The main electronic transitions for Re-T-Tol calculated with TDDFT method (in gas phase)	35
Table S22. The main electronic transitions for Re-T-Tol calculated with TDDFT method (in DCM)	35
Table S23. The main electronic transitions for Re-T-BOP calculated with TDDFT method (in gas phase)	36
Table S24. The main electronic transitions for Re-T-BOP calculated with TDDFT method (in DCM)	36
Table S25. The frontier molecular orbital compositions and energy levels for Re-BOP (in DCM)	37
Table S26. The main electronic transitions for Re-BOP, calculated with TDDFT method (in DCM)	37
Table S27. Phosphorescence emission energies of Re-Tol, Re-T-Tol and Re-T-BOP	37
Table S28. Natural populations of the orbitals of the central atom in Re-Tol, Re-T-Tol and Re-T-BOP	38
Table S29. Natural Population Analysis (NPA) for Re-Tol, Re-T-Tol, Re-T	38
Table S30. Frontier molecular orbital descriptors of complexes Re-Tol, Re-T-Tol, Re-T-BOP and Re-BOP	38
Figure S32. The isodensity plots of the frontier molecular orbitals of Re-Tol (in gas phase)	39
Figure S33. The isodensity plots of the frontier molecular orbitals of Re-Tol (in DCM)	40
Figure S34. The isodensity plots of the frontier molecular orbitals of Re-T-Tol (in gas phase)	41
Figure S35. The isodensity plots of the frontier molecular orbitals of Re-T-Tol (in DCM)	42
Figure S36. The isodensity plots of the frontier molecular orbitals of Re-T-BOP (in gas phase)	43
Figure S37. The isodensity plots of the frontier molecular orbitals of Re-T-BOP (in DCM)	44
Figure S38. The isodensity plots of the frontier molecular orbitals of complex Re-BOP (in DCM)	45
Figure S39. Spin density distribution for the lowest triplet state T1 of Re-Tol, Re-T-Tol and Re-T-BOP	46
Figure S40. Molecular Electrostatic Potential (MEP) of Re-Tol, Re-T-Tol and Re-T-BOP	46
Figure S41.Experimental and simulated UV-Vis and FT-IR spectra of Re-Tol, Re-T-Tol, and Re-T-BOP	47

Electrochemistry

Table S31. Experimental electrochemical data used, and calculated values of the energy gaps (<i>Eg</i>)	48
Figure S42. OSWVs: anodic and cathodic scans of complex Re-Tol	49
Figure S43. Cyclic voltammograms of Re-Tol, and of its first oxidation and reduction processes at 0.2 V/s	49
Figure S44. Cyclic voltammograms of the first oxidation process of Re-Tol at 10, 50, and 100 V/s,	
and of its first reduction process at 10, 50, and 100 V/s	49
Figure S45. OSWVs: anodic and cathodic scans of complex Re-T-Tol	50
Figure S46. Cyclic voltammograms of Re-T-Tol, and of its first oxidation and reduction processes at 0.2 and 10 V/	's 50
Figure S47. Cyclic voltammograms of the first oxidation process of Re-T-Tol at 10, 50, and 100 V/s,	
and of its first reduction process at 1, 5, and 10 V/s	50
Figure S48. OSWVs: anodic and cathodic scans of complex Re-T-BOP	51
Figure S49. Cyclic voltammograms of complex Re-T-BOP	51
Figure S50. Cyclic voltammograms of the first oxidation process of Re-T-BOP at 10, 50, and 100 V/s,	
and of its first reduction process at 1, 10, 50, and 100 V/s	51

Spectroscopy

Microbiology

Table S32 Minimum inhibitory concentration (MIC) of the complexes towards antibiotic-susceptible (S) andmultidrug-resistant (R) bacteria, with irradiation by UV light. Comparison with conventional antibiotics53

Calculations (Annex)

Table S33. Cartesian coordinates of Re-Tol in S ₀ (in gas phase)	54
Table S34. Cartesian coordinates of Re-Tol in T1 (in gas phase)	54
Table S35. Cartesian coordinates of Re-Tol in S ₀ (in dichloromethane)	54
Table S36. Cartesian coordinates of Re-Tol in S1 (in dichloromethane)	55
Table S37. Cartesian coordinates of Re-Tol in T ₁ (in dichloromethane)	55
Table S38. Cartesian coordinates of Re-T-Tol in S ₀ (in gas phase)	55
Table S39. Cartesian coordinates of Re-T-Tol in T ₁ (in gas phase)	56
Table S40. Cartesian coordinates of Re-T-Tol in S ₀ (in dichloromethane)	56
Table S41. Cartesian coordinates of Re-T-Tol in S ₁ (in dichloromethane)	56
Table S42. Cartesian coordinates of Re-T-Tol in T ₁ (in dichloromethane)	57
Table S43. Cartesian coordinates of Re-T-BOP in S ₀ (in gas phase)	57
Table S44. Cartesian coordinates of Re-T-BOP in T ₁ (in gas phase)	57
Table S45. Cartesian coordinates of Re-T-BOP in S_0 (in dichloromethane)	58
Table S46. Cartesian coordinates of Re-T-BOP in S ₁ (in dichloromethane)	. 58
Table S47. Cartesian coordinates of Re-T-BOP in T ₁ (in dichloromethane)	. 58

Synthesis and chemical characterization

Figure S1. ¹H NMR spectrum of complex **Re-T-Phe** in DMSO-*d*₆.

Figure S2. ¹³C Jmod NMR (top) and HSQC (bottom) spectra of complex Re-T-Phe in DMSO-d₆.

Figure S3. ¹H NMR (top) and ¹³C Jmod NMR (bottom) spectra of complex Re-T-Tol in DMSO-*d*₆.

Figure S4. HSQC spectrum of complex Re-T-Tol in DMSO-*d*₆.

Figure S5. ¹H NMR spectrum of complex Re-T-BOP in DMSO-d₆.

Figure S6. ¹³C Jmod NMR (top) and HSQC (bottom) spectra of complex Re-T-BOP in DMSO-*d*₆.

Figure S7. ¹H NMR (top) and ¹³C Jmod NMR (bottom) spectra of complex **Re-Tol** in DMSO-*d*₆.

Elemental Composition Report

Single Mass Analysis Tolerance = 3.0 PPM / DBE: min = -5.0, max = 70.0 Element prediction: Off Number of isotope peaks used for i-FIT = 3 Monoisotopic Mass, Odd and Even Electron lons

 879 formula(e) evaluated with 6 results within limits (up to 50 closest results for each mass)

 Elements Used:

 C: 0-100
 H: 0-150
 N: 0-5
 CI: 0-1
 185Re: 0-1

 Cone voltage =30V Xevo G2 QTOF #YCA210 cvb6-107-2 89 (0.559) AM2 (Ar,20000.0,0.00,0.00); Cm (89:94-53:62x2.000) 11-Apr-2023 10:32:18 1: TOF MS ES+ 1.27e+006 507.0471 507.0471 100 455.0500 479.0520493.0311 537.0093 560.0497.677.0035 601.0747 610.1843 618.1257 647.5594 654.3303 460 470 480 490 500 510 520 530 540 550 560 570 580 590 600 610 620 630 640 650 660 -5.0 70.0 Minimum: 5.0 3.0 Maximum: Mass Calc. Mass mDa PPM DBE i-FIT Norm Conf(%) Formula 158.4 1.984 13.75 C22 H15 N O5 185Re 558.0479 558.0480 -0.1 -0.2 16.0
 1.561
 21.00

 1.732
 17.69

 2.453
 8.60

 1.186
 30.55

 2.478
 8.39
 11.5 12.0 44.0 16.5 21.0 C19 H18 N2 O4 C1 185Re C17 H16 N5 O3 C1 185Re C46 H6
[M + NH₄]⁺ 558.0485 -0.6 -1.1 158.0 558.0471 558.0470 558.0466 0.8 0.9 1.3 -1.4 1.4 1.6 2.3 -2.5 158.1 158.9 157.6 158.9 C20 H13 N4 O4 185Re C23 H11 N5 O 185Re 558.0493 11-Apr-2023 10:32:18 1: TOF MS ES+ Cone voltage =30V Xevo G2 C vb6-107-2 89 (0.559) AM2 (Ar,2000.0,0.00,0.00); Cm (89:94-53:62x2.000) Xevo G2 QTOF #YCA210 1 27e+006 507.0471 507.0491 507.0493 560.0497567.0035 601.0747 610.1843 618.1257 647.5594 50.0497567.0035 601.0747 610.1843 618.1257 647.5594 560 60 640 650 510 520 530 540 550 560 570 580 590 600 610 620 630 640 650 660 -5.0 70.0 Minimum: 5.0 3.0 Maximum: Mass Calc. Mass mDa PPM DBE i-FIT Norm Conf(%) Formula C29 H7 N5 O5 C17 H12 N4 O3 185Re C19 H14 N O4 185Re (M - Cl]+ 505.0443 505.0447 -0.4 291.6 290.8 292.0 25.09 -0.8 29.0 1.383 0.543 1.783 383

Figure S9. HRMS data for Re-T-Phe

505.0439 505.0452

0.4

14.0

0.8

16.81

Elemental Composition Report

Monoisotopic Mass, Odd and Even Ions 1772 formula(e) evaluated with 11 results within limits (up to 50 closest results for each mass) Elements Used: C: 0-100 H: 0-120 N: 0-5 O: 0-1 185Re: 0-1 Cone voltage = 30 V CVB5-156 10, 500) AM2 (Ar,20000.0, 0.00, 0.00); Cm (80:85-58:63x2.000) XEVO G2 QTOF 08-Jun-2021 14:19:01 1: TOF MS E5- 3.93e+004 100 1 575.0 577.0 577.0 577.0 578.0 581.0212 582.0228 583.0302 584.5072 586.072 m/z 100 1 575.0 577.0 577.0 578.0 579.0 581.0 581.0 582.0 583.0 584.0 585.0 586.0 Minimum: -5.0 -51.0 100.0 100.0 100.0 100.0 100.0							
C: 0-100 H: 0-120 N: 0-5 O: 0-5 Na: 0-1 CI: 0-1 185Re: 0-1 Cone voltage = 30 V XEVO 62 QTOF 08-Jun-2021 14: 18:01 CVB5-156 81 (0.503) AM2 (Ar,20000.0,0.00,0.00); Cm (80:85-58:63x2.000) 11: TOF MS ES- 3.93e+004 100 575.0 898 576.0647 577.0197 578.0240 579.0217 580.0227 581.0212 582.0228 583.0302 594.5072 586.0792 17.575.0 575.0 577.0 578.0 579.0 581.0 582.0 583.0 584.0 585.0 586.0 588.0 586.0 58							
Cone voltage = 30 V XEVO G2 QTOF 06-Jun-2021 14:18:01 CVB5-155 B1 (0.503) AM2 (Ar,20000.0.0.00,0.00); Cm (80:85-59:63x2.000) 1:07 FMS ES+ 3393+004 1001 575.0698 576.0647 577.0197 578.0240 580.0257 581.0212 582.0228 583.0302 584.5072 586.0792 575.0 575.0 575.0 575.0 575.0 579.0 580.0 581.0 582.0 583.0 584.0 585.0 588.0 58							
100 575.0898 576.0647 577.0197 578.0240 0 575.0 576.0 577.0 578.0 590.0257 581.0212 582.0228 583.0302 584.5072 586.0792 m/z 575.0 576.0 577.0 578.0 579.0 580.0 581.0 582.0 583.0 584.0 585.0 586.0 Minimum: 1.0 3.0 100.0 Maximum: 1.0 3.0 100.0							
0 575.0 576.0 577.0 578.0 579.0 580.0 581.0 582.0 583.0 584.0 585.0 586.0 Minimum: -5.0 Maximum: 1.0 3.0 100.0 Maximum: -5.0 Maximum: -							
Minimum: -5.0 Maximum: 1.0 3.0 100.0							
Maximum: 1.0 3.0 100.0							
a la la properta de la							
Mass Caic. Mass mDa PPM DBK 1-FIT Norm Coll(4) Formula							
577.0197 577.0195 0.2 0.3 12.5 212.6 2.357 9.47 C20 H16 N 04 Na C1 185Re							
577.0201 -0.4 -0.7 20.5 213.9 3.636 2.64 C23 H10 N3 04 185Ke							
577.0204 -0.7 -1.2 22.0 214.1 5.886 2.05 C24 h5 M3 0 M3 C50K							
577.0190 0.7 1.2 20.0 212.9 3.617 2.69 C23 H13 05 Na 185Re							
577 0206 -0.9 -1.6 16.0 212.2 1.985 13.73 C20 H13 N4 O3 C1 185Re							
577.0208 -1.1 -1.9 17.5 212.3 2.055 12.81 C21 H12 N5 Na C1 185Re							
577.0182 1.5 2.6 13.0 213.4 3.138 4.34 C18 H14 N4 O3 Na C1 185Re							
577.0212 -1.5 -2.6 37.0 214.4 4.203 1.49 C36 H4 N5 03 Na							
577.0214 -1.7 -2.9 31.0 211.3 1.021 36.01 C32 H8 N5 05 CI							
577.0214 -1.7 -2.9 20.0 214.6 4.324 1.32 C25 H12 O5 185Re							
Cone voltage = 30 V XEVO G2 QTOF 08-Jun-2021 14:18:01 CVB5-155 81 (0.503) AM2 (Ar,20000.0,0.00); Cm (80:85-69:532.000) 1: TOF MS ES+ 3.99e+005							
100 512.4141 513.4162 515.3851 519.0609 521.0638 522.0667 524.0710 526.4354 528.0351 531.3870.532.0780 533.0788							
512.0 514.0 516.0 518.0 520.0 522.0 524.0 528.0 530.0 530.0 532.0 534.0							
Minimum: -5.0 Maximum: 1.0 3.0 100.0							
Mass Calc. Mass mDa PPM DBE i-FIT Norm Conf(%) Formula							
519 0609 519 0609 0.0 0.0 13.5 348.7 1.557 21.07 C20 H16 N 04 185Re							
519.0604 0.5 1.0 29.0 348.5 1.292 27.47 C30 H9 N5 O5							
519.0622 -1.3 -2.5 18.5 349.4 2.212 10.95 C21 H12 N5 185Re							
519.0595 1.4 2.7 14.0 348.1 0.904 40.50 C18 H14 N4 O3 185Re [M - Cl] ⁺							

Figure S10. HRMS data for Re-T-Tol.

Elemen	tal Compositio	on Rep	ort						
Single M Tolerance Element Number o	Mass Analysis e = 3.0 PPM / prediction: Off of isotope peaks	DBE: m	in = -1.5, r i-FIT = (max = 5 3	i0.0				
Monoisoto 2910 form	pic Mass, Odd an ula(e) evaluated w	d Even E /ith 16 re	lectron lo sults withi	ns n limits (u	p to 50 clos	est result	s for each r	mass)	
C: 0-60	Used: H: 0-100 N: 0-8	O: 0-5	Na: 0-1	Cl: 0-1	185Re: 0-1	1			
Minimum: Maximum:		5.0	3.0	-1.5 50.0					
Mass	Calc. Mass	mDa	PPM	DBE	i-FIT	Norm	Conf (%) Formula	
680.0256 Cone voltage CVB5-196-2	680.0253 680.0259 680.0250 680.0250 680.0262 680.0248 680.0246 680.0246 680.0246 680.0246 680.0247 680.0270 680.0272 680.0275 680.0275 680.0275	0.3 -0.3 0.6 -0.6 0.8 -0.8 1.0 -1.1 -1.1 1.3 -1.4 -1.6 1.6 -1.9 -1.9	0.4 -0.4 0.9 -0.9 1.2 -1.2 1.5 -1.6 -1.6 1.9 -2.1 -2.1 2.4 2.4 2.4 -2.8	18.5 26.5 22.5 28.5 22.0 27.0 23.5 49.5 49.5 49.5 45.0 31.5 45.0 38.5 27.5	403.1 404.3 403.3 404.5 403.9 402.8 403.8 402.8 400.5 401.8 400.5 401.8 404.7 402.1 403.8 404.7 402.1 403.8 401.9 405.3	3.423 4.580 3.591 4.776 4.182 3.081 4.052 3.117 0.835 2.075 5.166 4.986 2.375 4.102 2.181 5.581 32 QTOF	3.26 1.03 2.76 0.84 1.53 4.59 1.74 4.43 43.36 0.57 0.68 9.30 1.65 11.29 0.38	C26 H17 N2 O5 Na C1 C29 H11 N4 O5 185Re C24 H12 N8 03 C1 185 C30 H10 N5 02 Na 185 C30 H10 N5 02 Na 185Re C26 H14 N5 04 C1 185 C27 H9 N7 O4 185Re C27 H3 N6 0 Na C1 1 C52 H7 N C1 C50 H8 N Na C1 C52 H7 N C1 C50 H8 N Na C1 C42 H5 N6 04 Na C30 H7 N8 0 185Re C34 H15 N5 04 Na C1 C34 H15 N7 03 Na C1 C32 H12 N2 03 Na 1857	185Re Re 85Re <u>185Re</u> [M + Na] ⁴ Re 30-Nov-2021 11:37:54 1: TOF MS ES+ 388+006
100	593,1566 61	15.1412	624.0697	6	42.0811	51.0804 ⁶⁶	5.0966	682.0275 689.1609	715.1252_719.4964
0-4	590 600	610	620 (630 6	40 650	660	670	680 690 700	710 720
Minimum: Maximum:		1.0	3.0	-5.0 100.0					
Mass	Calc. Mass	mDa	PPM	DBE	i-FIT	Norm	Conf(%)	Formula	
522.0667	622.0667 622.0662 622.0675 622.0657 622.0654 522.0680	0.0 0.5 -0.8 1.0 1.3 -1.3	0.0 0.8 -1.3 1.6 2.1 -2.1	19.5 35.0 34.5 47.5 20.0 24.5	445.0 444.7 445.5 445.6 444.6 445.5	1.713 1.462 2.215 2.339 1.284 2.251	18.03 23.18 10.92 9.65 27.70 10.52	C26 H17 N2 O5 185Re C36 H10 N6 O6 C38 H12 N3 O7 C50 H8 N C24 H15 N5 O4 185Re C27 H13 N6 O 185Re	[M – CI]+
	522.0000	2.5		2					

Figure S11. HRMS data for Re-T-BOP.

Elemental Composition Report

Single Mass Analysis

Tolerance = 3.0 PPM / DBE: min = -5.0, max = 70.0 Element prediction: Off Number of isotope peaks used for i-FIT = 3

Monoisotopic Mass, Odd and Even Electron Ions 1550 formula(e) evaluated with 10 results within limits (up to 50 closest results for each mass) Elements Used: C: 0-100 H: 0-100 N: 0-10 O: 0-5 CI: 0-1 187Re: 0-1

Cone voltage = CVB6-90 83 (0	=15V 1.529) AM2 (Ar,200	00.0,0.00,0).00); Cm (7	(4:90-48:62	(evo G2 (x2.000)	QTOF #YCA:	210		02-Feb-2023 10:57:48 2: TOF MS ES+ 4.04e+005
100- 463.1 0	320 479.2983	507.047	6 <u>536.</u>	1661 548.07	742 56 111111111111111111111111111111111111	560 570	046 580.978	36601.0761 610.1844 626	.9764 656.1082 m/z
Minimum: Maximum:		1.0	3.0	-5.0 70.0		000 010	566 55		040 050 000
Mass	Calc. Mass	mDa	PPM	DBE	i-FIT	Norm	Conf(%)	Formula	
560.0498	560.0497 560.0499 560.0500 560.0494 560.0492 560.0508	0.1 -0.1 -0.2 0.4 0.6 -1.0	0.2 -0.2 -0.4 0.7 1.1 -1.8	27.0 12.0 43.5 16.5 31.5 21.5	309.4 306.7 321.6 319.8 320.2 320.1	2 927 0.252 15.163 13.369 13.735 13.680	5.35 77.71 0.00 0.00 0.00 0.00 0.00	C26 H9 N10 O4 C1 C17 H16 N5 O3 C1 18 C45 H6 N ° C20 H13 N4 O4 187Re C29 H6 N9 O5 C21 H9 N8 187Re	_{778e} [M + NH ₄] ⁺
	560.0508 560.0510 560.0486 560.0513	-1.0 -1.2 1.2 -1.5	-1.8 -2.1 2.1 -2.7	16.0 26.5 12.5 11.5	320.2 311.0 309.2 308.8	13.759 4.509 2.735 2.370	0.00 1.10 6.49 9.35	C22 H15 N 05 187Re C28 H11 N7 05 C1 C15 H14 N8 02 C1 18 C19 H18 N2 04 C1 18	7Re 7Re

Elemental Composition Report

Single Mass Analysis Tolerance = 3.0 PPM / DBE: min = -5.0, max = 70.0 Element prediction: Off Number of isotope peaks used for i-FIT = 3

Monoisotopic Mass, Odd and Even Electron Ions 1214 formula(e) evaluated with 7 results within limits (up to 50 closest results for each mass) Elements Used: C: 0-100 H: 0-100 N: 0-10 O: 0-10 187Re: 0-1

Cone voltage =15V Xevo G2 QTOF #YCA210 CVB6-90 83 (0.529) AM2 (Ar,20000.0,0.00,0.00); Cm (74:90-48:62x2.000)

02-Feb-2023 10:57:48 2: TOF MS ES+ 4.04e+005

460 470 480 490 500 520 530 540 550 560 570 580 590 600 610 620 630 640 650 660 Minimum: -5.0	100 463.	1320 479.2983	507.0476	536.1661 548.0742	560.0498	046 580.978660	01.0761 610.1844 626.9	764 656.1082 m/r
Minimum: 1.0 3.0 -5.0 Maximum: 1.0 3.0 70.0 Mass Calc. Mass mDa PPM DBE i-FIT Norm Conf(%) Formula 507.0476 507.0478 -0.2 -0.4 28.5 276.9 6.257 0.19 C28 H7 N6 05 507.0476 507.0472 0.4 0.8 1.5 273.6 2.965 5.16 C19 H14 N 04 187Re 507.0476 0.9 1.8 14.0 270.7 0.077 92.62 C17 H12 N4 03 187Re [M - Cl]+ 507.0485 -0.9 1.8 1.0 274.7 4.076 1.70 C5 H16 N6 010 187Re [M - Cl]+	460 4	70 480 490	500 510 5	520 530 540 550	0 560 570	580 590	600 610 620 630	640 650 660
Mass Calc. Mass mDa PPM DBE i-FIT Norm Conf(%) Formula 507.0476 507.0478 -0.2 -0.4 28.5 276.9 6.257 0.19 C28 H7 N6 05 507.0476 -0.4 -0.8 13.5 273.6 2.965 5.16 C19 H14 N 04 187Re 507.0472 0.4 0.8 1.5 278.5 7.865 0.04 C3 H14 N9 09 187Re 507.0477 0.9 1.8 14.0 270.7 0.077 92.62 C17 H12 N4 03 187Re 507.0485 -0.9 -1.8 1.0 274.7 4.076 1.70 C5 H16 N6 OID 187Re	Minimum: Maximum:		1.0 3.0	-5.0 0 70.0				
507.0476 507.0478 -0.2 -0.4 28.5 276.9 6.257 0.19 C28 H7 N6 05 507.0480 -0.4 -0.8 13.5 273.6 2.965 5.16 C19 H14 N 04 187Re 507.0467 0.9 1.8 14.0 270.7 0.077 92.62 C17 H12 N4 03 187Re 507.0485 -0.9 -1.8 1.0 274.7 4.076 1.70 C5 H16 N6 010 187Re	Mass	Calc. Mass	mDa PPN	M DBE i-FI	T Norm	Conf(%) Fo	rmula	
507.0465 1.1 2.2 23.5 277.3 6.643 0.13 C27 H11 N2 09 507.0464 1.2 2.4 29.0 277.0 6.418 0.16 C26 H5 N9 04	507.0476	507.0478 507.0480 507.0472 507.0467 507.0485 507.0465 507.0464	$\begin{array}{cccc} -0.2 & -0.4 \\ -0.4 & -0.8 \\ 0.9 & 1.8 \\ -0.9 & -1.4 \\ 1.1 & 2.2 \\ 1.2 & 2.4 \end{array}$.4 28.5 276. .8 13.5 273. 8 1.5 278. 8 14.0 270. .8 1.0 274. 2 23.5 277. 4 29.0 277.	9 6.257 6 2.965 5 7.865 7 0.077 7 4.076 3 6.643 0 6.418	0.19 C2 5.16 C1 0.04 C3 92.62 C1 1.70 C5 0.13 C2 0.16 C2	8 H7 N6 O5 9 H14 N O4 187Re H14 N9 O9 187Re 7 H12 N4 O3 187Re H16 N6 O10 187Re 7 H11 N2 O9 6 H5 N9 O4	[M - CI]+

Figure S12. HRMS data for Re-Tol.

Figure S13. ATR FTIR spectra of the microcrystalline powder of **Re-T-Phe** (top) and **Re-T-Tol** (bottom).

Figure S14. ATR FTIR spectrum of microcrystalline powders of Re-T-BOP (top) and Re-Tol (bottom)

Table S1. FTIR data for all complexes as microcrystalline powders (ATR) and in CH₂Cl₂ solution.

Complex	$v_{C=0}$ (ATR) (cm ⁻¹)	$v_{C=0} (CH_2Cl_2) (cm^{-1})$	$< v_{C=O} (CH_2Cl_2) > (cm^{-1})$
Re-T-Phe	2003, 1912, 1891, 1874, 1853	2016, 1915, 1885	1939
Re-T-Tol	2019, 1917, 1888, 1868	2016, 1916, 1884	1939
Re-T-BOP	2011, 1913, 1894, 1877	2016, 1916, 1887	1940
Re-Phe	2024, 1930, 1894, 1879, 1848 ^a	2028, 1927, 1900	1952
Re-Tol	2025, 1920, 1894, 1852, 1845	2028, 1927, 1899	1951
Re-BOP	2030, 1920, 1903 ^b	2028, 1943 ^c , 1921, 1889	1946

^a From Poirot et al. Dalton Trans. 2021, **50**, 13686–13698.

^b From Wang et al. Dalton Trans. 2018, **47**, 8087–8099.

^c not considered for calculation.

	Re-T-Phe	Re-T-Tol	Re-Phe	Re-Tol
Empirical formula	C17H12N4O3ClRe	C ₁₈ H ₁₄ ClN ₄ O ₃ Re	$C_{16}H_{10}N_4O_3ClRe$	C ₁₇ H ₁₂ N ₄ O ₃ ClRe
Formula weight	541.97	555.98	527.93	541.97
Crystal system	Monoclinic	Monoclinic	Orthorhombic	Monoclinic
Space group	Pn	P21/c	P b c a	P21/c
Unit cell dimensions				
<i>a</i> (Å)	7.4855(4)	13.0933(5)	13.1442(10)	17.1110(11)
<i>b</i> (Å)	8.5760(4)	8.7846(4)	6.8213(5)	10.9130(8)
<i>c</i> (Å)	13.7433(7)	15.9309(7)	36.375(3)	9.7176(7)
α (°)	90	90	90	90
β (°)	104.060 (1)	92.1447(17)	90	99.738(3)
γ (°)	90	90	90	90
Volume (Å ³)	855.83(7)	1831.08(14)	3261.4(4)	1788.4(2)
Z	2	4	8	4
Density (calculated) (Mg/m ³)	2.103	2.017	2.150	2.013
Crystal size (mm ³)	$0.160\times0.120\times0.060$	$0.160 \times 0.140 \times 0.120$	$0.200 \times 0.040 \times 0.040$	$0.200 \times 0.080 \times 0.060$
Reflections collected	27075	57189	115433	71992
Independent reflections	5797 [R(int) = 0.0299]	4531 [R(int) = 0.0281]	6553 [R(int) = 0.0554]	5983 [R(int) = 0.0762]
Restraints/parameters	2 / 237	0 / 246	0 / 226	0 / 236
Final R1 index $I > 2\sigma(I)$	0.0166	0.0145	0.0213	0.0250
wR2 (all data)	0.0377	0.0319	0.0435	0.0524
Largest diff. peak and hole (e $Å^{-3}$)	1.422 and -1.178	0.595 and -0.931	0.844 and -1.325	1.015 and -1.002
CCDC	2327668	2327669	2327670	2327671

Crystallographic data

Table S2. Selected crystallographic data of pyridyl-triazolylidene-based complexes Re-T-Phe, Re-T-**Tol** and **Re-T-BOP**, and pyridyl-triazole-based complexes **Re-Phe** and **Re-Tol**.

Table S3. Selected bond lengths (Å) for triazolylidene-based complexes **Re-T-Phe**, **Re-T-Tol** and **Re-T-BOP**, and for the pyta-based complexes **Re-Phe** and **Re-Tol**. The atoms were numbered like on the molecular views. For the sake of comparison, each line corresponds to the same bond in each complex. For molecular views, the displacement ellipsoids are drawn at the 50% probability level.

Re-T-Phe	
----------	--

Bond	Re-T-Phe	Bond	Re-T-Tol	Bond	Re-Phe	Re-Tol
Re(1)-C(1)	1.941(4)	Re(1)-C(3)	1.958(2)	Re(1)-C(1)	1.918(2)	1.921(3)
Re(1)-C(2)	1.913(4)	Re(1)-C(2)	1.911(2)	Re(1)-C(2)	1.927(2)	1.916(3)
Re(1)-C(3)	1.994(4)	Re(1)-C(1)	1.897(2)	Re(1)-C(3)	1.906(2)	1.932(3)
Re(1)-C(4)	2.160 (3)	Re(1)-C(4)	2.117(2)	Re(1)-N(1)	2.1589(17)	2.152(2)
Re(1)-N(4)	2.234 (3)	Re(1)-N(4)	2.2341(17)	Re(1)-N(4)	2.2055(19)	2.195(2)
Re(1)-Cl(1)	2.4811(12)	Re(1)-Cl(1)	2.5260(5)	Re(1)-Cl(1)	2.4953(5)	2.4738(8)
O(1)-C(1)	1.144(4)	O(3)-C(3)	1.145(3)	O(1)-C(1)	1.151(3)	1.149(4)
O(2)-C(2)	1.149(5)	O(2)-C(2)	1.151(3)	O(2)-C(2)	1.144(3)	1.146(4)
O(3)-C(3)	1.081(5)	O(1)-C(1)	1.156(3)	O(3)-C(3)	1.147(3)	1.110(4)

Re-T RePhe Re-Tol

Table S4. Selected angles (°) for triazolylidene-based complexes Re-T-Phe, Re-T-Tol and Re-T-BOP, and for the pyta-based complexes Re-Phe and
Re-Tol . For the sake of comparison, each line corresponds to the same bond in each complex. The atoms were numbered like on the molecular views.

Angle	Re-T-Phe	Angle	Re-T-Tol	Angle	Re-Phe	Re-Tol
C(1)-Re(1)-C(2)	87.85(16)	C(2)-Re(1)-C(3)	89.54(10)	C(1)-Re(1)-C(2)	90.34(10)	88.08(13)
C(1)-Re(1)-C(3)	91.04(15)	C(1)-Re(1)-C(3)	91.76(9)	C(1)-Re(1)-C(3)	90.56(10)	91.46(13)
C(2)-Re(1)-C(3)	88.38(16)	C(1)-Re(1)-C(2)	88.42(9)	C(2)-Re(1)-C(3)	89.48(10)	88.47(13)
C(1)-Re(1)-C(4)	167.30(15)	C(3)-Re(1)-C(4)	171.19(8)	C(1)-Re(1)-N(1)	171.03(9)	170.94(11)
C(2)-Re(1)-C(4)	104.78(15)	C(2)-Re(1)-C(4)	98.69(8)	C(2)-Re(1)-N(1)	98.14(8)	99.97(11)
C(3)-Re(1)-C(4)	90.61(14)	C(1)-Re(1)-C(4)	91.62(8)	C(3)-Re(1)-N(1)	92.40(8)	92.87(11)
C(1)-Re(1)-N(4)	92.80(13)	C(3)-Re(1)-N(4)	96.92(8)	C(1)-Re(1)-N(4)	96.63(8)	97.47(11)
C(2)-Re(1)-N(4)	179.11(13)	C(2)-Re(1)-N(4)	172.88(8)	C(2)-Re(1)-N(4)	171.87(8)	173.79(11)
C(3)-Re(1)-N(4)	92.22(13)	C(1)-Re(1)-N(4)	94.35(8)	C(3)-Re(1)-N(4)	94.61(9)	94.13(10)
C(4)-Re(1)-N(4)	74.56(12)	C(4)-Re(1)-N(4)	74.71(7)	N(1)-Re(1)-N(4)	74.70(7)	74.29(8)
C(1)-Re(1)-Cl(1)	94.16(12)	C(3)-Re(1)-Cl(1)	89.29(7)	C(1)-Re(1)-Cl(1)	92.75(7)	92.92(9)
C(2)-Re(1)-Cl(1)	91.84(13)	C(2)-Re(1)-Cl(1)	95.39(7)	C(2)-Re(1)-Cl(1)	91.91(7)	92.39(10)
C(3)-Re(1)-Cl(1)	174.80(10)	C(1)-Re(1)-Cl(1)	176.06(6)	C(3)-Re(1)-Cl(1)	176.40(7)	175.55(9)
C(4)-Re(1)-Cl(1)	84.31(10)	C(4)-Re(1)-Cl(1)	86.81(5)	N(1)-Re(1)-Cl(1)	84.11(5)	82.68(7)
N(4)-Re(1)-Cl(1)	87.49(9)	N(4)-Re(1)-Cl(1)	81.75(4)	N(4)-Re(1)-Cl(1)	83.60(5)	84.59(6)
O(1)-C(1)-Re(1)	174.2(4)	O(3)-(C3)-Re(1)	178.5(3)	O(1)-C(1)-Re(1)	177.8(2)	177.3(3)
O(2)-C(2)-Re(1)	177.7(3)	O(2)-C(2)-Re(1)	177.7(3)	O(2)-C(2)-Re(1)	177.9(2)	175.4(3)
O(3)-C(3)-Re(1)	177.3(3)	O(1)-C(1)-Re(1)	177.9(3)	O(3)-C(3)-Re(1)	178.4(2)	174.2(4)

Complex	Octahedral distortion parameters								
Complex	ζ (Å)	Σ (°)	Θ (°)						
Re-Phe	1.11	55.5	151						
Re-Tol	1.05	63.1	168						
Re-T-Phe	1.03	54.9	186						
Re-T-Tol	1.11	58.2	170						

Table S5. Octahedral distortion parameters^a for complexes Re-Phe, Re-Tol, Re-T-Phe and Re-T-Tol.

^{*a*} Octahedral distortion parameters are composed of three parameters: one bond-length distortion parameter ζ and two bond-angle distortion parameters Σ and Θ . ζ is the average of the sum of the deviation of 6 unique metalligand bond lengths around the central metal atom (d_i) from the average value (d_{mean}) . Σ can be defined as the sum of the deviation of the 12 *cis* L–Re–L angles ϕ_i from 90°. Σ is a general measure of the deviation of a metal ion from an ideal octahedral geometry. Θ can be defined as the sum of the deviation of the 24 torsional angles between the ligand atoms on opposite triangular faces of the octahedron viewed along the pseudo-threefold axis (θ_i) from 60°. Θ represents the distortion of the MX₆ geometry from perfectly octahedral (O_h) to trigonal prismatic (D_{3h}). Distortion parameters ζ , Σ and Θ were calculated using the OctaDist software [R. Ketkaew, Y. Tantirungrotechai, P. Harding, G. Chastanet, P. Guionneau, M. Marchivie, D. J. Harding, *Dalton Trans.*, **2021**, 50, 1086–1096]. All values lie in the expected range observed for distorted quasi-octahedral Re(I) complexes. In fact, a perfectly octahedral complex would give $\zeta = \Sigma = \Theta = 0$.

D—H···A	D—H (Å)	H…A (Å)	D····A (Å)	$D - H \cdots A (^{\circ})$	Symmetry codes					
	•	Re-	Phe							
C4—H4···Cl1 ^{#1} 0.95 2.47 3.377(2) 159 $3/2-x, 1/2$										
C9—H9····Cl1 ^{#2}	0.95	2.65	3.577(3)	164	1-x, 1-y, 1-z					
		Re-	Tol							
C4—H4…Cl1 ^{#3}	0.95	2.61	3.487(3)	154	x, 3/2-y, -1/2+z					
C7—H7…Cl1 ^{#3}	0.95	2.79	3.713(3)	163	x, 3/2-y, -1/2+z					
C10—H10…O3 ^{#4}	0.95	2.57	3.460(4)	157	2- <i>x</i> , 2- <i>y</i> , 2- <i>z</i>					
C12—H12…O2 ^{#5}	0.95	2.47	3.389(4)	164	x, 5/2-y, -1/2+z					
	•	Re-T	-Phe							
C13—H13…O1 ^{#6}	0.95	2.52	3.330(6)	143	1/2+x, -y, -1/2+z					
		Re-T	-Tol							
C10—H10····Cl1 ^{#7}	0.95	2.74	3.570(2)	146	<i>x</i> , 1/2– <i>y</i> , 1/2+ <i>z</i>					

Table S6. Short contacts detected in structures of Re-Phe, Re-Tol, Re-T-Phe and Re-T-Tol.

Table S7. Geometrical parameters for $C-H\cdots\pi$ interactions detected in **Re-Phe**, **Re-T-Phe** and **Re-T-Tol**.

$X - H(i) \cdots Cg(i)$	H···Cg (Å)	X…Cg (Å)	X−H···Cg (°)	H-Perp	Gamma					
Re-Phe										
C4—H4…Cg2 ^{#1}	2.81	3.203(2)	106	-2.75	11.26					
C12—H12…Cg4 ^{#1}	2.97	3.478(2)	115	-2.97	1.32					
		Re-T-Pho	9							
C17—H17B…Cg4 ^{#2}	2.65	3.447(5)	138	-2.62	8.34					
		Re-T-To	l							
C5—H5B…Cg3 ^{#3}	2.74	3.593(3)	146	-2.73	4.54					

Cg(i) = center of gravity of ring i; X···Cg = distance of X to Cg; X–H···Cg = X–H–Cg angle; H–Perp = perpendicular distance of H to ring plane J; γ = angle between Cg–H vector and ring J normal. For **Re-Phe**, Cg2 and Cg4 are the centroids of the rings (N1/N2/N3/C4/C5) and (C11–C16), respectively. For **Re-T-Phe**, Cg4 is the centroid of the ring (C11–C16). For **Re-T-Tol**, Cg3 is the centroid of the ring (N4/C7–C11). Symmetry codes: #1: 3/2-x, 1/2+y, z; #2: 1/2+x, 1-y, 1/2+z; #3: 2-x, 1-y, 1-z.

Cg(i)···Cg(j)	Cg…Cg (Å)	α (°)	β (°)	γ (°)	Cgi_Perp	Cgj_Perp	Slippage			
	Re-Tol									
Cg2····Cg3 ^{#1}	3.7792(17)	5.48(15)	22.1	17.1	3.6118(11)	3.5011(11)	1.423			
			Re-T-	Phe						
Cg3····Cg4 ^{#3}	3.648(3)	4.8(2)	25.0	20.3	3.4216(18)	3.3054(19)	1.543			
	Re-T-Tol									
Cg3Cg4 ^{#5}	3.6854(14)	4.49(11)	19.4	23.8	3.3710(9)	3,4763(10)	1.224			

Table S8. Geometrical parameters for $\pi \cdots \pi$ interactions detected in **Re-Tol**, **Re-T-Phe** and **Re-T-Tol**.

 $Cg(i) = plane number i; \alpha = dihedral angle between planes i and j; \beta = angle Cg(i) <math>\rightarrow$ Cg(j) or Cg(i) \rightarrow Me vector and normal to plane i; $\gamma = angle Cg(i) \rightarrow Cg(j)$ vector and normal to plane j; Cg–Cg = distance between ring centroids; Cg(i)_Perp = perpendicular distance of Cg(i) on ring j; Cg(j)_Perp = perpendicular distance of Cg(j) on ring i; Slippage = distance between Cg(i) and perpendicular projection of Cg(j) on ring I. For **Re-Tol**, Cg2 and Cg3 are the centroids of the rings (N1/N2/N3/C4/C5) and (N4/C6–C10), respectively. For **Re-T-Phe**, Cg3 and Cg4 are the centroids of the rings (N4/C6–C10) and (C11–C16), respectively. For **Re-T-Tol**, Cg3 and Cg4 are the centroids of the rings (N4/C7–C11) and (C12–C17), respectively. Symmetry codes: #1: x, 3/2–y, -1/2+z; #2: x, 3/2–y, 1/2+z; #3: -1/2+x, 1–y, 1/2+z; #4: 1/2+x, 1–y, -1/2+z; #5: x, 3/2–y, 1/2+z; #6: x, 3/2–y, -1/2+z.

Figure S15. One-dimensional chain of **Re-T-Phe** showing connection of molecules through the intermolecular C–H···O interactions along the *c* axis. Intermolecular C13–H13_(Phe)···O1_(CO) hydrogen bonding takes place between one CH group of the phenyl ring and the oxygen atom of the equatorial carbonyl group.

Figure S16. C–H··· π and π – π interactions in complexes **Re-T-Phe**, with distances in Å. Intermolecular C17–H17_(trz)··· π (Phe) interactions take place between the methyl group of the triazolylidene and the centroid Cg4 of the C11–C16 aromatic ring (C17–H17B···centroid Cg4 distances of 2.653 Å). Intermolecular π (Py)– π (Phe) stacking interactions take place between the coordinated N4C6–C10 pyridine ring and the C11–C16 phenyl ring (centroid Cg3···centroid Cg4 distances of 3.648 Å).

Figure S17. One-dimensional chain of **Re-T-Tol** showing connection of molecules through the intermolecular C–H····Cl interactions along the *c* axis. Adjacent molecules are linked through intermolecular C10–H10(py)···Cl1 hydrogen bonding between the CH group of the coordinated pyridine ring and the chloride ligand.

Figure S18. C–H··· π and π – π interactions in complex Re-T-Tol, with distances in Å. Intermolecular C5- $H5B_{(trz)} \cdots \pi_{(py)}$ interactions take place between the methyl group of the triazolylidene and the centroid Cg3 of the N4C7pyridine ring (C5-C11 H5B…centroid Cg3 distances of 2.738 Å), and the intermolecular $\pi_{(py)} - \pi_{(tol)}$ stacking interactions occur between the coordinated pyridine ring N4C7-C11 and the tolyl ring C12-C17 (centroid Cg3---centroid Cg4 distances of 3.685 Å).

Figure S19. One-dimensional zig-zag chain of **Re-Phe** showing connection of molecules through the intermolecular C13–H13_(phe) \cdots O2_(CO) interactions along the *b* axis.

Figure S20. Two dimensional network of **Re-Phe** showing connection of molecules through the intermolecular C–H···Cl interactions in the *ac* plane. The bifurcated hydrogen bond takes place between the chloride ligand and the C–H group of the 1,2,3-triazole ring (C4–H4_(trz)···Cl1) as well as with the C–H group of the pyridine ring (C9–H9_(py)···Cl1) of neighboring molecules.

Figure S21. C–H··· π interactions in **Re-Phe**, with distances in Å.

C4–H4_{(trz})··· π _{(trz}) and C12–H12_(Phe)··· π _(Phe) interactions involve respectively the H4 and the Cg2 centroid (N1/N2/N3/C4/C5), with H4···Cg2 distance of 2.806Å, as well as the H12 and the Cg4 centroid (C11–C16), with H12···Cg4 distance of 2.973Å, respectively.

Figure S22. One-dimensional chain of **Re-Tol** showing the connection of molecules through the intermolecular C–H···Cl interactions along the *c* axis. The three-centred hydrogen bonding involves C4–H4_(trz)···Cl1 and C7–H7_(py)···Cl1.

Figure S23. Two dimensional network of **Re-Tol** showing the connection of molecules through the intermolecular C–H···O interactions in the *ab* plane. The C12–H12(tol)···O2(CO) contacts involve the CH groups of the tolyl ring and the equatorial carbonyl groups, and the C10–H10(py)···O3(CO) contacts involve the CH groups of the pyridine ring and the apical carbonyl groups.

Figure S24. $\pi_{(trz)} \cdots \pi_{(py)}$ interactions in **Re-Tol** (with distances in Å) taking place between between the Cg2 centroid (N1/N2/N3/C4/C5) and the Cg3 centroid (N4/C6–C10), with Cg2…Cg3 distance of 3.779Å.

Figure S25. Crystal packing $(2 \times 2 \times 2)$ of **Re-T-Phe**, **Re-T-Tol**, **Re-Phe** and **Re-Tol**, showing the presence of layers for **Re-T-Tol**, **Re-Phe** and **Re-Tol**.

Figure S26. Hirshfeld surfaces plotted over the normalized contact distance (d_{norm}), shape index, and curvedness of **Re-Phe**, **Re-Tol**, **Re-T-Phe**, and **Re-T-Tol** (from top to bottom). The adjacent red and blue triangles that reveal $\pi \cdots \pi$ stacking interactions are highlighted by black circles.

Regarding the d_{norm} map, the intensity of the d_{norm} point provides a simple visual information about important regions of intermolecular interaction through color mapping. Intermolecular contacts shorter than the sum of the van der Waals radii ($d_{norm}<0$) of the interacting atoms are denoted as red spots on the surfaces, whereas longer than the sum of the van der Waals radii ($d_{norm}>0$) of the interacting atoms are represented by blue regions. The van der Waals contacts ($d_{norm}=0$) are coloured white.

Regarding the explanation of the colors on the shape-index map, the convex blue regions symbolize hydrogen-donor groups and the concave red regions symbolize hydrogen-acceptor groups.

For **Re-Phe**, the HS is generated between -0.3555 a.u. (red spot) and 1.1732 a.u. (blue colour); the shape index plot and curvedness plot are generated from -0.9973 to 0.9962 a.u. and -3.7269 to 0.3550 a.u., respectively

For **Re-Tol**, the colour scale on the HS ranges from -0.2502 a.u. (red spot) and 1.5401 a.u. (blue colour). The shape index and curvedness plots are mapped in the colour range between -0.9952 a.u. to 0.9972 a.u. and -3.3807 a.u. to 0.1747 a.u., respectively.

For **Re-T-Phe**, the HS was generated over a colour scale ranging from -0.1444 (red spot) to 1.0626 (blue colour). The shape index and curvedness plots are mapped in the colour range between -0.9921 a.u. to 0.9973 a.u. and -3.5133 a.u. to 0.2804 a.u., respectively.

For **Re-T-Tol**, the colour scale on the HS ranges from -0.1461 a.u. (red spot) and 1.4366 a.u. (blue colour). The shape index and curvedness plots are mapped in the colour range between -0.9954 a.u. to 0.9963 a.u. and -3.9176 a.u. to 0.2727 a.u., respectively.

Figure S27. Two-dimensional fingerprint plots for overall interactions and individual interactions in crystal packing of **Re-Phe** (Volume = 399.78 Å³; Area = 364.93 Å²).

Figure S28. Two-dimensional fingerprint plots for overall interactions and individual interactions in crystal packing of **Re-Tol** (Volume = 439.11 Å³; Area = 380.12 Å²).

Figure S29. Two-dimensional fingerprint plots for overall interactions and individual interactions in crystal packing of **Re-T-Phe** (Volume = 420.65 Å³; Area = 365.33 Å²).

Figure S30. Two-dimensional fingerprint plots for overall interactions and individual interactions in crystal packing of **Re-T-Tol** (Volume = 450.50 Å³; Area = 378.63 Å²).

Calculations

Table S9. Selected calculated bond lengths [Å] and angles [°] in the ground state (S_0), first singlet excited state (S_1), and first triplet excited state (T_1) for **Re-Tol**, together with the experimental data.

				Optimize	d						Optimize	ed	
Bond lengths	Exp.	gas phase dichloromethane		Bond angles	Exp.	gas p	ohase	dic	hlorometha	ane			
		S_0	T_1	S_0	S_1	T_1			S_0	T_1	\mathbf{S}_0	S_1	T_1
Re(1)-C(1)	1.921(3)	1.914	1.931	1.914	1.956	1.928	C(2)-Re(1)-C(1)	88.08(13)	89.79	91.84	89.56	85.25	91.17
Re(1)-C(2)	1.916(3)	1.918	1.986	1.912	1.950	1.990	C(2)-Re(1)-C(3)	88.47(13)	90.84	88.21	90.42	93.46	89.96
Re(1)-C(3)	1.932(3)	1.904	1.952	1.897	1.955	1.949	C(1)-Re(1)-C(3)	91.46(13)	91.03	90.24	90.53	90.25	88.27
Re(1)-N(1)	2.152(2)	2.154	2.129	2.153	2.105	2.130	C(2)-Re(1)-N(1)	99.97(11)	97.68	94.76	97.56	98.18	94.94
Re(1)-N(4)	2.195(2)	2.208	2.093	2.211	2.148	2.078	C(1)-Re(1)-N(1)	170.94(11)	170.13	171.27	171.60	176.43	172.10
$\operatorname{Re}(1)$ - $\operatorname{Cl}(1)$	2.4738(8)	2.497	2.419	2.524	2.419	2.456	C(3)-Re(1)-N(1)	92.87(11)	95.29	95.67	93.86	90.53	95.22
							C(2)-Re(1)-N(4)	173.79(11)	170.94	170.57	171.27	173.99	171.16
C(1)-O(1)	1.149(4)	1.158	1.153	1.159	1.150	1.154	C(1)-Re(1)-N(4)	97.47(11)	97.55	97.16	98.13	100.30	97.36
C(2)-O(2)	1.146(4)	1.163	1.147	1.159	1.148	1.147	C(3)-Re(1)-N(4)	94.13(10)	94.32	88.94	93.62	88.84	89.41
C(3)-O(3)	1.110(4)	1.155	1.151	1.163	1.151	1.149	N(1)-Re(1)-N(4)	74.29(8)	74.45	76.58	74.46	76.24	76.78
							C(2)-Re(1)-Cl(1)	92.39(10)	92.14	87.09	92.31	91.55	87.34
							C(1)-Re(1)-Cl(1)	92.92(9)	92.24	90.39	91.91	90.54	90.77
							C(3)-Re(1)-Cl(1)	175.55(9)	175.58	175.28	176.35	174.97	175.56
							N(1)-Re(1)-Cl(1)	82.68(7)	81.08	84.26	83.35	88.38	84.53
							N(4)-Re(1)-Cl(1)	84.59(6)	82.31	95.63	83.39	86.13	94.84
							O(1)-C(1)-Re(1)	177.3(3)	178.48	179.24	179.47	178.54	179.30
							O(2)-C(2)-Re(1)	175.4(3)	178.77	178.38	178.93	179.83	178.54
							O(3)-C(3)-Re(1)	174.2(4)	179.62	178.78	179.87	179.23	179.10

		Optimized					Optimized						
Bond lengths	Exp.	gas	phase	di	chlorometha	ne	Bond angles	Exp.	gas	phase	di	chlorometha	ne
		S_0	S_0 T_1 S_0 S_1 T_1				S_0	T_1	S_0	S_1	T_1		
Re(1)-C(1)	1.897(2)	1.901	1.944	1.893	1.948	1.934	C(1)-Re(1)-C(2)	88.42(9)	89.92	90.97	90.18	91.75	90.88
Re(1)-C(2)	1.911(2)	1.912	1.929	1.907	1.934	1.922	C(1)-Re(1)-C(3)	91.76(9)	92.29	89.40	91.59	90.99	89.99
Re(1)-C(3)	1.958(2)	1.948	2.012	1.948	1.996	2.014	C(2)-Re(1)-C(3)	89.54(10)	89.57	89.66	90.14	86.10	89.35
Re(1)-C(4)	2.117(2)	2.120	2.069	2.124	2.113	2.056	C(1)-Re(1)-C(4)	91.62(8)	94.88	85.03	93.88	85.68	87.14
Re(1)-N(4)	2.2341(17)	2.238	2.199	2.240	2.177	2.198	C(2)-Re(1)-C(4)	98.69(8)	100.30	99.41	98.79	100.72	98.66
Re(1)-Cl(1)	2.5260(5)	2.519	2.425	2.546	2.420	2.475	C(3)-Re(1)-C(4)	171.19(8)	167.79	169.42	169.50	172.48	171.53
							C(1)-Re(1)-N(4)	94.35(8)	93.05	92.767	93.39	90.55	92.28
O(1)-C(1)	1.156(3)	1.165	1.154	1.166	1.150	1.154	C(2)-Re(1)-N(4)	172.88(8)	174.38	174.22	172.70	176.11	174.33
O(2)-C(2)	1.151(3)	1.158	1.153	1.161	1.154	1.156	C(3)-Re(1)-N(4)	96.92(8)	95.08	94.78	96.12	97.01	95.35
O(3)-C(3)	1.145(3)	1.157	1.147	1.159	1.149	1.147	C(4)-Re(1)-N(4)	74.71(7)	74.71	76.55	74.63	76.32	76.82
							C(1)-Re(1)-Cl(1)	176.06(6)	175.58	176.47	176.67	175.42	175.81
							C(2)-Re(1)-Cl(1)	95.39(7)	93.32	91.13	92.88	91.27	91.86
							C(3)-Re(1)-Cl(1)	89.29(7)	90.74	87.78	89.74	92.65	86.88
							C(4)-Re(1)-Cl(1)	86.81(5)	81.60	97.42	84.34	90.38	95.57
							N(4)-Re(1)-Cl(1)	81.75(4)	83.48	85.36	83.43	86.25	85.26
							O(1)-C(1)-Re(1)	179.2(2)	179.14	179.40	179.85	179.00	179.85
							O(2)-C(2)-Re(1)	178.7(2)	179.33	178.54	179.76	178.56	178.85
							O(3)-C(3)-Re(1)	178.5(2)	178.75	178.25	179.87	177.16	178.33

Table S10. Selected calculated bond lengths [Å] and angles [°] in the ground state (S_0), first singlet excited state (S_1), and first triplet excited state (T_1) for **Re-T-Tol**, together with the experimental data.

			Optimized	ł					Optimized		
Bond lengths	gas phase dichloromethane		Bond angles	gas	phase	di	chlorometha	ne			
	\mathbf{S}_0	T_1	S_0	S_1	T_1		S_0	T_1	S_0	S_1	T_1
Re(1)-C(1)	1.900	1.942	1.893	1.948	1.936	C(1)-Re(1)-C(2)	90.97	92.32	90.81	94.08	90.55
Re(1)-C(2)	1.913	1.930	1.908	1.934	1.922	C(1)-Re(1)-C(3)	92.34	89.25	91.65	89.81	89.88
Re(1)-C(3)	1.949	2.013	1.946	1.995	2.014	C(2)-Re(1)-C(3)	89.79	90.29	89.67	86.11	88.62
Re(1)-C(4)	2.121	2.070	2.130	2.115	2.061	C(1)- $Re(1)$ - $C(4)$	95.85	86.23	94.18	86.95	86.43
Re(1)-N(4)	2.231	2.197	2.236	2.175	2.197	C(2)-Re(1)-C(4)	99.50	98.52	99.57	99.79	99.87
Re(1)-Cl(1)	2.516	2.424	2.547	2.421	2.470	C(3)-Re(1)-C(4)	167.48	170.25	168.99	173.45	170.76
						C(1)-Re(1)-N(4)	95.47	94.38	94.44	90.23	91.90
O(1)-C(1)	1.166	1.154	1.166	1.150	1.153	C(2)-Re(1)-N(4)	171.83	171.54	172.52	174.17	175.69
O(2)-C(2)	1.157	1.152	1.161	1.154	1.157	C(3)-Re(1)-N(4)	94.95	94.97	95.50	97.84	94.92
O(3)-C(3)	1.156	1.147	1.159	1.149	1.147	C(4)-Re(1)-N(4)	74.88	76.79	74.76	76.50	76.75
						C(1)-Re(1)-Cl(1)	176.42	175.88	177.10	175.20	176.31
						C(2)-Re(1)-Cl(1)	91.79	89.51	91.64	90.36	91.94
						C(3)-Re(1)-Cl(1)	89.95	87.05	89.91	92.35	87.45
						C(4)-Re(1)-Cl(1)	81.44	97.15	83.89	90.48	95.83
						N(4)-Re(1)-Cl(1)	81.58	84.15	82.98	85.22	85.79
						O(1)-C(1)-Re(1)	179.14	179.27	179.74	178.86	179.75
						O(2)-C(2)-Re(1)	179.10	178.00	178.79	178.41	178.10
						O(3)-C(3)-Re(1)	178.82	178.19	179.93	177.09	178.39

Table S11. Selected calculated bond lengths [Å] and angles [°] in the ground state ($S_{0,}$) first singlet excited state (S_1), and first triplet excited (T_1) state for **Re-T-BOP**.

Figure S31. DFT-optimized structure of Re-T-BOP.

.

Table S12. Dihedral angle values between the triazole or triazolylidene ring and R calculated using the density functional theory (DFT) method at the PBE1PBE/LANL2DZ/6-311+G** level for the ground state S_0 , the first singlet excited state S_1 , and the first triplet excited state T_1 of **Re-Tol**, **Re-T-Tol** and **Re-T-BOP**, and obtained from crystallographic data.

Complex	SVDD	Gas j	ohase		DCM				
Complex	SAKD	S_0	T_1	S_0	S_1	T_1			
Re-Tol	56.25	57.20	56.95	62.15	61.97	62.83			
Re-T-Tol	81.86	66.61	66.45	88.53	71.89	72.33			
Re-T-BOP	-	48.38	57.71	54.76	61.15	82.66			

Table S	513 .	The	frontier	molecular	orbital	compositions	(%)	and	energy	levels	for	Re-Tol	(in	gas
phase).														

Orbital		Energy		MOG	Contributio	on (%)		Main hand tuna
	Orbitai	(eV)	Re	CO	Cl	pyta	R	Main bond type
100	L+5	-0.49	28	10	0	70	-6	$p(Re)+\pi^*(CO)/\pi^*(pyta)$
99	L+4	-0.80	2	3	0	42	53	$\pi^*(\mathbf{R})/\pi^*(\mathbf{pyta})$
98	L+3	-1.05	0	0	0	5	95	π*(R)
97	L+2	-1.60	0	1	0	68	29	$\pi^*(\text{pyta})/\pi^*(R)$
96	L+1	-1.86	0	1	0	85	13	$\pi^*(\text{pyta})$
95	L	-2.36	2	2	1	93	1	$\pi^*(\text{pyta})$
	•	•	HO	DMO-LUN	AO gap (E	= 3.69 eV)	
94	Н	-6.05	47	21	31	2	0	$d(\text{Re})+\pi(\text{CO})/\pi(\text{Cl})$
93	H-1	-6.16	45	19	34	2	0	$d(Re)+\pi(CO)/\pi(Cl)$
92	H–2	-6.73	70	29	1	0	0	$d(Re)+\pi(CO)$
91	H–3	-7.43	18	6	51	15	9	$\pi(\text{Cl})/\pi(\text{pyta})$
90	H–4	-7.51	26	7	59	8	1	$\pi(Cl)/d(Re) + \pi(CO)$
89	H–5	-7.85	5	2	7	16	71	$\pi(R)/\pi(pyta)$
88	H–6	-7.94	2	1	3	58	37	$\pi(\text{pyta})/\pi(\text{R})$
87	H–7	-8.13	8	13	66	7	6	$\pi(Cl)$
86	H-8	-8.28	2	1	8	20	70	$\pi(R)/\pi(pyta)$
85	H–9	-9.57	2	2	2	93	1	π(pyta)
84	H-10	-9.62	0	4	0	94	2	π(pyta)
		•	•	•	•	•	•	

pyta: pyridyl-triazole; R= tolyl ring

Table S14. The frontier molecular orbital compositions (%) and energy levels for **Re-Tol** (in dichloromethane).

	Orbital			MOG	Contributio	on (%)		Main hand type
	Orbitai	(eV)	Re	CO	Cl	pyta	R	Main bond type
100	L+5	-0.68	35	52	0	4	11	$p(Re) + \pi^*(CO)/\pi^*(R)$
99	L+4	-0.75	2	3	0	6	90	π*(R)
98	L+3	-0.84	33	59	0	6	4	$p(Re)+\pi^*(CO)$
97	L+2	-1.37	1	4	0	82	13	$\pi^*(\text{pyta})$
96	L+1	-1.60	1	2	0	82	15	$\pi^*(\text{pyta})$
95	L	-2.21	4	5	0	90	1	$\pi^*(\text{pyta})$
			HO	DMO-LUM	MO gap (E	= 4.43 eV)	
94	Н	-6.64	53	24	20	3	1	$d(Re)+\pi(CO)/\pi(Cl)$
93	H-1	-6.74	51	22	22	3	1	$d(Re)+\pi(CO)/\pi(Cl)$
92	H–2	-7.19	69	30	1	0	0	$d(Re)+\pi(CO)$
91	H–3	-7.56	0	0	2	24	73	$\pi(R)/\pi(pyta)$
90	H–4	-7.69	0	0	3	49	48	$\pi(\text{pyta})/\pi(\text{R})$
89	H–5	-7.90	0	0	3	32	65	$\pi(R)/\pi(pyta)$
88	H–6	-8.18	14	4	66	15	1	$\pi(Cl)/\pi(pyta)$
87	H–7	-8.24	16	5	66	7	6	π(Cl)
86	H–8	-8.87	8	14	69	10	0	π(Cl)
85	H–9	-9.44	5	3	10	81	1	π(pyta)
84	H-10	-9.46	1	1	2	95	2	π (pyta)
	•		-	-			-	

pyta: pyridyl-triazole; R= tolyl ring

	Orbital	Energy		MOG	Contributio	n (%)		Main bond type
	Orbital	(eV)	Re	CO	Cl	pytrz	R	Main bond type
104	L+5	-0.48	2	4	0	21	73	$\pi^*(R)/\pi^*(pytrz)$
103	L+4	-0.56	6	5	-1	23	68	$\pi^*(R)/\pi^*(pytrz)$
102	L+3	-0.63	12	5	1	35	48	$\pi^*(R)/\pi^*(pytrz)$
101	L+2	-1.27	6	4	0	77	13	$\pi^*(\text{pytrz})/\pi^*(R)$
100	L+1	-1.84	2	2	0	96	1	$\pi^*(\text{pytrz})$
99	L	-2.50	1	1	0	97	1	$\pi^*(\text{pytrz})$
			H	OMO-LUN	MO gap (E	= 3.37 eV)	
98	Н	-5.87	49	22	26	3	1	$d(\text{Re}) + \pi(\text{CO})/\pi(\text{Cl})$
97	H-1	-5.99	47	19	31	2	0	$d(Re) + \pi(CO)/\pi(Cl)$
96	H-2	-6.45	70	28	0	0	3	$d(\text{Re})+\pi(\text{CO})$
95	H-3	-7.07	11	5	51	32	2	$\pi(\text{Cl})/\pi(\text{pytrz})$
94	H-4	-7.36	2	0	6	1	90	π(R)
93	H–5	-7.42	22	6	58	6	9	$\pi(Cl)/d(Re) + \pi(CO)$
92	H–6	-7.59	0	1	0	10	89	π(R)
91	H–7	-7.92	13	9	45	31	2	$\pi(\text{Cl})/\pi(\text{pytrz})$
90	H-8	-8.14	7	8	39	42	4	$\pi(\text{pytrz})/\pi(\text{Cl})$
89	H–9	-9.15	7	14	2	75	2	$\pi(\text{pytrz})$
88	H-10	-9.44	4	3	3	90	0	π(pytrz)

Table S15. The frontier molecular orbital compositions (%) and energy levels for **Re-T-Tol** (in gas phase).

pytrz: pyridyl-triazolylidene; R= tolyl ring

Table S16. The frontier molecular orbital compositions (%) and energy levels for **Re-T-Tol** (in dichloromethane).

	Orthital	Energy		MOG	Contributio	n (%)		Main bond type
	Orbitai	(eV)	Re	CO	Cl	pytrz	R	Main bond type
104	L+5	-0.54	7	9	0	5	79	π*(R)
103	L+4	-0.68	26	43	0	17	14	$p(Re)+\pi^*(CO)/\pi^*(pytrz)$
102	L+3	-0.82	1	2	0	4	93	π*(R)
101	L+2	-1.16	16	16	-1	71	0	$\pi^*(pytrz)/p(Re)+\pi^*(CO)$
100	L+1	-1.63	5	5	0	92	0	$\pi^*(\text{pytrz})$
99	L	-2.29	2	2	0	95	1	$\pi^*(\text{pytrz})$
	HOMO–LUMO gap (E = 4.12 eV))	·
98	Н	-6.41	51	23	15	11	0	$d(Re) + \pi(CO)/\pi(Cl)$
97	H-1	-6.56	53	23	20	4	0	$d(Re)+\pi(CO)/\pi(Cl)$
96	H–2	-6.91	69	29	0	0	1	$d(Re)+\pi(CO)$
95	H–3	-7.45	1	1	29	65	4	$\pi(\text{pytrz})/\pi(\text{Cl})$
94	H-4	-7.47	0	0	1	3	96	π(R)
93	H–5	-7.79	0	0	1	3	96	π(R)
92	H–6	-8.06	14	3	71	12	0	π(Cl)
91	H–7	-8.16	12	7	40	41	1	$\pi(Cl)/\pi(pytrz)$
90	H-8	-8.74	9	12	72	6	0	π(Cl)
89	H–9	-9.16	4	8	1	86	1	π(pytrz)
88	H-10	-9.37	9	7	9	76	0	π(pytrz)

pytrz: pyridyl-triazolylidene; R= tolyl ring

Orbital		Energy		MOO	Contributio	n (%)		Main bond type
	Olbital	(eV)	Re	СО	Cl	pytrz	PBO	Wall bolid type
130	L+5	-0.59	4	0	0	12	83	π*(PBO)
129	L+4	-0.64	6	3	0	9	83	π*(PBO)
128	L+3	-1.24	7	5	0	69	21	$\pi^{*}(\text{pytrz})/\pi^{*}(\text{PBO})$
127	L+2	-1.76	0	1	0	74	25	$\pi^{*}(\text{pytrz})/\pi^{*}(\text{PBO})$
126	L+1	-2.01	1	2	0	32	64	$\pi^{*}(\text{PBO})/\pi^{*}(\text{pytrz})$
125	L	-2.51	1	1	0	94	4	$\pi^*(\text{pytrz})$
			HO	DMO-LUN	AO gap (E	= 3.35 eV)	
124	Н	-5.86	48	21	29	1	2	$d(\text{Re}) + \pi(\text{CO})/\pi(\text{Cl})$
123	H-1	-6.00	46	19	33	2	1	$d(Re) + \pi(CO)/\pi(Cl)$
122	H–2	-6.47	69	28	0	0	4	$d(Re)+\pi(CO)$
121	H–3	-6.77	1	1	7	5	86	π(PBO)
120	H–4	-7.05	11	5	44	30	10	$\pi(\text{Cl})/\pi(\text{pytrz})$
119	H–5	-7.33	24	7	62	6	0	$\pi(Cl)/d(Re) + \pi(CO)$
118	H–6	-7.58	0	0	0	0	99	π(PBO)
117	H–7	-7.71	0	0	0	0	100	π(PBO)
116	H-8	-7.90	13	10	46	30	2	$\pi(Cl)/\pi(pytrz)$
115	H–9	-8.07	5	6	30	32	26	$\pi(\text{Cl})/\pi(\text{pytrz})/\pi(\text{PBO})$
114	H-10	-8.28	3	2	9	17	69	$\pi(\text{PBO})/\pi(\text{pytrz})$
				-	-	-	= '	

Table S17. The frontier molecular orbital compositions (%) and energy levels for **Re-T-BOP** (in gas phase).

pytrz: pyridyl-triazolylidene; PBO = phenylbenzoxazole

Table S18. The frontier molecular orbital compositions (%) and energy levels for **Re-T-BOP** (in dichloromethane).

	Orbital	Energy		MO	Contributio	n (%)		Main bond type
	Olbital	(eV)	Re	СО	Cl	pytrz	PBO	Wall bolid type
130	L+5	-0.63	12	13	0	3	72	π*(PBO)
129	L+4	-0.74	13	28	0	8	51	$\pi^*(PBO)/p(Re)+\pi^*(CO)$
128	L+3	-1.22	12	13	-1	68	9	$\pi^*(\text{pytrz})$
127	L+2	-1.63	4	4	0	78	14	$\pi^*(\text{pytrz})$
126	L+1	-2.03	1	2	0	14	83	π*(PBO)
125	L	-2.31	2	2	0	93	3	$\pi^*(\text{pytrz})$
			HC	DMO-LUM	IO gap (E	= 4.11 eV	7)	·
124	Н	-6.42	51	23	15	9	2	$d(Re)+\pi(CO)/\pi(Cl)$
123	H-1	-6.58	53	23	19	4	1	$d(Re) + \pi(CO)/\pi(Cl)$
122	H–2	-6.86	13	5	1	3	78	π(PBO)
121	H–3	-6.94	56	24	1	0	18	$d(Re) + \pi(CO) / \pi(PBO)$
120	H–4	-7.46	1	1	31	67	1	$\pi(\text{pytrz})/\pi(\text{Cl})$
119	H–5	-7.64	0	0	0	0	99	π(PBO)
118	H–6	-7.73	0	0	0	0	99	π(PBO)
117	H–7	-8.05	13	4	70	12	1	π(Cl)
116	H-8	-8.12	7	4	28	27	34	$\pi(\text{PBO})/\pi(\text{Cl})/\pi(\text{pytrz})$
115	H–9	-8.34	6	3	15	14	62	π(PBO)
114	H-10	-8.77	9	12	71	6	2	π(Cl)

pytrz: pyridyl-triazolylidene; PBO = phenylbenzoxazole

				F	1	
Electronic	Contribution	Assignment		E _{calc}	∧ _{calc}	f
transition		6		/eV	/nm	5
$S_0 \rightarrow S_1$	H→L	$d(\text{Re})+\pi(\text{CO})/\pi(\text{Cl})\rightarrow\pi^*(\text{pyta})$	MLCT/LLCT	2.73	454.8	0.0038
$S_0 \rightarrow S_2$	$H - 1 \rightarrow L$	$d(\text{Re})+\pi(\text{CO})/\pi(\text{Cl})\rightarrow\pi^*(\text{pyta})$	MLCT/LLCT	2.92	425.2	0.0431
$S_0 \rightarrow S_7$	$H-1\rightarrow L+2$	$d(\text{Re})+\pi(\text{CO})/\pi(\text{Cl})\rightarrow\pi^*(\text{pyta})/\pi^*(\text{R})$	MLCT/LLCT	3.72	333.3	0.0217
$S_0 \rightarrow S_{10}$	H–4→L	$\pi(Cl)/d(Re) + \pi(CO) \rightarrow \pi^*(pyta)$	LLCT/MLCT	4.22	293.7	0.0307
$S_0 \rightarrow S_{11}$	$H-2\rightarrow L+2$	$d(Re)+\pi(CO) \rightarrow \pi^*(pyta)/\pi^*(R)$	MLCT/LLCT	4.24	292.5	0.0260
$S_0 \rightarrow S_{18}$	$H-1\rightarrow L+4$	$d(\text{Re})+\pi(\text{CO})/\pi(\text{Cl})\rightarrow\pi^*(\text{R})/\pi^*(\text{pyta})$	MLCT/LLCT	4.67	265.8	0.0312
	H–6→L	$\pi(\text{pytrz})/\pi(\text{R}) \rightarrow \pi^*(\text{pyta})$	ILCT			
$S_0 \rightarrow S_{20}$	$H - 3 \rightarrow L + 1$	$\pi(Cl)/\pi(pytrz) \rightarrow \pi^*(pyta)$	LLCT/ILCT	4.75	261.1	0.1575
$S_0 \rightarrow S_{22}$	$H \rightarrow L + 1$	$\pi(Cl)/d(Re) + \pi(CO) \rightarrow \pi^*(pyta)$	LLCT/MLCT	4.87	254.5	0.0752
	H–5→L	$\pi(R)/\pi(pytrz) \rightarrow \pi^*(pyta)$	ILCT			
$S_0 \rightarrow S_{23}$	H–7→L	$\pi(Cl) \rightarrow \pi^*(pyta)$	LLCT	4.91	252.6	0.0297
$S_0 \rightarrow S_{26}$	$H-3\rightarrow L+2$	$\pi(Cl)/\pi(pyta) \rightarrow \pi^*(pyta)/\pi^*(R)$	LLCT/ILCT	4.98	248.7	0.1056
$S_0 \rightarrow S_{29}$	$H-5\rightarrow L+1$	$\pi(R)/\pi(pyta) \rightarrow \pi^*(pyta)$	ILCT	5.10	243.0	0.0629
	$H-5\rightarrow L+2$	$\pi(R)/\pi(pyta) \rightarrow \pi^*(pyta)/\pi^*(R)$	ILCT			
$S_0 \rightarrow S_{30}$	$H-4\rightarrow L+2$	$\pi(Cl)/d(Re) + \pi(CO) \rightarrow \pi^*(pyta)/\pi^*(R)$	LLCT/MLCT	5.13	241.8	0.2121
$S_0 \rightarrow S_{35}$	H−8→L	$\pi(R)/\pi(pyta) \rightarrow \pi^*(pyta)$	ILCT	5.36	231.1	0.1096
$S_0 \rightarrow S_{37}$	$H-7\rightarrow L+1$	$\pi(Cl) \rightarrow \pi^*(pyta)$	LLCT	5.46	227.3	0.0214
$S_0 \rightarrow S_{38}$	$H\rightarrow L+8$	$d(\text{Re})+\pi(\text{CO})/\pi(\text{Cl})\rightarrow\pi^*(\text{pyta})$	MLCT/LLCT	5.49	226.0	0.0212
$S_0 \rightarrow S_{43}$	$H-5\rightarrow L+2$	$\pi(R)/\pi(pyta) \rightarrow \pi^*(pyta)/\pi^*(R)$	ILCT	5.60	221.6	0.0217
$S_0 \rightarrow S_{45}$	$H-6\rightarrow L+2$	$\pi(\text{pyta})/\pi(R) \rightarrow \pi^*(\text{pyta})/\pi^*(R)$	ILCT	5.69	218.0	0.0442
$S_0 \rightarrow S_{71}$	$H-1\rightarrow L+12$	$d(\text{Re})+\pi(\text{CO})/\pi(\text{Cl})\rightarrow p(\text{Re})+\pi^*(\text{CO})/\pi^*(\text{R})$	MLCT/LLCT	6.17	201.0	0.0314

Table S19. The main electronic transitions for **Re-Tol**, calculated with TDDFT method at the PBE1PBE/LANL2DZ level (in gas phase).

MLCT: metal-to-ligand charge transfer; LMCT: ligand-to-metal charge transfer; LLCT: ligand-to-ligand charge transfer; ILCT: intraligand charge transfer; Pyta: pyridyl-triazole; R= tolyl ring

Table S20	. The	main	electronic	transitions	for	Re-Tol,	calculated	with	TDDFT	method	at	the
PBE1PBE	LANL	2DZ le	evel (in dicl	hloromethar	ne).							

Electronic transition	Contribution	Assignment		E_{calc} /eV	λ_{calc} /nm	f	λ_{exp} /nm
$S_0 \rightarrow S_1$	H→L	$d(\text{Re})+\pi(\text{CO})/\pi(\text{Cl})\rightarrow\pi^*(\text{pya})$	MLCT/LLCT	3.43	361.7	0.0043	
$S_0 \rightarrow S_2$	$H-1\rightarrow L$	$d(\text{Re})+\pi(\text{CO})/\pi(\text{Cl})\rightarrow\pi^*(\text{pyta})$	MLCT/LLCT	3.60	344.5	0.0914	344
$S_0 \rightarrow S_{11}$	H–3→L	$\pi(\mathbf{R})/\pi(\mathbf{pyta}) \rightarrow \pi^*(\mathbf{pyta})$	ILCT	4.62	268.3	0.3443	276
$S_0 \rightarrow S_{17}$	H–5→L	$\pi(R)/\pi(pyta) \rightarrow \pi^*(pyta)$	ILCT	4.98	248.8	0.0891	
	H–6→L	$\pi(\text{Cl})/\pi(\text{pyta}) \rightarrow \pi^*(\text{pyta})$	LLCT/ILCT				
$S_0 \rightarrow S_{19}$	$H-2\rightarrow L+3$	$d(Re)+\pi(CO) \rightarrow p(Re)+\pi^*(CO)$	MLCT/ILCT	5.08	244.2	0.0772	
$S_0 \rightarrow S_{22}$	$H-4\rightarrow L+1$	$\pi(\text{pyta})/\pi(\text{R}) \rightarrow \pi^*(\text{pyta})$	ILCT	5.24	236.7	0.2726	240
$S_0 \rightarrow S_{26}$	$H-1\rightarrow L+4$	$d(Re)+\pi(CO)/\pi(Cl)\rightarrow\pi^*(R)$	MLCT/LLCT	5.44	228.1	0.0552	
	$H-5\rightarrow L+1$	$\pi(R)/\pi(pyta) \rightarrow \pi^*(pyta)$	ILCT				
$S_0 \rightarrow S_{40}$	$H-5\rightarrow L+2$	$\pi(R)/\pi(pyta) \rightarrow \pi^*(pyta)$	ILCT	5.88	211.0	0.0645	
$S_0 \rightarrow S_{50}$	$H-3\rightarrow L+5$	$\pi(R)/\pi(pyta) \rightarrow p(Re) + \pi^*(CO)/\pi^*(R)$	LLCT/ILCT	6.15	201.8	0.0635	
	$H \rightarrow L + 5$	$\pi(\text{pyta})/\pi(\text{R}) \rightarrow p(\text{Re}) + \pi^*(\text{CO})/\pi^*(\text{R})$	LLCT/ILCT				

MLCT: metal-to-ligand charge transfer; LMCT: ligand-to-metal charge transfer; LLCT: ligand-to-ligand charge transfer; ILCT: intraligand charge transfer; pyta: pyridyl-triazole; R= tolyl ring.

Electronic	Contribution	Assignment		E_{calc}	$\lambda_{\rm calc}$	f
transition	contribution	1 usigiment		/eV	/nm	J
$S_0 \rightarrow S_1$	H→L	$d(\text{Re})+\pi(\text{CO})/\pi(\text{Cl})\rightarrow\pi^*(\text{pytrz})$	MLCT/LLCT	2.46	504.0	0.0014
$S_0 \rightarrow S_2$	$H-1\rightarrow L$	$d(\text{Re})+\pi(\text{CO})/\pi(\text{Cl})\rightarrow\pi^*(\text{pytrz})$	MLCT/LLCT	2.64	470.4	0.0286
$S_0 \rightarrow S_8$	H–3→L	$\pi(Cl)/\pi(pytrz) \rightarrow \pi^*(pytrz)$	LLCT/ILCT	3.74	331.8	0.0488
$S_0 \rightarrow S_{10}$	H−5→L	π (Cl)/d(Re)+ π (CO) $\rightarrow \pi^*$ (pytrz)	LLCT/MLCT	4.02	308.3	0.0313
$S_0 \rightarrow S_{18}$	H–7→L	π (Cl)/ π (pytrz) $\rightarrow \pi^*$ (pytrz)	LLCT/ILCT	4.60	269.8	0.0763
$S_0 \rightarrow S_{27}$	$H-1\rightarrow L+5$	$d(Re)+\pi(CO)/\pi(Cl)\rightarrow\pi^*(R)/\pi^*(pytrz)$	MLCT/LLCT	4.86	255.2	0.1034
	H–8→L	$\pi(\text{pytrz})/\pi(\text{Cl}) \rightarrow \pi^*(\text{pytrz})$	ILCT/LLCT			
$S_0 \rightarrow S_{29}$	$H \rightarrow 3 \rightarrow L + 2$	$\pi(Cl)/\pi(pytrz) \rightarrow \pi^*(pytrz)/\pi^*(R)$	LLCT/ILCT	4.92	252.1	0.0380
$S_0 \rightarrow S_{30}$	$H-1\rightarrow L+7$	$d(Re)+\pi(CO)/\pi(Cl)\rightarrow p(Re)+\pi^*(CO)/\pi^*(pytrz)$	MLCT/LLCT	4.95	250.7	0.0457
$S_0 \rightarrow S_{31}$	$H-2\rightarrow L+4$	$d(Re)+\pi(CO)\rightarrow\pi^*(R)/\pi^*(pytrz)$	MLCT/LLCT	5.08	243.9	0.0411
	$H-6\rightarrow L+1$	$\pi(R) \rightarrow \pi^*(pytrz)$	ILCT			
$S_0 \rightarrow S_{33}$	$H-5\rightarrow L+2$	$\pi(Cl)/d(Re) + \pi(CO) \rightarrow \pi^*(pytrz)/\pi^*(R)$	LLCT/MLCT	5.20	238.7	0.0556
$S_0 \rightarrow S_{46}$	H–9→L	$\pi(\text{pytrz}) \rightarrow \pi^*(\text{pytrz})$	ILCT	5.48	226.2	0.0690
$S_0 \rightarrow S_{55}$	$H-7\rightarrow L+2$	$\pi(Cl)/\pi(pytrz) \rightarrow \pi^*(pytrz)/\pi^*(R)$	LLCT/ILCT	5.78	214.6	0.0304
	$H-3\rightarrow L+4$	$\pi(Cl)/\pi(pytrz) \rightarrow \pi^*(R)/\pi^*(pytrz)$	LLCT/ILCT			
$S_0 \rightarrow S_{78}$	$H-10\rightarrow L$	$\pi(\text{pytrz}) \rightarrow \pi^*(\text{pytrz})$	ILCT	6.20	200.0	0.0325
	$H - 8 \rightarrow L + 2$	$\pi(\text{pytrz})/\pi(\text{Cl}) \rightarrow \pi^*(\text{pytrz})/\pi^*(\text{R})$	ILCT/LLCT			

Table S21. The main electronic transitions for **Re-T-Tol** calculated with TDDFT method at the PBE1PBE/LANL2DZ level (in gas phase).

MLCT: metal-to-ligand charge transfer; LMCT: ligand-to-metal charge transfer; LLCT: ligand-to-ligand charge transfer; ILCT: intraligand charge transfer; Pytrz: pyridyl-triazolylidene; R= tolyl ring.

Table S22.	The	main	electronic	transitions	for	Re-T-Tol	calculated	with	TDDFT	method	at	the
PBE1PBE/L	LANL	2DZ 1	evel (in dic	chlorometha	ne).							

Electronic transition	Contribution	Assignment		E _{calc} /eV	λ_{calc} /nm	f	λ_{exp} /nm
$S_0 \rightarrow S_1$	H→L	$d(\text{Re})+\pi(\text{CO})/\pi(\text{Cl})\rightarrow\pi^*(\text{pytrz})$	MLCT/LLCT	3.19	389.2	0.0071	
$S_0 \rightarrow S_2$	$H-1\rightarrow L$	$d(\text{Re})+\pi(\text{CO})/\pi(\text{Cl})\rightarrow\pi^*(\text{pytrz})$	MLCT/LLCT	3.39	366.2	0.0747	354
$S_0 \rightarrow S_9$	H–3→L	$\pi(\text{pytrz})/\pi(\text{Cl}) \rightarrow \pi^*(\text{pytrz})$	ILCT/LLCT	4.35	285.1	0.1271	290
$S_0 \rightarrow S_{21}$	H–2→L+4	$d(Re)+\pi(CO)\rightarrow p(Re)+\pi^*(CO)/\pi^*(pytrz)$	MLCT/LLCT	5.06	244.9	0.1992	240
$S_0 \rightarrow S_{28}$	$H \rightarrow 3 \rightarrow L + 2$	$\pi(\text{pytrz})/\pi(\text{Cl}) \rightarrow \pi^*(\text{pytrz})/p(\text{Re}) + \pi^*(\text{CO})$	ILCT/LLCT	5.37	231.1	0.0446	
	$H-2\rightarrow L+3$	$d(Re) + \pi(CO) \rightarrow \pi^*(R)$	MLCT/LLCT				
$S_0 \rightarrow S_{48}$	$H-7\rightarrow L+2$	$\pi(Cl)/\pi(pytrz) \rightarrow \pi^*(pytrz)/p(Re) + \pi^*(CO)$	LLCT/ILCT	5.97	207.8	0.0413	
	$H\rightarrow L+18$	$d(Re)+\pi(CO)/\pi(Cl)\rightarrow p(Re)+\pi^*(CO)/\pi^*(R)$	MLCT/LLCT				
$S_0 \rightarrow S_{60}$	$H-10\rightarrow L$	$\pi(\text{pytrz}) \rightarrow \pi^*(\text{pytrz})$	ILCT	6.23	199.0	0.0563	
	$H-7\rightarrow L+2$	$\pi(Cl)/\pi(pytrz) \rightarrow \pi^*(pytrz)/p(Re) + \pi^*(CO)$	LLCT/ILCT				

MLCT: metal-to-ligand charge transfer; LMCT: ligand-to-metal charge transfer; LLCT: ligand-to-ligand charge transfer; ILCT: intraligand charge transfer; Pytrz: pyridyl-triazolylidene; R= tolyl ring.

Electronic transition	Contribution	Assignment		E _{calc} /eV	λ_{calc} /nm	f
$S_0 \rightarrow S_1$	H→L	$d(\text{Re})+\pi(\text{CO})/\pi(\text{Cl})\rightarrow\pi^*(\text{pytrz})$	MLCT/LLCT	2.45	506.0	0.0014
$S_0 \rightarrow S_2$	$H - 1 \rightarrow L$	$d(\text{Re})+\pi(\text{CO})/\pi(\text{Cl})\rightarrow\pi^*(\text{pytrz})$	MLCT/LLCT	2.64	469.1	0.0327
$S_0 \rightarrow S_8$	H–3→L	$\pi(\text{PBO}) \rightarrow \pi^*(\text{pytrz})$	ILCT	3.60	344.8	0.1891
$S_0 \rightarrow S_{13}$	H–5→L	$\pi(Cl)/d(Re) + \pi(CO) \rightarrow \pi^*(pytrz)$	LLCT/MLCT	3.93	315.4	0.0277
$S_0 \rightarrow S_{15}$	$H \rightarrow 3 \rightarrow L + 1$	$\pi(\text{PBO}) \rightarrow \pi^*(\text{PBO})/\pi^*(\text{pytrz})$	ILCT	4.15	298.6	0.7859
$S_0 \rightarrow S_{17}$	$H-2\rightarrow L+3$	$d(Re)+\pi(CO)\rightarrow\pi^*(pytrz)/\pi^*(PBO)$	MLCT/LLCT	4.30	288.5	0.0264
$S_0 \rightarrow S_{20}$	Н–6→L	$\pi(\text{PBO}) \rightarrow \pi^*(\text{pytrz})$	ILCT	4.39	282.2	0.0255
	$H-1\rightarrow L+7$	$d(\text{Re})+\pi(\text{CO})/\pi(\text{Cl})\rightarrow p(\text{Re})+\pi^*(\text{CO})/\pi^*(\text{PBO})$	MLCT/LLCT			
$S_0 \rightarrow S_{23}$	H–8→L	$\pi(Cl)/\pi(pytrz) \rightarrow \pi^*(pytrz)$	LLCT/ILCT	4.55	272.8	0.0265
$S_0 \rightarrow S_{25}$	$H \rightarrow L + 2$	π (Cl)/ π (pytrz) $\rightarrow \pi^*$ (pytrz)/ π^* (PBO)	LLCT/ILCT	4.62	268.4	0.1517
$S_0 \rightarrow S_{31}$	$H \rightarrow L + 1$	$\pi(\text{PBO}) \rightarrow \pi^*(\text{PBO})/\pi^*(\text{pytrz})$	ILCT	4.80	258.2	0.0407
$S_0 \rightarrow S_{33}$	$H - 5 \rightarrow L + 2$	$\pi(Cl)/d(Re) + \pi(CO) \rightarrow \pi^*(pytrz)/\pi^*(PBO)$	LLCT/MLCT	4.89	253.5	0.0523
$S_0 \rightarrow S_{38}$	$H-2\rightarrow L+7$	$d(Re)+\pi(CO)\rightarrow p(Re)+\pi^*(CO)/\pi^*(PBO)$	MLCT/LLCT	4.94	250.9	0.0347
$S_0 \rightarrow S_{41}$	H–4→L+3	π (Cl)/ π (pytrz) $\rightarrow \pi^{*}$ (pytrz)/ π^{*} (PBO)	LLCT/ILCT	5.08	243.9	0.0836
$S_0 \rightarrow S_{55}$	$H - 3 \rightarrow L + 4$	$\pi(PBO) \rightarrow \pi^*(PBO)$	ILCT	5.42	228.7	0.0271
$S_0 \rightarrow S_{58}$	$H \rightarrow B \rightarrow L + 2$	$\pi(Cl)/\pi(pytrz) \rightarrow \pi^*(pytrz)/\pi^*(PBO)$	LLCT/ILCT	5.47	226.6	0.0249
$S_0 \rightarrow S_{69}$	H–6→L+3	π (PBO) $\rightarrow \pi^{*}$ (pytrz)/ π^{*} (PBO)	ILCT	5.68	218.3	0.0530
$S_0 \rightarrow S_{71}$	$H \rightarrow 6 \rightarrow L + 3$	π (PBO) $\rightarrow \pi^{*}$ (pytrz)/ π^{*} (PBO)	ILCT	5.71	217.0	0.0260
	$H-10\rightarrow L+1$	π (PBO)/ π (pytrz) $\rightarrow \pi^{*}$ (PBO)/ π^{*} (pytrz)	ILCT			
$S_0 \rightarrow S_{103}$	H–9→L+3	π (Cl)/ π (pytrz)/ π (PBO) $\rightarrow \pi^{*}$ (pytrz)/ π^{*} (PBO)	LLCT/ILCT	6.19	200.1	0.0298
	$H-12 \rightarrow L+1$	$\pi(\text{pytrz}) \rightarrow \pi^*(\text{PBO})/\pi^*(\text{pytrz})$	ILCT			

Table S23. The main electronic transitions for **Re-T-BOP** calculated with TDDFT method at the PBE1PBE/LANL2DZ level (in gas phase).

MLCT: metal-to-ligand charge transfer; LMCT: ligand-to-metal charge transfer; LLCT: ligand-to-ligand charge transfer; ILCT: intraligand charge transfer; PBO= phenylbenzoxazole.

Table S24.	The main	electronic	transitions	for	Re-T-BOP	calculated	with	TDDFT	method	at	the
PBE1PBE/L	LANL2DZ	level (in die	chlorometha	ane)							

Electronic transition	Contribution	Assignment		E _{calc} /eV	λ_{calc} /nm	f	λ_{exp} /nm
$S_0 \rightarrow S_1$	H→L	$d(\text{Re}) + \pi(\text{CO})/\pi(\text{Cl}) \rightarrow \pi^*(\text{pytrz})$	MLCT/LLCT	3.19	389.3	0.0095	
$S_0 \rightarrow S_2$	$H-1\rightarrow L$	$d(\text{Re}) + \pi(\text{CO})/\pi(\text{Cl}) \rightarrow \pi^*(\text{pytrz})$	MLCT/LLCT	3.40	364.8	0.0864	360
$S_0 \rightarrow S_4$	H→L+1	$d(\text{Re}) + \pi(\text{CO})/\pi(\text{Cl}) \rightarrow \pi^*(\text{PBO})$	MLCT/LLCT	3.70	335.2	0.0988	
$S_0 \rightarrow S_6$	$H-2\rightarrow L$	$\pi(\text{PBO}) \rightarrow \pi^*(\text{pytrz})$	ILCT	4.00	309.9	0.1966	302
$S_0 \rightarrow S_8$	$H-2\rightarrow L+1$	$\pi(\text{PBO}) \rightarrow \pi^*(\text{PBO})$	ILCT	4.11	301.4	0.1449	
$S_0 \rightarrow S_9$	$H \rightarrow L+3$	$d(\text{Re})+\pi(\text{CO})/\pi(\text{Cl})\rightarrow\pi^*(\text{pytrz})$	MLCT/LLCT	4.16	298.2	0.5334	
$S_0 \rightarrow S_{10}$	$H - 3 \rightarrow L + 1$	$d(Re)+\pi(CO)/\pi(PBO) \rightarrow \pi^*(PBO)$	MLCT/LLCT/ILCT	4.17	297.5	0.4342	
	$H\rightarrow L+3$	$d(\text{Re})+\pi(\text{CO})/\pi(\text{Cl})\rightarrow\pi^*(\text{pytrz})$	MLCT/LLCT				
$S_0 \rightarrow S_{13}$	H–4→L	$\pi(\text{pytrz})/\pi(\text{Cl}) \rightarrow \pi^*(\text{pytrz})$	LLCT/ILCT	4.36	284.1	0.0713	
$S_0 \rightarrow S_{19}$	$H - 5 \rightarrow L$	$\pi(\text{PBO}) \rightarrow \pi^*(\text{pytrz})$	ILCT	4.69	264.3	0.0604	
$S_0 \rightarrow S_{29}$	H–4→L+2	$\pi(\text{pytrz})/\pi(\text{Cl}) \rightarrow \pi^*(\text{pytrz})$	ILCT/LLCT	5.12	242.4	0.1542	
$S_0 \rightarrow S_{34}$	$H \rightarrow L + 3$	$\pi(\text{pytrz})/\pi(\text{Cl}) \rightarrow \pi^*(\text{pytrz})$	ILCT/LLCT	5.33	232.8	0.0419	238
$S_0 \rightarrow S_{50}$	$H-7\rightarrow L+2$	π (Cl) $\rightarrow \pi^*$ (pytrz)	LLCT	5.66	219.2	0.0573	
$S_0 \rightarrow S_{60}$	$H-2\rightarrow L+7$	$\pi(PBO) \rightarrow \pi^*(PBO)/p(Re) + \pi^*(CO)$	ILCT/LLCT	5.84	212.2	0.0364	
$S_0 \rightarrow S_{72}$	$H-10 \rightarrow L+1$	$\pi(Cl) \rightarrow \pi^*(PBO)$	LLCT	6.10	203.3	0.0340	
$S_0 \rightarrow S_{80}$	$H - 3 \rightarrow L + 8$	$d(Re)+\pi(CO)/\pi(PBO) \rightarrow \pi^*(PBO)/\pi^*(pytrz)$	MLCT/LLCT/ILCT	6.20	200.1	0.0509	

MLCT: metal-to-ligand charge transfer; LMCT: ligand-to-metal charge transfer; LLCT: ligand-to-ligand charge transfer; ILCT: intraligand charge transfer; PBO= phenylbenzoxazole.

Orbital		Energy	MO Contribution (%)					Main bond type	
		(eV)	Re	СО	Cl	P ₁	P_2		
126	LUMO+5	-0.74	2	2	0	3	92	π*(PBO)	
125	LUMO+4	-0.83	35	59	0	5	2	$p(Re) + \pi^*(CO)$	
124	LUMO+3	-1.35	1	3	0	71	25	$\pi^*(\text{pyta}) + \pi^*(\text{PBO})$	
123	LUMO+2	-1.55	0	1	0	78	21	$\pi^*(\text{pyta}) + \pi^*(\text{PBO})$	
122	LUMO+1	-2.16	1	2	0	25	73	$\pi^{*}(PBO) + \pi^{*}(pyta)$	
121	LUMO	-2.23	3	4	0	88	5	$\pi^*(pyta)$	
			HOM	O-LUMC) gap (E =	= 4.38 eV)		
120	HOMO	-6.61	48	22	18	4	7	$d(Re) + \pi(CO) + p(Cl)$	
119	HOMO-1	-6.71	47	20	20	4	8	$d(Re) + \pi(CO) + p(Cl)$	
118	HOMO-2	-6.92	9	3	8	5	75	$\pi(\text{PBO})$	
117	HOMO-3	-7.19	69	30	1	0	0	$d(Re) + \pi(CO)$	
116	HOMO-4	-7.68	0	0	0	9	90	π(PBO)	
115	HOMO-5	-7.72	0	0	2	60	38	π (pyta) + π (PBO)	

Table S25. The frontier molecular orbital compositions (%) and energy levels for complex **Re-BOP** (in dichloromethane). Selected data published in Wang *et al.*, *Dalton Trans*. 2018, **47**, 8087–8099.

pyta: pyridyl-triazole; PBO = phenylbenzoxazole.

Table 26. The main electronic transitions for complex **Re-BOP**, calculated with TDDFT method at the PBE1PBE/LANL2DZ level (in dichloromethane). From Wang *et al.*, *Dalton Trans.* 2018, **47**, 8087–8099.

Electronic transition	Contribution	Assignment		E _{calc} /eV	λ_{calc} /nm	f	λ_{exp} /nm
$S_0 \rightarrow S_2$	$H - 1 \rightarrow LUMO$	$d(\text{Re}) + \pi(\text{CO}) + p(\text{Cl}) \rightarrow \pi^*(\text{pyta})$	MLCT/LLCT	3.57	347.4	0.0801	
$S_0 \to S_3$	$HOMO \rightarrow L + 1$	$d(\text{Re}) + \pi(\text{CO}) + p(\text{Cl}) \rightarrow \pi^*(\text{PBO}) + \pi^*(\text{pyta})$	MLCT/LLCT	3.82	324.4	0.5028	
$S_0 \to S_5$	$H-1 \rightarrow L+1$	$d(\text{Re}) + \pi(\text{CO}) + p(\text{Cl}) \rightarrow \pi^*(\text{PBO}) + \pi^*(\text{pyta})$	MLCT/LLCT	3.92	316.4	0.3102	
$S_0 \to S_6$	$H-2 \longrightarrow L+1$	$\pi(\text{PBO}) \rightarrow \pi^*(\text{PBO}) + \pi^*(\text{pyta})$	ILCT/IL	4.08	304.1	0.6416	303
	$H - 2 \rightarrow LUMO$	$\pi(\text{PBO}) \rightarrow \pi^*(\text{pyta})$	ILCT				
$S_0 \rightarrow S_7$	$H - 2 \rightarrow LUMO$	$\pi(\text{PBO}) \rightarrow \pi^*(\text{pyta})$	ILCT	4.17	297.5	0.0478	
	$H-2 \rightarrow L+1$	π (PBO) $\rightarrow \pi^{*}$ (PBO) + π^{*} (pyta)	ILCT/IL				
$S_0 \mathop{\rightarrow} S_8$	$HOMO \rightarrow L + 2$	$d(\text{Re}) + \pi(\text{CO}) + p(\text{Cl}) \rightarrow \pi^*(\text{pyta}) + \pi^*(\text{PBO})$	MLCT/LLCT	4.27	290.3	0.0177	289
$S_0 \rightarrow S_{17}$	$H - 5 \rightarrow LUMO$	$\pi(\text{pyta}) + \pi(\text{PBO}) \rightarrow \pi^*(\text{pyta})$	ILCT/IL	4.71	263.2	0.1093	
$S_0 \to S_{18}$	$H-5 \rightarrow L+1$	$\pi(\text{pyta}) + \pi(\text{PBO}) \rightarrow \pi^*(\text{PBO}) + \pi^*(\text{pyta})$	ILCT/IL	4.72	262.5	0.0882	
	$H-2 \rightarrow L+2$	$\pi(\text{PBO}) \rightarrow \pi^*(\text{pyta}) + \pi^*(\text{PBO})$	ILCT/IL				
$S_0 \rightarrow S_{27}$	$H - 2 \rightarrow L + 3$	$\pi(\text{PBO}) \rightarrow \pi^*(\text{pyta}) + \pi^*(\text{PBO})$	ILCT/IL	5.05	245.6	0.0954	
$S_0 \to S_{28}$	$H-3 \rightarrow L+4$	$d(\text{Re}) + \pi(\text{CO}) \rightarrow p(\text{Re}) + \pi^*(\text{CO})$	MLCT/ILCT	5.12	242.2	0.1173	
$S_0 \to S_{34}$	$H-4 \rightarrow L+2$	$\pi(\text{PBO}) \rightarrow \pi^*(\text{pyta}) + \pi^*(\text{PBO})$	ILCT/IL	5.43	228.5	0.1500	229
	$HOMO \rightarrow L + 5$	$d(\text{Re}) + \pi(\text{CO}) + p(\text{Cl}) \rightarrow \pi^*(\text{PBO})$	MLCT/LLCT				
$S_0 \to S_{36}$	$H-5 \rightarrow L+2$	$\pi(\text{pyta}) + \pi(\text{PBO}) \rightarrow \pi^*(\text{pyta}) + \pi^*(\text{PBO})$	ILCT/IL	5.47	226.6	0.0761	

MLCT: metal-to-ligand charge transfer; LMCT: ligand-to-metal charge transfer; LLCT: ligand-to-ligand charge transfer; ILCT: intraligand charge transfer; PBO = phenylbenzoxazole.

Table S27. Phosphorescence emission energies of **Re-Tol**, **Re-T-Tol** and **Re-T-BOP** calculated with DFT and TDDFT methods at the PBE1PBE/LANL2DZ level, in comparison with the experimental values. ΔE_{T1} - S_0 is the energy difference between the ground singlet and triplet states.

	DFT					TDDFT						
Complex	$\Delta E_{ m T1}$ – S_0				Major		gas j	phase	DCM			
Complex	gas phase DCM Character Major Character		Character	οV	nm	οV	nm					
	eV	nm	eV	nm		contribution		ev	11111	ev	11111	
Re-Tol	2.05	604.8	2.39	518.8	MLCT	H→L	MLCT/LLCT	1.77	702.4	2.26	549.5	
Re-T-Tol	1.60	774.9	2.05	604.8	MLCT	H→L	MLCT/LLCT	1.36	914.7	1.89	655.2	
Re-T-BOP	1.62	765.3	2.00	619.9	MLCT	H→L	MLCT/LLCT	1.38	900.8	1.85	669.0	
Re-T-Tol Re-T-BOP	1.60 1.62	774.9 765.3	2.05 2.00	604.8 619.9	MLCT MLCT	H→L H→L	MLCT/LLCT MLCT/LLCT	1.36 1.38	914.7 900.8	1.89 1.85	655.2 669.0	

	Complex							
Orbital	Orbital Re-Tol		Re-T-	Tol	Re-T-	BOP		
	Gas phase	DCM	Gas phase	DCM	Gas phase	DCM		
5d _{xy}	1.208	1.478	1.289	1.108	1.346	1.134		
5d _{xz}	1.397	1.539	1.287	1.548	1.444	1.531		
5d _{yz}	1.467	1.480	1.494	1.537	1.205	1.439		
$5d_x^2-y^2$	1.416	1.074	1.406	1.510	1.371	1.504		
$5d_z^2$	1.223	1.117	1.320	1.070	1.432	1.165		

Table S28. Natural populations of the $5d_{xy}$, $5d_{xz}$, $5d_{yz}$, $5d_x^2-y^2$ and $5d_z^2$ orbitals of the central atom in **Re-Tol**, **Re-T-Tol** and **Re-T-BOP**.

The population of 5*d* orbitals $(5d_{xy}, 5d_{xz}, 5d_{yz}, 5d_{x}^{2}-y^{2} \text{ and } 5d_{z}^{2})$ of the central atoms shows that in free Re (+1) state, the population of $5d_{xy}$, $5d_{xz}$ and $5d_{yz}$ orbitals are 2.0, 2.0 and 2.0 (e) and the other two $(5d_{x}^{2}-y^{2} \text{ and } 5d_{z}^{2})$ orbitals remain vacant. On complex formation, some decrease in populations for the $5d_{xy}$, $5d_{xz}$ and $5d_{yz}$ orbital and some increase in the populations of $5d_{x}^{2}-y^{2}$ and $5d_{z}^{2}$ orbital can be observed in comparison to free Re (+1) state.

Table S29. Atomic charges from the Natural Population Analysis (NPA) for Re-Tol, Re-BOP, Re-T-Tol and Re-T-BOP.

-				Com	plex		
Atom	Re-7	Гol	Re-BOP ^a	Re-T-	-Tol	Re-T-	BOP
	Gas phase	DCM	DCM	Gas phase	DCM	Gas phase	DCM
Re(1)	-1.03	-0.99	-1.00	-1.21	-1.17	-1.22	-1.17
C(1)	+0.76	+0.76	+0.74	+0.74	+0.75	+0.73	+0.75
C(2)	+0.78	+0.77	+0.78	+0.79	+0.78	+0.79	+0.78
C(3)	+0.73	+0.75	+0.76	+0.76	+0.76	+0.76	+0.76
N(1) / C(4)	-0.17	-0.19	-0.18	+0.14	+0.12	+0.13	+0.11
N(4)	-0.38	-0.40	-0.40	-0.36	-0.38	-0.36	-0.38
Cl(1)	-0.40	-0.46	-0.46	-0.40	-0.47	-0.39	-0.47
O(1)	-0.47	-0.48	-0.50	-0.49	-0.51	-0.50	-0.51
O(2)	-0.46	-0.48	-0.48	-0.47	-0.50	-0.47	-0.50
O(3)	-0.48	-0.50	-0.48	-0.47	-0.48	-0.47	-0.48

a From Wang et al., Dalton Trans. 2018, 47, 8087-8099.

Table S30. Absolute electronegativity (χ), absolute hardness (η), electrophilicity index (ω), absolute softness (σ) and dipole moment (μ) of complexes **Re-Tol**, **Re-BOP**, **Re-T-Tol** and **Re-T-BOP**.

Doromotors a	Complex									
T arameters	Re-Tol		Re-H	BOP ^b	Re-T-Tol		Re-T-I	BOP		
	gas phase	DCM	gas phase	DCM	gas phase	DCM	gas phase	DCM		
Total Energy (Hartree)	-1192.5966	-1192.6241	-1551.4356	-1551.4654	-1231.8280	-1231.8577	-1590.6660	-1590.6993		
E _{HOMO} (eV)	-6.05	-6.64	-6.02	-6.61	-5.87	-6.41	-5.86	-6.42		
E _{LUMO} (eV)	-2.36	-2.21	-2.44	-2.23	-2.50	-2.21	-2.51	-2.31		
Energy gap ΔE (eV)	3.69	4.43	3.58	4.38	3.37	4.12	3.35	4.11		
Ionization Potential I	6.05	6.64	6.02	6.61	5.87	6.41	5.86	6.42		
Electron Affinity A	2.36	2.21	2.21	2.23	2.50	2.21	2.51	2.31		
Electronegativity χ (eV)	4.21	4.43	4.23	4.42	4.19	4.31	4.19	4.37		
Hardness η (eV)	1.85	2.22	1.79	2.19	1.69	2.10	1.68	2.10		
Electrophilicity ω	4.78	4.42	5.00	4.46	5.20	4.42	5.23	4.55		
Softness σ (eV)	0.27	0.23	0.56	0.46	0.30	0.24	0.30	0.24		
Dipole moment μ (D)	12.36	17.36	11.73	15.25	11.84	16.17	11.59	16.08		

^{*a*} The frontier molecular orbital descriptors such as ionization potential (IP = $-E_{HOMO}$), electron affinity (EA = $-E_{LUMO}$), hardness (η = (I -

A)/2), electronegativity ($\chi = (I + A)/2$), chemical potential ($\mu = -\chi$), softness ($\sigma = 1/\eta$), electrophilicity index ($\omega = \mu^2/2\eta$) calculated according to Koopmans theorem [T. Koopmans, *Physica*, 1933, **1**, 104–113], and dipole moment calculated using the equation: $\mu = 2.54 \times (x^2 + y^2 + y^2)$

 $z^2)^{1/2}$.

^b From Wang et al., Dalton Trans. 2018, 47, 8087–8099.

0	Occupied orbitals	Unoccupied orbitals				
HOMO / 94 (-6.05 eV)		LUMO / 95 (–2.36 eV)				
HOMO–1 / 93 (–6.16 eV)	J.	LUMO+1 / 96 (–1.86 eV)				
HOMO–2 / 92 (–6.73 eV)		LUMO+2 / 97 (–1.60 eV)				
HOMO–3 / 91 (–7.43 eV)		LUMO+3 / 98 (-1.05 eV)				
HOMO-4 / 90 (-7.51 eV)		LUMO+4 / 99 (-0.80 eV)				
HOMO-5 / 89 (-7.85 eV)		LUMO+5 / 100 (-0.49 eV)				

Figure S32. The isodensity plots of the frontier molecular orbitals of Re-Tol (in gas phase).

0	Occupied orbitals	Unoccupied orbitals			
HOMO / 94 (-6.64 eV)		LUMO / 95 (–2.21 eV)			
HOMO–1 / 93 (–6.74 eV)		LUMO+1 / 96 (-1.60 eV)			
HOMO–2 / 92 (–7.19 eV)		LUMO+2 / 97 (–1.37 eV)			
HOMO–3 / 91 (–7.56 eV)		LUMO+3 / 98 (-0.84 eV)			
HOMO–4 / 90 (–7.69 eV)		LUMO+4 / 99 (-0.75 eV)			
HOMO-5 / 89 (-7.90eV)		LUMO+5 / 100 (-0.68 eV)			

Figure S33. The isodensity plots of the frontier molecular orbitals of Re-Tol (in dichloromethane).

0	Occupied orbitals	Unoccupied orbitals			
HOMO / 98 (-5.87 eV)		LUMO / 99 (–2.50 eV)			
HOMO–1 / 97 (–5.99 eV)		LUMO+1 / 100 (-1.84 eV)			
HOMO-2 / 96 (-6.45 eV)	J.	LUMO+2 / 101 (-1.27 eV)			
HOMO–3 / 95 (–7.07 eV)		LUMO+3 / 102 (-0.63 eV)			
HOMO-4 / 94 (-7.36 eV)		LUMO+4 / 103 (-0.56 eV)			
HOMO-5 / 93 (-7.42 eV)		LUMO+5 / 104 (-0.48 eV)			

Figure S34. The isodensity plots of the frontier molecular orbitals of Re-T-Tol (in gas phase).

Figure S35. The isodensity plots of the frontier molecular orbitals of Re-T-Tol (in dichloromethane).

Figure S36. The isodensity plots of the frontier molecular orbitals of Re-T-BOP (in gas phase).

Figure S37. The isodensity plots of the frontier molecular orbitals of **Re-T-BOP** (in dichloromethane).

Figure S38. The isodensity plots of the frontier molecular orbitals of complex **Re-BOP** (in dichloromethane).

Figure S39. Spin density distribution for the lowest triplet state T_1 of **Re-Tol**, **Re-T-Tol** and **Re-T-BOP** in gas phase and in dichloromethane, calculated based on the optimized triplet state with DFT method at the PBE1PBE/LanL2DZ level.

Figure S40. Molecular Electrostatic Potential (MEP) of **Re-Tol**, **Re-T-Tol** and **Re-T-BOP** on the $\rho(r) = 0.02$ au isodensity surface, calculated based on the optimized ground state geometry with DFT method at the PBE1PBE/LanL2DZ level. Mapping colours range from red -0.05 au to blue +0.05 au.

MEP surface plot helps to understand visually the relative polarity of the molecule, as shown in Figure 9. It is also useful to explain quantitatively hydrogen bonding, reactivity and structure–activity relationship of molecules including the biomolecules and drugs. MEP helps to find the sites for electrophilic and nucleophilic attacks as well as hydrogen bonding interactions. The MEP surfaces of **Re-Tol, Re-T-Tol** and **Re-T-BOP** studied by PBE1PBE/LanL2DZ were generated by mapping electrostatic potential onto the molecular electron density surface. In the MEP surface map, regions are represented by different colors which corresponds to different values of the electrostatic potential. The maximum negative region which preferred site for electrophilic attack is indicated as red color, whereas the maximum positive region which preferred site for nucleophilic attack is indicated as blue color. Potential increases in the order red < orange < yellow < green < cyan < blue, where red shows the strongest repulsion and blue shows the strongest attraction. Regions having the negative potential are over the electropositive atoms.

Negative electrostatic potential regions (red colour) of complexes **Re-Tol, Re-T-Tol** and **Re-T-BOP** are mainly localized around the chlorine Cl, the nitrogens N of the ligand as well as carbonyl oxygens. The positive electrostatic potential regions (blue colour) are around the hydrogen atoms.

Figure S41. Left: The experimental (black) and simulated (red) UV-vis absorption spectra of **Re-Tol**, **Re-T-Tol**, and **Re-T-BOP** (from top to bottom) in DCM. Right: The experimental (black) FT-IR spectra recorded on powders (ATR) and simulated (red) FT-IR spectra of these complexes in gas phase.

Electrochemistry

Table S31. Experimental electrochemical data used, and calculated values of the energy g	gaps ((Eg)	for
the indicated compounds			

Compound	E onset ox	Eonset red	Еномо	ELUMO	$E_{ m g}^{ m el}$	Ecalc *
	(V)	(V)	(eV)	(eV)	(eV)	(eV)
Re-Tol	1.41	-1.54	-6.15	-3.20	2.95	3.03
Re-BOP	1.40	-1.45	-6.14	-3.29	2.85	3.01 ^a
Re-T-Tol	1.22	-1.48	-5.96	-3.26	2.70	2.76
Re-T-BOP	1.22	-1.43	-5.96	-3.31	2.65	2.78

^a From Wang et al., Dalton Trans. 2018, 47, 8087–8099.

*Values obtained from theoretical study.

 E_{g}^{el} = electrochemical energy gap; E_{calc}^{*} = calculated energy gap at the geometrically-optimized first excited singlet state S₁.

Evaluation of the energy gap values (E_g^{el}) for the Re complexes.

The onset oxidation and reduction potentials (*E*onset ox, *E*onset red) were measured by cyclic voltammetry in volt *versus* SCE. The CVs were carried out at a potential scan rate of 200 mV s⁻¹ at room temperature.

The HOMO and LUMO energy levels (E_{HOMO} and E_{LUMO}) in electron volt (eV) were calculated according to the empirical equations (1) and (2):^[1]

 E_{HOMO} (eV) = -e (Eonset ox (V vs. SCE) + 4.74 V) Eq(1) E_{LUMO} (eV) = -e (Eonset red (V vs. SCE) + 4.74 V) Eq(2),

and the energy gap value was obtained as follows: $Eg^{el} = (E_{LUMO} - E_{HOMO})$

The differences observed for the estimation of the energy gaps using experimental methods or theoretical calculations are well known. See for example: R. Stowasser, R. Hoffmann, J. Am. Chem. Soc. **1999**, *121*, 3414-3420.

[1] a) Y. Zhou, J. W. Kim, R. Nandhakumar, M. J. Kim, E. Cho, Y. S. Kim, Y. H. Jang, C. Lee, S. Han, K. M. Kim, J.-J. Kim and J. Yoon, *Chem. Commun.* **2010**, *46*, 6512-6514 and references therein;
b) G. V. Loukova, *Chem. Phys. Lett.* **2002**, *353*, 244–252.

Electrochemical selected curves

OSWV study was performed on a Pt working electrode in $CH_2Cl_2 + 0.1 M [nBu_4N][BF_4]$ at room temperature in the presence of ferrocene used as internal reference. Frequency 20 Hz, amplitude 20 mV, step potential 5 mV. Cyclic voltammograms of the indicated compounds were performed on a Pt working electrode in $CH_2Cl_2 + 0.1 M [nBu_4N][BF_4]$ at room temperature at a scan rate of 0.2 Vs⁻¹ or at other mentioned scan rates.

Figure S42. OSWVs: anodic (left) and cathodic (right) scans of complex Re-Tol.

Figure S43. Cyclic voltammograms of complex **Re-Tol** (gray), and of its first oxidation and reduction processes (black) at 0.2 V/s.

Figure S44. Cyclic voltammograms of the first oxidation process of complex **Re-Tol** at 10, 50, and 100 V/s from bottom-black line to top-light gray line (left), and of its first reduction process at 10, 50, and 100 V/s from bottom-black line to top-gray line (right).

Figure S45. OSWVs: anodic (left) and cathodic (right) scans of complex Re-T-Tol.

Figure S46. Cyclic voltammograms of complex **Re-T-Tol** (gray), and of its first oxidation and reduction processes (black) at 0.2 V/s (left); and cyclic voltammograms of its first oxidation process and reduction process at 0.2 (black) and 10 V/s (gray), right.

Figure S47. Cyclic voltammograms of the first oxidation process of complex **Re-T-Tol** at 10, 50, and 100 V/s from bottom-black line to top-light gray line (left), and of its first reduction process at 1, 5, and 10 V/s from bottom-black line to top-gray line (right).

Figure S48. OSWVs: anodic (left) and cathodic (right) scans of complex Re-T-BOP.

Figure S49. Cyclic voltammograms of complex Re-T-BOP.

Figure S50. Cyclic voltammograms of the first oxidation process of complex **Re-T-BOP** at 10, 50, and 100 V/s from bottom-black line to top-light gray line (left), and of its first reduction process at 1, 10, 50, and 100 V/s from bottom-black line to top-gray line (right).

Spectroscopy

Figure S51. Emission decays of **Re-T-Phe** (a), **Re-T-Tol** (b), **Re-T-BOP** (c), **Re-Phe** (d), and **Re-Tol** (e) at ~ 1.2×10^{-5} M in dichloromethane solutions.

Figure S52. Photoluminescence decays of **Re-T-Phe** (a), **Re-T-Tol** (b), **Re-T-BOP** (c), **Re-Phe** (d), and **Re-Tol** (e) in the solid state (pristine microcrystalline powders, except for **Re-Tol** (ground powder)).

Table S32. Minimum inhibitory concentration (MIC) of the complexes towards antibiotic-susceptible (S) and multidrug-resistant (R) bacteria, with irradiation by UV light. Comparison with conventional antibiotics.

Compound	MIC (µM) Irradiated samples							
	S. aurei	ıs	P. aerog	inosa	Ŀ	E. coli	A. baum	annii
	(S) ATCC 35923	(R) ATCC 43300	(S) ATCC 27853	(R) ATCC BAA-2108	(S) ATCC 25922	(R) ATCC BAA-196	(S) ATCC 19606	(R) ATCC BAA-1797
Re-T-Phe	32	32	>128	>128	>128	>128	>128	>128
Re-T-Tol	64	>128	>128	>128	>128	>128	>128	>128
Re-T-BOP	4	4	>128	>128	>128	>128	>128	>128
Re-Phe	>128	>128	>128	>128	>128	>128	>128	>128
Re-Tol	32	32	>128	>128	>128	>128	>128	>128
Re-BOP	8	>128	>128	>128	>128	>128	>128	>128
Re-[1,2,4]-Phe	>128	>128	>128	>128	>128	>128	>128	>128
Re-[1,2,4]-BOP	>128	>128	>128	>128	>128	>128	>128	>128
Gentamicin sulfate	1	128	0.5	8	0.125	>128	0.5	>128
Ampicillin	0.25	32	>128	>128	16	>128	>128	>128

(111	gas phase).		
6	12.895328000	11.568135000	10.472812000
6	11.343046000	12.790025000	8.625608000
6	13.871585000	12.023899000	7.971038000
6	11.295760000	8.662028000	5.442009000
1	11.198344000	7.732482000	4.903664000
6	11.976854000	9.029869000	6.579022000
6	12.848847000	8.359783000	7.527251000
6	13.276388000	7.041120000	7.390141000
1	12.954696000	6.453376000	6.536723000
6	14.108573000	6.499037000	8.359788000
1	14.451593000	5.472277000	8.277871000
6	14.491150000	7.294359000	9.436315000
1	15.136308000	6.914869000	10.220960000
6	14.026907000	8.600872000	9.503128000
1	14.295358000	9.251596000	10.327685000
6	9.745299000	9.942339000	3.962451000
6	10.237141000	9.655911000	2.690780000
1	11.276518000	9.362965000	2.571726000
6	9.397696000	9.772716000	1.588813000
1	9.773543000	9.555255000	0.594023000
6	8.080406000	10.184871000	1.777262000
1	7.414634000	10.284901000	0.924993000
6	7.609805000	10.468921000	3.056418000
1	6.577862000	10.781908000	3.191357000
6	8.423579000	10.352634000	4.188666000
6	7.888464000	10.651993000	5.558730000
1	8.227864000	9.927335000	6.305077000
1	6.796030000	10.646986000	5.546398000
1	8.222437000	11.634620000	5.906425000
17	10.356531000	9.869514000	9.501862000
7	11.674001000	10.338557000	6.809124000
7	10.870670000	10.796186000	5.903854000
7	10.631525000	9.782664000	5.070726000
7	13.224989000	9.133368000	8.571707000
8	13.239650000	11.790026000	11.555915000
8	10.727148000	13.765829000	8.571774000
8	14.810281000	12.549279000	7.530048000
75	12.338723000	11.152442000	8.689074000

Table S33. Cartesian coordinates of **Re-Tol** in S0(in gas phase).

Table S34. Cartesian coordinates of **Re-Tol** in T_1

6 12.860462000 11.534788000 10.505170000 6 11.397814000 12.843258000 8.488171000 6 13.905994000 11.860078000 7.980879000 6 11.297612000 8.655711000 5.425523000 1 11.254327000 7.756325000 4.833414000 6 11.957756000 8.992916000 6.601875000 6 12.835807000 8.370333000 7.525862000 6 13.321313000 7.060672000 7.427546000 1 13.006609000 6.450607000 6.584982000 6 14.186256000 6.557318000 8.373838000 1 14.567090000 5.544776000 8.298351000 6 14.77624000 7.411351000 9.458628000 1 15.265031000 7.067954000 10.223321000 6 14.070304000 8.674064000 9.533955000 1 14.343059000 9.333839000 10.350670000 6 9.720051000 9.730607000 2.713212000 1 </th <th>(in</th> <th>gas phase).</th> <th></th> <th></th>	(in	gas phase).		
611.39781400012.8432580008.488171000613.90599400011.8600780007.980879000611.2976120008.6557110005.425523000111.2543270007.7563250004.833414000611.9577560008.9929160006.601875000612.8358070008.3703330007.525862000613.3213130007.0606720007.427546000113.0066090006.4506070006.584982000614.1862560006.5573180008.373838000114.5670900005.5447760008.298351000614.5776240007.4113510009.458628000115.2650310007.06795400010.223321000614.0703040008.6740640009.533955000114.3430590009.33383900010.35067000069.7200510009.9353500003.978980000610.2651340009.7306070002.713212000111.319338009.4857330002.62007400068.11849600010.2054550001.74588100017.47804100010.3148840000.87549800067.59223500010.4057140003.01927600016.54218900010.2716620004.17257500067.77639600010.4737120005.53525200018.1224070009.7202850006.24924800016.68612400010.2805350009.597724000710.56639100010.2805350009.597724000710.569391000<	6	12.860462000	11.534788000	10.505170000
613.90599400011.8600780007.980879000611.2976120008.6557110005.425523000111.2543270007.7563250004.833414000611.9577560008.9929160006.601875000612.8358070008.3703330007.525862000613.3213130007.0606720007.427546000113.0066090006.4506070006.584982000614.1862560006.5573180008.373838000114.5670900005.5447760008.298351000614.5776240007.4113510009.458628000115.2650310007.06795400010.223321000614.0703040008.6740640009.533955000114.3430590009.33383900010.35067000069.7200510009.9353500003.978980000610.2651340009.7306070002.713212000111.3193380009.4857330002.62007400069.4591840009.8620430001.58789300019.8785500009.7072660000.59867100068.11849600010.2054550001.74588100017.47804100010.3148840000.87549800066.54218900010.6629300003.13155800068.37272300010.2716620004.17257500067.77639600010.4235140005.48195000018.1224070009.7202850006.249248000110.16867400010.2805350009.597724000710.569391000 <td< td=""><td>6</td><td>11.397814000</td><td>12.843258000</td><td>8.488171000</td></td<>	6	11.397814000	12.843258000	8.488171000
611.2976120008.6557110005.425523000111.2543270007.7563250004.833414000611.9577560008.9929160006.601875000612.8358070008.3703330007.525862000613.3213130007.0606720007.427546000113.0066090006.4506070006.584982000614.1862560006.5573180008.373838000114.5670900005.5447760008.298351000614.5776240007.4113510009.458628000115.2650310007.06795400010.223321000614.0703040008.6740640009.533955000114.3430590009.33383900010.35067000069.7200510009.9353500003.978980000610.2651340009.7306070002.713212000111.3193380009.4857330002.62007400069.4591840009.8620430001.58789300019.8785500009.7072660000.59867100068.11849600010.2054550001.74588100017.47804100010.3148840000.87549800066.54218900010.6629300003.13155800068.37272300010.2716620004.17257500067.77639600010.4235140005.48195000018.05618200011.4472110005.9493560001710.16867400010.2805350009.597724000710.56939100010.2821430006.879343000710.577570000<	6	13.905994000	11.860078000	7.980879000
1 11.254327000 7.756325000 4.833414000 6 11.957756000 8.992916000 6.601875000 6 12.835807000 8.370333000 7.525862000 6 13.321313000 7.060672000 7.427546000 1 13.006609000 6.450607000 6.584982000 6 14.186256000 6.557318000 8.373838000 1 14.567090000 5.544776000 8.298351000 6 14.577624000 7.411351000 9.458628000 1 15.265031000 7.067954000 10.223321000 6 14.070304000 8.674064000 9.533955000 1 14.343059000 9.333839000 10.350670000 6 9.720051000 9.93535000 3.978980000 6 9.459184000 9.862043000 1.587893000 1 1.319338000 9.485733000 2.620074000 6 8.118496000 10.205455000 1.745881000 1 7.478041000 10.314884000 0.875498000 6	6	11.297612000	8.655711000	5.425523000
611.9577560008.9929160006.601875000612.8358070008.3703330007.525862000613.3213130007.0606720007.427546000113.0066090006.4506070006.584982000614.1862560006.5573180008.373838000114.5670900005.5447760008.298351000614.5776240007.4113510009.458628000115.2650310007.06795400010.223321000614.0703040008.6740640009.533955000114.3430590009.33383900010.35067000069.7200510009.9353500003.978980000610.2651340009.7306070002.713212000111.3193380009.4857330002.62007400069.4591840009.8620430001.58789300019.8785500009.7072660000.59867100068.11849600010.2054550001.74588100017.47804100010.3148840000.87549800067.59223500010.4057140003.01927600016.54218900010.629300003.13155800068.37272300010.2716620004.17257500067.77639600010.4737120005.53525200018.1224070009.7202850006.24924800016.68612400010.2805350009.597724000710.56939100010.2805350009.597724000710.5775700009.7642110005.106928000713.1851660009	1	11.254327000	7.756325000	4.833414000
612.8358070008.3703330007.525862000613.3213130007.0606720007.427546000113.0066090006.4506070006.584982000614.1862560006.5573180008.373838000114.5670900005.5447760008.298351000614.5776240007.4113510009.458628000115.2650310007.06795400010.223321000614.0703040008.6740640009.533955000114.3430590009.33383900010.35067000069.7200510009.9353500003.978980000610.2651340009.7306070002.713212000111.3193380009.4857330002.62007400069.4591840009.8620430001.58789300019.8785500009.7072660000.59867100068.11849600010.2054550001.74588100017.47804100010.3148840000.87549800067.59223500010.4057140003.01927600016.54218900010.6629300003.13155800068.37272300010.2716620004.17257500067.77639600011.4472110005.9493560001710.16867400010.2821430006.879343000710.56939100010.2821430006.879343000710.577570009.7642110005.106928000713.1851660009.1949170008.625603000813.20286600011.79413600011.575124000810.890395000	6	11.957756000	8.992916000	6.601875000
613.3213130007.0606720007.427546000113.0066090006.4506070006.584982000614.1862560006.5573180008.373838000114.5670900005.5447760008.298351000614.5776240007.4113510009.458628000115.2650310007.06795400010.223321000614.0703040008.6740640009.533955000114.3430590009.33383900010.35067000069.7200510009.9353500003.978980000610.2651340009.7306070002.713212000111.3193380009.4857330002.62007400069.4591840009.8620430001.58789300019.8785500009.7072660000.59867100068.11849600010.2054550001.74588100017.47804100010.3148840000.87549800067.59223500010.4057140003.01927600016.54218900010.6629300003.13155800068.37272300010.2716620004.17257500067.77639600010.4737120005.53525200018.1224070009.7202850006.249248000110.16867400010.285350009.597724000711.56939100010.2821430006.879343000710.777570009.7642110005.106928000713.1851660009.1949170008.625603000813.20286600011.79413600011.575124000810.890395000 <td< td=""><td>6</td><td>12.835807000</td><td>8.370333000</td><td>7.525862000</td></td<>	6	12.835807000	8.370333000	7.525862000
113.0066090006.4506070006.584982000614.1862560006.5573180008.373838000114.5670900005.5447760008.298351000614.5776240007.4113510009.458628000115.2650310007.06795400010.223321000614.0703040008.6740640009.533955000114.3430590009.33383900010.35067000069.7200510009.9353500003.978980000610.2651340009.7306070002.713212000111.3193380009.4857330002.62007400069.4591840009.8620430001.58789300019.8785500009.7072660000.59867100068.11849600010.2054550001.74588100017.47804100010.3148840000.87549800067.59223500010.4057140003.01927600016.54218900010.6629300003.13155800068.37272300010.2716620004.17257500067.77639600010.4737120005.53525200018.1224070009.7202850006.249248000110.16867400010.2805350009.597724000711.56939100010.2821430006.879343000710.7741440010.7444990005.979834000710.577570009.7642110005.106928000713.1851660009.1949170008.625603000813.20286600011.79413600011.575124000810.890395000 <t< td=""><td>6</td><td>13.321313000</td><td>7.060672000</td><td>7.427546000</td></t<>	6	13.321313000	7.060672000	7.427546000
614.1862560006.5573180008.373838000114.5670900005.5447760008.298351000614.5776240007.4113510009.458628000115.2650310007.06795400010.223321000614.0703040008.6740640009.533955000114.3430590009.33383900010.35067000069.7200510009.9353500003.978980000610.2651340009.7306070002.713212000111.3193380009.4857330002.62007400069.4591840009.8620430001.58789300019.8785500009.7072660000.59867100068.11849600010.2054550001.74588100017.47804100010.3148840000.87549800067.59223500010.4057140003.01927600016.54218900010.6629300003.13155800068.37272300010.2716620004.17257500067.77639600010.4737120005.53525200018.1224070009.7202850006.24924800016.68612400010.2805350009.597724000710.16867400010.2805350009.597724000710.56939100010.2821430006.879343000710.577570009.7642110005.106928000713.1851660009.1949170008.625603000813.20286600011.79413600011.575124000810.89039500013.8583920008.320964000814.865364000<	1	13.006609000	6.450607000	6.584982000
114.5670900005.5447760008.298351000614.5776240007.4113510009.458628000115.2650310007.06795400010.223321000614.0703040008.6740640009.533955000114.3430590009.33383900010.35067000069.7200510009.9353500003.978980000610.2651340009.7306070002.713212000111.3193380009.4857330002.62007400069.4591840009.8620430001.58789300019.8785500009.7072660000.59867100068.11849600010.2054550001.74588100017.47804100010.3148840000.87549800067.59223500010.4057140003.01927600016.54218900010.6629300003.13155800068.37272300010.2716620004.17257500067.77639600010.4737120005.53525200018.1224070009.7202850006.24924800016.68612400010.2805350009.597724000710.16867400010.2805350009.597724000710.56939100010.2821430006.879343000710.577570009.7642110005.106928000713.1851660009.1949170008.625603000813.20286600011.79413600011.575124000810.89039500013.8583920008.320964000814.86536400012.3377890007.562089000	6	14.186256000	6.557318000	8.373838000
614.5776240007.4113510009.458628000115.2650310007.06795400010.223321000614.0703040008.6740640009.533955000114.3430590009.33383900010.35067000069.7200510009.9353500003.978980000610.2651340009.7306070002.713212000111.3193380009.4857330002.62007400069.4591840009.8620430001.58789300019.8785500009.7072660000.59867100068.11849600010.2054550001.74588100017.47804100010.3148840000.87549800067.59223500010.4057140003.01927600016.54218900010.6629300003.13155800068.37272300010.2716620004.17257500067.77639600010.4737120005.53525200018.1224070009.7202850006.24924800016.68612400010.2805350009.597724000710.16867400010.2805350009.597724000710.577570009.7642110005.106928000713.1851660009.1949170008.625603000813.20286600011.79413600011.575124000810.89039500013.8583920008.320964000814.86536400012.3377890007.562089000	1	14.567090000	5.544776000	8.298351000
115.2650310007.06795400010.223321000614.0703040008.6740640009.533955000114.3430590009.33383900010.35067000069.7200510009.9353500003.978980000610.2651340009.7306070002.713212000111.3193380009.4857330002.62007400069.4591840009.8620430001.58789300019.8785500009.7072660000.59867100068.11849600010.2054550001.74588100017.47804100010.3148840000.87549800067.59223500010.4057140003.01927600016.54218900010.6629300003.13155800068.37272300010.2716620004.17257500067.77639600010.4737120005.53525200018.1224070009.7202850006.24924800016.68612400010.2805350009.597724000710.16867400010.2805350009.597724000710.577570009.7642110005.106928000713.1851660009.1949170008.625603000813.20286600011.79413600011.575124000810.89039500013.8583920008.320964000814.86536400012.3377890007.562089000	6	14.577624000	7.411351000	9.458628000
614.0703040008.6740640009.533955000114.3430590009.33383900010.35067000069.7200510009.9353500003.978980000610.2651340009.7306070002.713212000111.3193380009.4857330002.62007400069.4591840009.8620430001.58789300019.8785500009.7072660000.59867100068.11849600010.2054550001.74588100017.47804100010.3148840000.87549800067.59223500010.4057140003.01927600016.54218900010.6629300003.13155800068.37272300010.2716620004.17257500067.77639600010.4737120005.53525200018.1224070009.7202850006.24924800016.68612400010.2805350009.597724000710.16867400010.2821430006.879343000710.577570009.7642110005.106928000713.1851660009.1949170008.625603000813.20286600011.79413600011.575124000810.89039500013.8583920008.320964000814.86536400012.3377890007.562089000	1	15.265031000	7.067954000	10.223321000
114.3430590009.33383900010.35067000069.7200510009.9353500003.978980000610.2651340009.7306070002.713212000111.3193380009.4857330002.62007400069.4591840009.8620430001.58789300019.8785500009.7072660000.59867100068.11849600010.2054550001.74588100017.47804100010.3148840000.87549800067.59223500010.4057140003.01927600016.54218900010.6629300003.13155800068.37272300010.2716620004.17257500067.77639600010.4737120005.53525200018.1224070009.7202850006.24924800016.68612400010.4235140005.48195000018.05618200011.4472110005.949356000710.74414400010.7444990005.979834000710.577570009.7642110005.106928000713.1851660009.1949170008.625603000813.20286600011.79413600011.575124000810.89039500013.8583920008.320964000814.86536400012.3377890007.562089000	6	14.070304000	8.674064000	9.533955000
69.7200510009.9353500003.978980000610.2651340009.7306070002.713212000111.3193380009.4857330002.62007400069.4591840009.8620430001.58789300019.8785500009.7072660000.59867100068.11849600010.2054550001.74588100017.47804100010.3148840000.87549800067.59223500010.4057140003.01927600016.54218900010.6629300003.13155800068.37272300010.2716620004.17257500067.77639600010.4737120005.53525200018.1224070009.7202850006.24924800016.68612400010.4235140005.48195000018.05618200011.4472110005.949356000710.16867400010.2805350009.597724000710.5775700009.7642110005.106928000713.1851660009.1949170008.625603000813.20286600011.79413600011.575124000810.89039500013.8583920008.320964000814.86536400012.3377890007.562089000	1	14.343059000	9.333839000	10.350670000
610.2651340009.7306070002.713212000111.3193380009.4857330002.62007400069.4591840009.8620430001.58789300019.8785500009.7072660000.59867100068.11849600010.2054550001.74588100017.47804100010.3148840000.87549800067.59223500010.4057140003.01927600016.54218900010.6629300003.13155800068.37272300010.2716620004.17257500067.77639600010.4737120005.53525200018.1224070009.7202850006.24924800016.68612400010.4235140005.48195000018.05618200011.4472110005.949356000710.16867400010.2805350009.597724000710.5775700009.7642110005.106928000713.1851660009.1949170008.625603000813.20286600011.79413600011.575124000810.89039500013.8583920008.320964000814.86536400012.3377890007.562089000	6	9.720051000	9.935350000	3.978980000
111.3193380009.4857330002.62007400069.4591840009.8620430001.58789300019.8785500009.7072660000.59867100068.11849600010.2054550001.74588100017.47804100010.3148840000.87549800067.59223500010.4057140003.01927600016.54218900010.6629300003.13155800068.37272300010.2716620004.17257500067.77639600010.4737120005.53525200018.1224070009.7202850006.24924800016.68612400010.4235140005.48195000018.05618200011.4472110005.949356000710.16867400010.2805350009.597724000710.5775700009.7642110005.106928000713.1851660009.1949170008.625603000813.20286600011.79413600011.575124000810.89039500013.8583920008.320964000814.86536400012.3377890007.562089000	6	10.265134000	9.730607000	2.713212000
69.4591840009.8620430001.58789300019.8785500009.7072660000.59867100068.11849600010.2054550001.74588100017.47804100010.3148840000.87549800067.59223500010.4057140003.01927600016.54218900010.6629300003.13155800068.37272300010.2716620004.17257500067.77639600010.4737120005.53525200018.1224070009.7202850006.24924800016.68612400010.4235140005.48195000018.05618200011.4472110005.949356000710.16867400010.2805350009.597724000710.5775700009.7642110005.106928000713.1851660009.1949170008.625603000813.20286600011.79413600011.575124000810.89039500013.8583920008.320964000814.86536400012.3377890007.562089000	1	11.319338000	9.485733000	2.620074000
19.8785500009.7072660000.59867100068.11849600010.2054550001.74588100017.47804100010.3148840000.87549800067.59223500010.4057140003.01927600016.54218900010.6629300003.13155800068.37272300010.2716620004.17257500067.77639600010.4737120005.53525200018.1224070009.7202850006.24924800016.68612400010.4235140005.48195000018.05618200011.4472110005.9493560001710.16867400010.2821430006.879343000710.5775700009.7642110005.106928000713.1851660009.1949170008.625603000813.20286600011.79413600011.575124000810.89039500013.8583920008.320964000814.86536400012.3377890007.562089000	6	9.459184000	9.862043000	1.587893000
68.11849600010.2054550001.74588100017.47804100010.3148840000.87549800067.59223500010.4057140003.01927600016.54218900010.6629300003.13155800068.37272300010.2716620004.17257500067.77639600010.4737120005.53525200018.1224070009.7202850006.24924800016.68612400010.4235140005.48195000018.05618200011.4472110005.9493560001710.16867400010.2821430006.879343000710.7441440010.7444990005.979834000710.5775700009.7642110005.106928000713.1851660009.1949170008.625603000813.20286600011.79413600011.575124000810.89039500013.8583920008.320964000814.86536400012.3377890007.562089000	1	9.878550000	9.707266000	0.598671000
17.47804100010.3148840000.87549800067.59223500010.4057140003.01927600016.54218900010.6629300003.13155800068.37272300010.2716620004.17257500067.77639600010.4737120005.53525200018.1224070009.7202850006.24924800016.68612400010.4235140005.48195000018.05618200011.4472110005.9493560001710.16867400010.2821430006.879343000711.56939100010.2821430006.879343000710.5775700009.7642110005.106928000713.1851660009.1949170008.625603000813.20286600011.79413600011.575124000810.89039500013.8583920008.320964000814.86536400012.3377890007.562089000	6	8.118496000	10.205455000	1.745881000
67.59223500010.4057140003.01927600016.54218900010.6629300003.13155800068.37272300010.2716620004.17257500067.77639600010.4737120005.53525200018.1224070009.7202850006.24924800016.68612400010.4235140005.48195000018.05618200011.4472110005.9493560001710.16867400010.2821430006.879343000710.74414400010.7444990005.979834000713.1851660009.1949170008.625603000813.20286600011.79413600011.575124000810.89039500013.8583920008.320964000814.86536400012.3377890007.562089000	1	7.478041000	10.314884000	0.875498000
16.54218900010.6629300003.13155800068.37272300010.2716620004.17257500067.77639600010.4737120005.53525200018.1224070009.7202850006.24924800016.68612400010.4235140005.48195000018.05618200011.4472110005.9493560001710.16867400010.2805350009.597724000711.56939100010.2821430006.879343000710.74414400010.7444990005.979834000713.1851660009.1949170008.625603000813.20286600011.79413600011.575124000810.89039500013.8583920008.320964000814.86536400012.3377890007.562089000	6	7.592235000	10.405714000	3.019276000
68.37272300010.2716620004.17257500067.77639600010.4737120005.53525200018.1224070009.7202850006.24924800016.68612400010.4235140005.48195000018.05618200011.4472110005.9493560001710.16867400010.2805350009.597724000711.56939100010.2821430006.879343000710.74414400010.7444990005.979834000713.1851660009.1949170008.625603000813.20286600011.79413600011.575124000810.89039500013.8583920008.320964000814.86536400012.3377890007.562089000	1	6.542189000	10.662930000	3.131558000
67.77639600010.4737120005.53525200018.1224070009.7202850006.24924800016.68612400010.4235140005.48195000018.05618200011.4472110005.9493560001710.16867400010.2805350009.597724000711.56939100010.2821430006.879343000710.74414400010.7444990005.979834000710.5775700009.7642110005.106928000713.1851660009.1949170008.625603000813.20286600011.79413600011.575124000810.89039500013.8583920008.320964000814.86536400012.3377890007.562089000	6	8.372723000	10.271662000	4.172575000
18.1224070009.7202850006.24924800016.68612400010.4235140005.48195000018.05618200011.4472110005.9493560001710.16867400010.2805350009.597724000711.56939100010.2821430006.879343000710.74414400010.7444990005.979834000710.5775700009.7642110005.106928000713.1851660009.1949170008.625603000813.20286600011.79413600011.575124000810.89039500013.8583920008.320964000814.86536400012.3377890007.562089000	6	7.776396000	10.473712000	5.535252000
16.68612400010.4235140005.48195000018.05618200011.4472110005.9493560001710.16867400010.2805350009.597724000711.56939100010.2821430006.879343000710.74414400010.7444990005.979834000710.5775700009.7642110005.106928000713.1851660009.1949170008.625603000813.20286600011.79413600011.575124000810.89039500013.8583920008.320964000814.86536400012.3377890007.562089000	1	8.122407000	9.720285000	6.249248000
18.05618200011.4472110005.9493560001710.16867400010.2805350009.597724000711.56939100010.2821430006.879343000710.74414400010.7444990005.979834000710.5775700009.7642110005.106928000713.1851660009.1949170008.625603000813.20286600011.79413600011.575124000810.89039500013.8583920008.320964000814.86536400012.3377890007.562089000	1	6.686124000	10.423514000	5.481950000
1710.16867400010.2805350009.597724000711.56939100010.2821430006.879343000710.74414400010.7444990005.979834000710.5775700009.7642110005.106928000713.1851660009.1949170008.625603000813.20286600011.79413600011.575124000810.89039500013.8583920008.320964000814.86536400012.3377890007.562089000	1	8.056182000	11.447211000	5.949356000
711.56939100010.2821430006.879343000710.74414400010.7444990005.979834000710.5775700009.7642110005.106928000713.1851660009.1949170008.625603000813.20286600011.79413600011.575124000810.89039500013.8583920008.320964000814.86536400012.3377890007.562089000	17	10.168674000	10.280535000	9.597724000
710.74414400010.7444990005.979834000710.5775700009.7642110005.106928000713.1851660009.1949170008.625603000813.20286600011.79413600011.575124000810.89039500013.8583920008.320964000814.86536400012.3377890007.562089000	7	11.569391000	10.282143000	6.879343000
710.5775700009.7642110005.106928000713.1851660009.1949170008.625603000813.20286600011.79413600011.575124000810.89039500013.8583920008.320964000814.86536400012.3377890007.562089000	7	10.744144000	10.744499000	5.979834000
713.1851660009.1949170008.625603000813.20286600011.79413600011.575124000810.89039500013.8583920008.320964000814.86536400012.3377890007.562089000	7	10.577570000	9.764211000	5.106928000
813.20286600011.79413600011.575124000810.89039500013.8583920008.320964000814.86536400012.3377890007.562089000	7	13.185166000	9.194917000	8.625603000
810.89039500013.8583920008.320964000814.86536400012.3377890007.562089000	8	13.202866000	11.794136000	11.575124000
8 14.865364000 12.337789000 7.562089000	8	10.890395000	13.858392000	8.320964000
	8	14.865364000	12.337789000	7.562089000
75 12.277852000 11.077970000 8.721998000	75	12.277852000	11.077970000	8.721998000

Table S35. Cartesian coordinates of **Re-Tol** in S₀ (in dichloromethane).

().	
6	13.618023000	12.009640000	10.070423000
6	12.122261000	13.209652000	8.176046000
6	14.295154000	11.768919000	7.460093000
6	10.988294000	8.752435000	5.695705000
1	10.763264000	7.795208000	5.252435000
6	11.755014000	9.130477000	6.774360000
6	12.557832000	8.439089000	7.768206000
6	12.711805000	7.056313000	7.811690000
1	12.212095000	6.431714000	7.079491000
6	13.509607000	6.500587000	8.803686000
1	13.644523000	5.425256000	8.859335000
6	14.129810000	7.344577000	9.720494000
1	14.761413000	6.957167000	10.511834000
6	13.928966000	8.714025000	9.614278000
1	14.394199000	9.401660000	10.310793000
6	9.686149000	10.113308000	4.045486000
6	10.213391000	10.852912000	2.989042000
1	11.223297000	11.244121000	3.062171000
6	9.435912000	11.073143000	1.857635000
1	9.836419000	11.647995000	1.028705000
6	8.146265000	10.546435000	1.800262000
1	7.530290000	10.710800000	0.921030000
6	7.636847000	9.816125000	2.871075000
1	6.624042000	9.425365000	2.821977000
6	8.389273000	9.583334000	4.028127000
6	7.808877000	8.815437000	5.181458000
1	8.141607000	7.771234000	5.179983000
1	6.718518000	8.808798000	5.117980000
1	8.091183000	9.250234000	6.144774000
17	10.644340000	10.817761000	9.761214000
7	11.695523000	10.488504000	6.838527000
7	10.950368000	10.967636000	5.891289000
7	10.517644000	9.916471000	5.194056000
7	13.160909000	9.260750000	8.660643000
8	14.149164000	12.357900000	11.040393000
8	11.736773000	14.284521000	7.980718000
8	15.254200000	11.982975000	6.837709000
75	12.732280000	11.422470000	8.478095000

Table S36. Cartesian coordinates of Re-Tol in S₁ (in dichloromethane).

6	13.651215000	12.102651000	10.018805000
6	12.114538000	13.216684000	8.175918000
6	14.273961000	11.549407000	7.375477000
6	10.981647000	8.757137000	5.680613000
1	10.775087000	7.818477000	5.193019000
6	11.746107000	9.099786000	6.792597000
6	12.538229000	8.430808000	7.756578000
6	12.760615000	7.040656000	7.807000000
1	12.301467000	6.409179000	7.051656000
6	13.544491000	6.497086000	8.795764000
1	13.718808000	5.427325000	8.839248000
6	14.123893000	7.371448000	9.765284000
1	14.745169000	6.993238000	10.568847000
6	13.881797000	8.718920000	9.674917000
1	14.307731000	9.403928000	10.401179000
6	9.670809000	10.137049000	4.066225000
6	10.190479000	10.920412000	3.037711000
1	11.186560000	11.339499000	3.139683000
6	9.426003000	11.147548000	1.898802000
1	9.822635000	11.756076000	1.092206000
6	8.154195000	10.584103000	1.804847000
1	7.547789000	10.753370000	0.919841000
6	7.650745000	9.810299000	2.847476000
1	6.651032000	9.390877000	2.771402000
6	8.391417000	9.568669000	4.010506000
6	7.813247000	8.753325000	5.131948000
1	8.161504000	7.714918000	5.096430000
1	6.723334000	8.734640000	5.059846000
1	8.084878000	9.157028000	6.111470000
17	10.747393000	10.954263000	9.885635000
7	11.640557000	10.473036000	6.891191000
7	10.882170000	10.972979000	5.935610000
7	10.492996000	9.932294000	5.219353000
7	13.113020000	9.283800000	8.711396000
8	14.221375000	12.557270000	10.908342000
8	11.785807000	14.303801000	7.989907000
8	15.217045000	11.637800000	6.727483000
75	12.675787000	11.375160000	8.487009000

Table S37. Cartesian coordinates of **Re-Tol** in T₁ (in dichloromethane).

Table S38. Cartesian coordinates of Re-T-Tol in S_0 (in gas phase).

> 6.249532000 5.566787000 7.191852000 3.491882000 7.166335000 4.905773000 5.253673000 6.506663000 8.161490000 6.832479000 4.528523000 6.811957000 5.895138000 7.176793000 6.455542000 7.503520000 8.031892000 6.952528000 8.209763000 9.356981000 9.382567000 10.473203000 11.373077000 10.415125000 11.257386000 9.241592000 9.154692000 3.535884000 3.018452000 1.673860000 1.235974000 0.896685000 -0.143206000 1.450472000 0.854976000 2.784795000 3.259707000 3.858560000 4.813060000 3.336562000

4.084214000

(111	aremorenie					in Sus phase).	
6	13.521591000	11.918363000	10.146552000]	75	8.774905000	3.287469000
6	12.160233000	13.201678000	8.064156000		17	10.934294000	2.184629000
6	14.347095000	11.627197000	7.549222000		8	6.286507000	4.808547000
6	10.982596000	8.740804000	5.666268000		8	7.485324000	2.891832000
1	10.778062000	7.799211000	5.182941000		8	7.629047000	0.551772000
6	11.748451000	9.091797000	6.770798000		7	10.280172000	5.898992000
6	12.541772000	8.429341000	7.746158000		7	11.207000000	6.784656000
6	12.724578000	7.047466000	7.840493000		7	11.467924000	6.507011000
1	12.213225000	6.404975000	7.129130000		7	9.872840000	3.672771000
6	13.547085000	6.510390000	8.810791000		6	7.225865000	4.221677000
1	13.695590000	5.438975000	8.886022000		6	7.977921000	3.045561000
6	14.217181000	7.412337000	9.707997000		6	8.046672000	1.570695000
1	14.891253000	7.041908000	10.472423000		6	9.918005000	5.037436000
6	14.003564000	8.752491000	9.602141000		6	12.480063000	7.300987000
1	14.495564000	9.449349000	10.271586000		1	12.853036000	8.027045000
6	9.664345000	10.124491000	4.055235000		1	13.297713000	6.654563000
6	10.186078000	10.887955000	3.013073000		1	12.042340000	7.821063000
1	11.191234000	11.288985000	3.097907000		6	10.725007000	5.458744000
6	9.411470000	11.118603000	1.881441000		6	10.714695000	4.739226000
1	9.809110000	11.712018000	1.064171000		6	11.449980000	5.039408000
6	8.128711000	10.577339000	1.808294000		1	12.108516000	5.898736000
1	7.514937000	10.748951000	0.928844000		6	11.330603000	4.220698000
6	7.623952000	9.822088000	2.864059000		1	11.897935000	4.437922000
1	6.616500000	9.419116000	2.803234000		6	10.478929000	3.124015000
6	8.374375000	9.578465000	4.020293000		1	10.357120000	2.452050000
6	7.798527000	8.782967000	5.157049000		6	9.771839000	2.891222000
1	8.146847000	7.744146000	5.139403000		1	9.098393000	2.046222000
1	6.708484000	8.763191000	5.088546000		6	9.852049000	5.876419000
1	8.072952000	9.204445000	6.128447000		6	9.118859000	6.949812000
17	10.517655000	11.131406000	9.662361000		6	8.748308000	6.860122000
7	11.654172000	10.457112000	6.865298000		1	8.170656000	7.670165000
7	10.897753000	10.954182000	5.921485000		6	9.088327000	5.755023000
7	10.493986000	9.915135000	5.202129000		1	8.776934000	5.714517000
7	13.153178000	9.317098000	8.676821000		6	9.807525000	4.698981000
8	14.013713000	12.266931000	11.130741000		1	10.056975000	3.826615000
8	11.854222000	14.269663000	7.778144000		6	10.195220000	4.757059000
8	15.336596000	11.810917000	6.993981000		1	10.735734000	3.940928000
75	12.678894000	11.333460000	8.513584000		6	8.730381000	8.132652000
					1	8.294544000	7.818606000
					1	7.990655000	8.744188000
					1	9.595214000	8.765686000

Table S39. Cartesian coordinates of Re-T-Tol in T_1 (in gas phase).

		/	
75	8.854317000	3.317334000	6.235429000
17	10.546760000	1.657663000	5.726218000
8	6.650238000	5.341994000	7.031812000
8	7.576518000	2.950941000	3.455107000
8	7.022022000	0.986453000	7.324348000
7	10.271168000	5.902035000	4.914229000
7	11.111042000	6.895519000	5.274490000
7	11.337737000	6.654090000	6.609470000
7	9.948402000	3.594392000	8.122363000
6	7.470894000	4.584937000	6.742115000
6	8.063882000	3.102589000	4.488964000
6	7.704321000	1.818385000	6.926856000
6	10.010265000	4.995889000	5.879387000
6	12.403200000	7.396196000	7.230037000
1	12.638616000	8.236860000	6.576450000
1	13.303600000	6.780936000	7.355555000
1	12.085740000	7.785936000	8.201211000
6	10.738388000	5.471412000	7.000305000
6	10.741609000	4.732926000	8.197761000
6	11.461583000	5.017443000	9.385422000
1	12.066500000	5.914135000	9.446375000
6	11.400917000	4.147183000	10.448738000
1	11.954615000	4.359847000	11.358445000
6	10.624920000	2.977555000	10.342399000
1	10.562391000	2.256368000	11.148627000
6	9.926266000	2.759145000	9.164139000
1	9.319386000	1.867629000	9.044384000
6	9.867811000	5.849211000	3.544895000
6	9.056218000	6.862908000	3.018519000
6	8.708193000	6.754549000	1.669163000
1	8.072157000	7.519844000	1.231367000
6	9.145091000	5.689219000	0.884778000
1	8.850459000	5.633701000	-0.159300000
6	9.947743000	4.694822000	1.437613000
1	10.284456000	3.856838000	0.835325000
6	10.314876000	4.777582000	2.776411000
1	10.935222000	4.014809000	3.238489000
6	8.568640000	8.007755000	3.858354000
1	8.156596000	7.657559000	4.810714000
1	7.787474000	8.562672000	3.332953000
1	9.383792000	8.698460000	4.096824000

Table S40. Cartesian coordinates of Re-T-Tol					
in S_0 (in dichloromethane).					
75	8.755899000	3.376530000	6.241211000		
17	10.792157000	1.930095000	5.748778000		
8	6.405664000	5.197047000	6.960350000		
8	7.606127000	2.985589000	3.423619000		
8	7.224411000	0.858226000	7.221671000		
7	10.476785000	5.812646000	4.827762000		
7	11.443166000	6.658264000	5.166122000		
7	11.684380000	6.395699000	6.424479000		
7	9.825367000	3.774503000	8.168707000		
6	7.300575000	4.501468000	6.686321000		
6	8.040002000	3.132994000	4.490853000		
6	7.795389000	1.798675000	6.858787000		
6	10.069007000	4.995437000	5.832490000		
6	12.717186000	7.166746000	7.098905000		
1	13.122854000	7.870542000	6.374386000		
1	13.506817000	6.497759000	7.444719000		
1	12.279212000	7.711052000	7.937139000		
6	10.884957000	5.397605000	6.886287000		
6	10.777410000	4.747206000	8.179034000		
6	11.518013000	5.033624000	9.324036000		
1	12.272184000	5.809741000	9.315738000		
6	11.278795000	4.307270000	10.485187000		
1	11.847824000	4.517609000	11.385036000		
6	10.305421000	3.315573000	10.472481000		
1	10.082987000	2.723826000	11.353102000		
6	9.606026000	3.084089000	9.294177000		
1	8.840237000	2.318881000	9.245946000		
6	9.992798000	5.844649000	3.475616000		
6	8.939478000	6.707793000	3.152451000		
6	8.502266000	6.691564000	1.824007000		
1	7.685111000	7.346738000	1.534081000		
6	9.090194000	5.857883000	0.874185000		
1	8.725625000	5.869623000	-0.148909000		
6	10.138928000	5.011792000	1.230333000		
1	10.597992000	4.359927000	0.493787000		
6	10.594470000	5.003996000	2.545476000		
1	11.404292000	4.351362000	2.857022000		
6	8.309730000	7.604531000	4.178083000		
1	7.876358000	7.025434000	5.000375000		
1	7.513837000	8.201837000	3.728364000		
1	9.044090000	8.289897000	4.614548000		

 Table S41. Cartesian coordinates of Re-T-Tol
 in S_1 (in dichloromethane).

	- 1 (· · · · · / ·	
75	8.888163000	3.275707000	6.226599000
17	10.743200000	1.820798000	5.679127000
8	6.693447000	5.318310000	7.007223000
8	7.604389000	2.802672000	3.458049000
8	7.058458000	0.897371000	7.163551000
7	10.404838000	5.837594000	4.860198000
7	11.281852000	6.773473000	5.201617000
7	11.544782000	6.509709000	6.491581000
7	9.907537000	3.626965000	8.118115000
6	7.499279000	4.551050000	6.716897000
6	8.095485000	2.991665000	4.485295000
6	7.754123000	1.752297000	6.840393000
6	10.086664000	4.972231000	5.840961000
6	12.482696000	7.356781000	7.188562000
1	12.825181000	8.118664000	6.489262000
1	13.339511000	6.771453000	7.533592000
1	11.997434000	7.840121000	8.041076000
6	10.843312000	5.416574000	6.939684000
6	10.777053000	4.728866000	8.173463000
6	11.471611000	5.025880000	9.369587000
1	12.137598000	5.880760000	9.403130000
6	11.308587000	4.238033000	10.482381000
1	11.843290000	4.466220000	11.398705000
6	10.431271000	3.120227000	10.412964000
1	10.273653000	2.465589000	11.262014000
6	9.773209000	2.874379000	9.229854000
1	9.099254000	2.027628000	9.148196000
6	9.925821000	5.832787000	3.508847000
6	9.033022000	6.826927000	3.090141000
6	8.604475000	6.764178000	1.759838000
1	7.905276000	7.514723000	1.400433000
6	9.047026000	5.763449000	0.896485000
1	8.692214000	5.744138000	-0.129978000
6	9.934923000	4.787999000	1.346119000
1	10.279227000	4.003719000	0.679259000
6	10.378360000	4.823426000	2.664671000
1	11.066424000	4.075993000	3.048269000
6	8.552765000	7.908561000	4.013823000
1	8.262805000	7.505309000	4.989335000
1	7.688975000	8.421707000	3.585047000
1	9.336831000	8.651788000	4.192380000

Table S42. Cartesian coordinates of **Re-T-Tol** in T_1 (in dichloromethane).

	- (
75	8.843212000	3.348455000	6.235535000
17	10.574252000	1.649765000	5.741706000
8	6.641786000	5.358045000	7.041987000
8	7.581041000	3.017877000	3.447354000
8	7.017050000	0.976297000	7.250375000
7	10.339546000	5.852341000	4.881045000
7	11.215753000	6.820434000	5.228729000
7	11.452088000	6.585591000	6.560614000
7	9.918677000	3.628454000	8.131342000
6	7.465325000	4.607163000	6.742244000
6	8.063761000	3.152558000	4.489463000
6	7.696079000	1.828745000	6.893004000
6	10.044538000	4.973253000	5.857514000
6	12.471708000	7.371447000	7.209284000
1	12.727897000	8.193519000	6.540885000
1	13.371328000	6.776139000	7.402366000
1	12.094531000	7.788411000	8.146567000
6	10.801978000	5.442431000	6.976757000
6	10.769936000	4.731520000	8.184566000
6	11.499610000	5.013475000	9.369756000
1	12.153231000	5.876270000	9.407682000
6	11.380029000	4.183650000	10.459331000
1	11.938193000	4.392271000	11.366764000
6	10.531846000	3.060765000	10.383607000
1	10.413241000	2.376915000	11.215720000
6	9.831763000	2.838652000	9.204838000
1	9.168987000	1.984320000	9.117153000
6	9.906407000	5.823978000	3.517901000
6	9.012820000	6.800108000	3.057166000
6	8.635505000	6.723813000	1.712332000
1	7.937384000	7.460188000	1.322637000
6	9.127508000	5.726689000	0.871448000
1	8.812062000	5.696300000	-0.167546000
6	10.016322000	4.770578000	1.359269000
1	10.400846000	3.990423000	0.709667000
6	10.410039000	4.821724000	2.692994000
1	11.099997000	4.090764000	3.104122000
6	8.479660000	7.876322000	3.957521000
1	8.108942000	7.462400000	4.900802000
1	7.659848000	8.410822000	3.472411000
1	9.259298000	8.602850000	4.209825000

Table S43. Cartesian coordinates of			
Re	-T-BOP in	n S ₀ (in gas	phase).
6	5.251086000	-0.745637000	16.927207000
6	3.576671000	-0.172089000	14.862907000
6	4.412179000	1.861993000	16.473624000
6	7.649094000	2.161191000	16.707102000
1	6.824093000	2.517915000	17.313227000
6	8.923572000	2.696714000	16.847354000
1	9.099111000	3.481427000	17.574784000
6	9.943300000	2.209671000	16.038191000
1	10.951662000	2.604689000	16.115239000
6	9.654547000	1.204639000	15.123538000
1	10.436358000	0.810578000	14.486295000
6	8.350831000	0.715455000	15.037693000
6	7.868363000	-0.335160000	14.164349000
7	7.642733000	-1.896175000	12.618394000
7	7.356360000	1.194559000	15.831043000
6	6.537343000	-0.748239000	14.229666000
7	6.496232000	-1.708805000	13.264713000
7	8.469950000	-1.045555000	13.174459000
8	5.234548000	-1.492996000	17.821327000
8	2.542488000	-0.537008000	14.493031000
8	3.914580000	2.709126000	17.083340000
17	5.486803000	2.005208000	13.482812000
75	5.286583000	0.451707000	15.452272000
6	5.075719000	-2.618039000	11.523155000
6	3.993000000	-3.427503000	11.242318000
6	3.236104000	-4.094587000	12.213705000
6	3.563061000	-3.961547000	13.563178000
6	4.651197000	-3.160728000	13.884437000
6	5.378999000	-2.509342000	12.878904000
8	3.455175000	-3.724012000	10.029064000
6	2.403779000	-4.554626000	10.318654000
7	2.233274000	-4.804295000	11.580860000
1	5.640650000	-2.090827000	10.763602000
1	2.986424000	-4.463580000	14.332178000
1	4.946434000	-3.021465000	14.919016000
6	1.615072000	-5.052759000	9.201726000
6	1.917543000	-4.690993000	7.883021000
6	0.535658000	-5.907924000	9.462145000
6	1.144970000	-5.183021000	6.836060000
6	-0.230257000	-6.394643000	8.410518000
6	0.071882000	-6.034288000	7.096226000
1	2.752144000	-4.026248000	7.684629000
1	0.313937000	-6.175979000	10.490384000
1	1.380470000	-4.899781000	5.814358000
1	-1.066889000	-7.056318000	8.615024000
1	-0.529835000	-6.415830000	6.276177000
6	9.822315000	-0.982642000	12.654220000
1	10.535981000	-1.261388000	13.432816000
1	9.885891000	-1.690298000	11.828636000
1	10.029515000	0.026887000	12.292010000

Table S44. Cartesian coordinates of **Re-T-BOP** in T_1 (in gas phase).

	nu	-I-DOI III	1 [(in gus	phase).
	6	5.434461000	-0.864095000	16.693846000
	6	3.615848000	-0.250241000	14.665491000
	6	4.329006000	1.681208000	16.555792000
	6	7.532140000	2.406028000	16.411156000
	1	6.671639000	2.861913000	16.889631000
	6	8.795828000	2,951085000	16.581505000
	1	8 924678000	3 832520000	17 198325000
	6	9 880410000	2 331717000	15 932421000
	1	10 886472000	2 725275000	16.043116000
	6	9 655363000	1 224109000	15 148633000
	1	10.478040000	0.740796000	14 635409000
	6	8 340927000	0.714203000	15.006628000
	6	7 932341000	0.389592000	14 234364000
	7	7.932341000	-0.369392000	12 822120000
	7	7.736121000	-2.103380000	12.632120000
	ć	6 567115000	1.522097000	13.070122000
	0	6.567115000	-0.762769000	14.190944000
	/	6.545462000	-1.835324000	13.3/5360000
	/	8.606288000	-1.266880000	13.40/059000
	8	5.506528000	-1.661/81000	17.524855000
	8	2.602767000	-0.640824000	14.279253000
	8	3.770956000	2.347481000	17.304158000
	17	5.123134000	2.240694000	13.643309000
	75	5.299720000	0.462603000	15.281876000
	6	5.101383000	-2.667825000	11.619448000
	6	4.007177000	-3.452685000	11.314657000
	6	3.251078000	-4.152658000	12.263615000
	6	3.597126000	-4.086451000	13.612747000
	6	4.698140000	-3.310511000	13.954531000
	6	5.419742000	-2.610218000	12.975942000
	8	3.455877000	-3.694437000	10.094466000
	6	2.398499000	-4.525447000	10.358454000
	7	2.235315000	-4.825672000	11.610545000
	1	5.675293000	-2.125802000	10.877020000
	1	3.030768000	-4.627006000	14.363364000
	1	5.019855000	-3.244098000	14.988474000
	6	1.595132000	-4.967782000	9.228301000
	6	1.892257000	-4.555222000	7.923351000
	6	0.507473000	-5.820491000	9.461002000
	6	1.106043000	-4.993863000	6.862838000
	6	-0 272074000	-6 253772000	8 396069000
	6	0.024492000	-5 842321000	7 095546000
	1	2 734175000	-3 893697000	7 746268000
	1	0.290663000	-6 129392000	10.478785000
	1	1 338062000	-4 671565000	5 851955000
	1	-1 114755000	-6.914051000	8 579313000
	1	-0.587603000	-6.182428000	6.265004000
	6	0.337003000	1 178440000	12 844727000
	1	10 601128000	1 277150000	13 672753000
	1	10.037500000	2 00/808000	12 1/1820000
	1	10.05/555000	-2.004070000	12.141020000
l	1	10.009308000	-0.232118000	12.307723000

Table S45. Cartesian coordinates of **Re-T-BOP** in S₀ (in dichloromethane).

			0		
	6	5.336195000	-0.728296000	16.894316000	
	6	3.568830000	-0.222218000	14.908183000	
	6	4.374657000	1.822253000	16.505794000	
	6	7.617251000	2.257179000	16.609360000	
	1	6 790315000	2 637635000	17 197376000	
	6	8 892893000	2,789679000	16 750221000	
	1	9.063102000	3 594184000	17 456572000	
	6	9 920580000	2 271169000	15 971701000	
	1	10 929973000	2.661984000	16 049930000	
	6	9 640891000	1 236769000	15.085822000	
	1	10 430208000	0.810610000	14 474333000	
	6	8 228000000	0.319019000	15.000222000	
	6	7 865220000	0.749707000	14 152026000	
	7	7.605220000	-0.329370000	14.155050000	
	7	7.009007000	-1.96/019000	12.090973000	
		7.552492000	1.262905000	15./59603000	
	0	6.530112000	-0.722579000	14.1954/1000	
	/	6.502586000	-1./2/880000	13.279426000	
	7	8.491809000	-1.104//8000	13.228/93000	
	8	5.377297000	-1.470095000	17.792856000	
	8	2.529966000	-0.622398000	14.578552000	
	8	3.841588000	2.627937000	17.145249000	
	17	5.304932000	2.072805000	13.451838000	
	75	5.268208000	0.469461000	15.430033000	
	6	5.062381000	-2.606713000	11.538958000	
	6	3.987503000	-3.426053000	11.254107000	
	6	3.261161000	-4.136252000	12.217741000	
	6	3.614137000	-4.044526000	13.564655000	
	6	4.694911000	-3.233783000	13.889631000	
	6	5.389215000	-2.535253000	12.891978000	
	8	3.431850000	-3.695686000	10.042551000	
	6	2.402070000	-4.552433000	10.320710000	
	7	2.258047000	-4.843593000	11.579549000	
	1	5.607606000	-2.053305000	10.783097000	
	1	3.070478000	-4.588617000	14.329452000	
	1	5.016505000	-3.135107000	14.920875000	
	6	1.605091000	-5.028042000	9.199445000	
	6	1.888390000	-4.619014000	7.889257000	
	6	0.540628000	-5.908064000	9.442211000	
ļ	6	1.111559000	-5.088340000	6.834347000	
	6	-0.230114000	-6.371885000	8.382876000	
	6	0.052984000	-5.963783000	7.077553000	
	1	2.711640000	-3.937587000	7.700459000	
	1	0.329304000	-6.218504000	10.460594000	
	1	1.333287000	-4.769382000	5.820296000	
	1	-1.053953000	-7.053059000	8.574136000	
ļ	1	-0.551305000	-6.327875000	6.251673000	
	6	9.875742000	-1.110686000	12.780839000	
	1	10.531757000	-1.344175000	13.620855000	
	1	9.966769000	-1.881304000	12.017529000	
	1	10.126258000	-0.138001000	12.354444000	
1					

Table S46. Cartesian coordinates of			
Re-T-BOP in S_1 (in dichloromethane).			
6	5.519428000	-0.752902000	16.752121000
6	3.576141000	-0.267788000	14.737101000
6	4.224136000	1.692361000	16.450462000
6	7.495861000	2.393466000	16.441318000
1	6.634369000	2.821926000	16.943491000
6	8.746715000	2.935168000	16.631114000
1	8.868929000	3.791108000	17.284308000
6	9.849665000	2.348559000	15.951611000
1	10.851605000	2.746486000	16.075945000
6	9.630128000	1.266421000	15.135063000
1	10.460284000	0.803451000	14.613699000
6	8.324977000	0.745248000	14.972489000
6	7.925657000	-0.359752000	14.184675000
7	7.754931000	-2.107764000	12.779032000
7	7.243500000	1.335215000	15.644338000
6	6.580274000	-0.767344000	14.163253000
7	6.574649000	-1.812981000	13.314639000
7	8.582963000	-1.195124000	13.313485000
8	5.684133000	-1.482579000	17.625600000
8	2.549891000	-0.685905000	14.415613000
8	3.582661000	2.343427000	17.146122000
17	5.180921000	2.044126000	13.417725000
75	5.278728000	0.482789000	15.265479000
6	5.097454000	-2.635570000	11.580422000
6	4.014541000	-3.442239000	11.289918000
6	3.311545000	-4.190696000	12.242294000
6	3.699553000	-4.154924000	13.581795000
6	4.789476000	-3.356945000	13.910719000
6	5.457675000	-2.614568000	12.926623000
8	3.428421000	-3.664041000	10.082655000
6	2.405565000	-4.531859000	10.352314000
7	2.292591000	-4.872880000	11.601632000
1	5.627594000	-2.053620000	10.835382000
1	3.177356000	-4.733121000	14.336511000
1	5.143373000	-3.310632000	14.935196000
6	1.581316000	-4.964067000	9.233180000
6	1.828779000	-4.499820000	7.934261000
6	0.526986000	-5.858546000	9.466708000
6	1.026415000	-4.928//8000	6.881344000
6	-0.269280000	-6.281954000	8.409431000
0	-0.0219/4000	-5.818/39000	7.115342000
1	2.644282000	-3.80/161000	1./52804000
1	0.344079000	-0.211008000	10.4/005/000
1	1.220275000	-4.30/001000	5.875949000 8.502552000
1	-1.06512/000	-0.9/4045000	6.393332000
6	-0.040120000	1 220278000	0.290942000
1	10 60752000	-1.220378000	13 790010000
	10.007525000	-1.455650000	12 183304000
	10.259132000	-0.261082000	12.185504000
1	10.237132000	0.201002000	12.100001000

Table S47. Cartesian coordinates of **Re-T-BOP** in T_1 (in dichloromethane).

nu	-I-DOI II		litoromethan
6	5.174033000	-0.464622000	16.358441000
6	3.622783000	-0.656411000	14.106798000
6	3.941070000	1.802193000	15.296595000
6	7.091491000	2.750364000	15.424442000
1	6.149649000	3.284311000	15,490559000
6	8.284388000	3.397283000	15.720346000
1	8.271196000	4.439258000	16.017415000
6	9 482904000	2.666837000	15 627882000
1	10 433892000	3 136971000	15 858286000
6	9 442708000	1 348273000	15 234911000
1	10 357644000	0.776058000	15 146556000
6	8 107203000	0.7/35/7000	14 020105000
6	7.076267000	0.743347000	14.929195000
7	8 111567000	-0.303021000	12 65 405 000
7	8.11130/000 7.01959c000	-2.075057000	15.034039000
	7.018586000	1.4/0400000	15.049774000
0	6.655667000	-0.977461000	14.112824000
7	6.829299000	-2.233082000	13.64/563000
7	8.806094000	-1.648551000	14.256459000
8	5.172721000	-0.962280000	17.398833000
8	2.668574000	-1.244257000	13.821383000
8	3.222964000	2.598222000	15.703047000
17	5.185120000	1.563478000	12.448959000
75	5.171666000	0.364538000	14.608932000
6	5.043385000	-2.598657000	12.056893000
6	4.128797000	-3.504680000	11.556062000
6	4.013891000	-4.830587000	11.988351000
6	4.854996000	-5.309263000	12.995115000
6	5.777224000	-4.421587000	13.535033000
6	5.856282000	-3.096083000	13.075432000
8	3.203778000	-3.312788000	10.577146000
6	2.571435000	-4.520111000	10.460758000
7	3.007539000	-5.444867000	11.264133000
1	5.133629000	-1.580015000	11.695247000
1	4.785811000	-6.332386000	13.349194000
1	6.447408000	-4.739442000	14.326758000
6	1.506654000	-4.626024000	9.473862000
6	1.141523000	-3.524948000	8.687274000
6	0.839775000	-5.849411000	9.315003000
6	0.118755000	-3.650682000	7.751891000
6	-0.180386000	-5 966274000	8 378450000
6	-0 543633000	-4 868387000	7 595289000
1	1 656267000	-2 577437000	8 809798000
1	1 129670000	-6 696268000	9.928991000
1	-0.161883000	-2 795348000	7 144485000
1	-0 694544000	-6.915256000	8 258120000
1	-0.094044000	-0.913230000	6 864458000
6	10.245808000	1 726055000	14 224852000
1	10.243070000	1 / 20955000	15 103017000
1	10.513549000	2 765542000	14 020406000
1	10.515546000	-2.705545000	14.027490000
1	10.007480000	-1.093210000	13.434000000