Electronic Supplementary Information

Search for new biologically active compounds: *In vitro* studies of antitumor and antimicrobial activity of dirhodium(II,II) paddlewheel complexes

Marina Mitrović^a, Maja B. Djukić^b, Milena Vukić^b, Ivana Nikolić^a, Marko D. Radovanović^b, Jovan Luković^a, Ignjat P. Filipović^b, Sanja Matić^c, Tijana Marković^c, Olivera R. Klisurić^d, Suzana Popović^e, Zoran D. Matović^b, Marija S. Ristić^{b,*}

- ^a University of Kragujevac, Faculty of Medical Sciences, Department of Medical Biochemistry, Svetozara Markovića 69, 34000 Kragujevac, Serbia
- ^b University of Kragujevac, Faculty of Science, Department of Chemistry, Radoja Domanovića 12, 34000 Kragujevac, Serbia
- ^c University of Kragujevac, Faculty of Medical Sciences, Department of Pharmacy, Svetozara Markovića 69, 34000 Kragujevac, Serbia
- ^d University of Novi Sad, Faculty of Sciences, Department of Physics, Trg Dositeja Obradovića 4, 21000 Novi Sad, Serbia
- ^e University of Kragujevac, Faculty of Medical Sciences, Centre for Molecular Medicine and Stem Cell Research, Svetozara Markovića 69, 34000 Kragujevac, Serbia

*Corresponding author:

Dr. Marija Ristić, e-mail: marija.jeremic@pmf.kg.ac.rs

TABLE OF CONTENTS	page
HSA binding studies	S4
DNA-binding studies	S4
Fig. S1. ¹ H NMR spectra of complexes Rh1-Rh4	S6
Fig. S2 ¹³ C NMR spectra of complexes Rh1-Rh4	S8
Fig. S3 IR spectra of complexes Rh1-Rh4	S9
Fig. S4 UV-Vis spectra of Rh1-Rh4 complexes	S10
Fig. S5 MERCURY drawing of the overlay of the two crystallographically	
independent molecules of the Rh4 complex: the molecule containing the Rh1 atom	S10
is shown in magenta, and the molecule containing the Rh2 atom in yellow	
Fig. S6 MERCURY drawing of the crystal packing of Rh4 viewed along the c axis,	
showing C—H···O contacts (dashed line) which connect molecules in a head-to-tail	S11
manner along the <i>a</i> axis	
Fig. S7 Emission spectra of HSA in the presence of complexes Rh1-Rh4. [HSA] =	
$2 \mu M$, [complex] = 0-20 μM ; $\lambda ex = 295$ nm. The arrow shows the changes of the	011
intensity upon increasing the concentration of complexes. The inset shows the plot	511
of F ₀ /F vs. [Q]	
Fig. S8 HSA-ibuprofen emission spectra in the presence of Rh1-Rh4. [HSA] =	
[ibuprofen] = 2 μ M, [complex] = 0-20 μ M; λ ex = 295 nm. The arrow shows the	G1 2
changes of the intensity upon increasing the concentration of complexes. The inset	S12
shows the plot of F_0/F vs. [Q].	
Fig. S9 HSA-methyl orange emission spectra in the presence of Rh1-Rh4. [HSA]	
= [methyl orange] = 2 μ M, [complex] = 0-20 μ M; λ ex = 295 nm. The arrow shows	G1 0
the changes of the intensity upon increasing the concentration of complexes. The	812
inset shows the plot of F_0/F vs. [Q].	
Fig S10 Emission spectra of DNA-EB (left)/DNA-HOE (right) in the absence and	
presence of Rh1 . [DNA] = 100 μ M; [EB/HOE] = 10 μ M; [Rh1] = 0-180 μ M for	
EB; 0-400 μ M for HOE. $\lambda_{ex}(EB) = 520$ nm; $\lambda_{ex}(HOE) = 346$ nm. Arrow shows the	S13
changes of the intensity upon increasing the concentration of complex. The inset	
shows the plot of F_0/F vs. [Q]. X represents free complex.	
Fig S11 Emission spectra of DNA-EB (left)/DNA-HOE (right) in the absence and	
presence of Rh2 . [DNA] = 100 μ M; [EB/HOE] = 10 μ M; [Rh2] = 0-180 μ M for	
EB; 0-400 μ M for HOE. $\lambda_{ex}(EB) = 520$ nm; $\lambda_{ex}(HOE) = 346$ nm. Arrow shows the	S13
changes of the intensity upon increasing the concentration of complex. The inset	
shows the plot of F_0/F vs. [Q]. X represents free complex.	
Fig S12 Emission spectra of DNA-EB (left)/DNA-HOE (right) in the absence and	
presence of Rh3 . [DNA] = 100 μ M; [EB/HOE] = 10 μ M; [Rh3] = 0-180 μ M for	
EB; 0-400 μ M for HOE. $\lambda_{ex}(EB) = 520$ nm; $\lambda_{ex}(HOE) = 346$ nm. Arrow shows the	S13
changes of the intensity upon increasing the concentration of complex. The inset	
shows the plot of F_0/F vs. [Q]. X represents free complex.	
Fig. S13 Absorption spectra of Rh1-Rh4 complexes in the absence and presence of	S14
increasing amounts of CT DNA: [complex] = 100μ M, [DNA] = 0-500 μ M. Inset:	514

linear plot for the calculation of the intrinsic DNA binding constant (K_b) .	
Fig. S14 Relative viscosity $(\eta/\eta_0)^{1/3}$ of CT DNA (100 μ M) in PBS buffer in the	S14
presence of the increasing amounts of complexes Rh1-Rh4 (r)	514
Fig. S15 Interactions of Rh1-Rh4 with residues in binding site of IB domain,	S15
obtained by molecular docking.	515
Fig. S16 Structures with the lowest energy of binding of Rh1-Rh3 in the minor	S15
groove of DNA.	515
Fig. S17 Rh1-Rh4 inhibited the proliferation of Hela cervical, HCT116 colon, and	
MDA-MB-231 breast cancer cells. Cells were treated with Rh1-Rh4 and cisplatin	
at the indicated concentrations (0.3, 1, 3, 10, 30, 60, and 100 mM) for 48h (A) and	
24, 48 and 72 h (B). (A) Bar graphs show % of cytotoxic cells of triplicate readings	
from a representative experiment; bars, \pm standard error. (B) The dose and time	S16
response curves were obtained by plotting the % of cytotoxic cells versus the log	
concentration of Rh1-Rh4 and cisplatin used. Points, mean % of cell cytotoxicity	
based on quintuplicate assays, bars, ± SE. *P<0.05, **P<0.01, and ***P<0.001 vs.	
the control group (ctrl).	
Fig. S18 Effect of Rh1-Rh4 on the morphology of HeLa, HCT116 and MRC-5	S17
cells.	517
Table S1 Selected geometric parameters for complex Rh4	S17
Table S2 C—H···O interactions parameters for complex Rh4	S18
Table S3 HSA constants (K_{sv} , k_q , K_b) and number of binding sites (n) for the	C10
interactions of Rh1-Rh4 in the absence and the presence of site markers	510
Table S4 The DNA Stern–Volmer constants (K_{sv}) and binding constants (K_b) for	C10
complexes Rh1-Rh4 from CT DNA-EB and CT DNA-HOE fluorescence.	510
Table S5 Estimated energies of binding (ΔE_b) of tested compounds with various	\$10
targets, obtained from molecular docking experiments.	519
Table S6 Selectivity index (SI) for Rh1-Rh4 and cisplatin for particular tumor cells	\$10
for 48h.	317
Table S7 Crystallographic data and refinement parameters for complex Rh4.	S19

HSA binding studies

Fluorescence quenching is described by the Stern–Volmer equation [1]:

$$F_0/F = 1 + k_q \tau_0 [Q] = 1 + K_{sv}[Q]$$
(S1)

where F_0 is the emission intensity in the absence of the compound, F is the emission intensity in the presence of the compound, K_{SV} is the Stern–Volmer quenching constant, k_q is the bimolecular quenching constant, τ_0 (10⁻⁸ s) [2] is the lifetime of the fluorophore in the absence of the quencher, and [Q] is the concentration of the quencher (complex). The K_{SV} value is determined as the slope from the plot of F_0/F versus [Q] (**Figs. S7-S9**).

The binding constant (K) and binding stoichiometry (n) of the HSA-complex system can be estimated from the Scatchard equation [1] using the fluorescence intensity data:

$$\log \left(F_0 - F/F\right) = \log K_{\rm b} + n \log \left[Q\right] \tag{S2}$$

The values of Kb and n were determined from the intercept and slope of the plots of log $(F_0-F)/F$ vs. log [Q].

DNA-binding studies

Fluorescence spectroscopy

The relative binding of the complexes to the CT DNA is described by the Stern-Volmer equation [1], in the same way as described for the HSA binding studies:

$$F_0/F = 1 + K_{\rm sv}[\mathbf{Q}] \tag{S1}$$

where F_0 and F are the emission intensities in the absence and in presence of the quencher (complexes **Rh1-Rh4**), respectively, [Q] is the total concentration of the quencher and K_{sv} is the Stern-Volmer quenching constant, which can be determined from the slope of the plot of $F_0/F vs$. [Q] (**Figs. S10-S12**).

Absorption spectroscopy

In order to quantitatively compare the binding strength of the complexes, the intrinsic binding constants K_b were determined by observing the changes in absorbance at the MLCT band with increasing concentration of CT DNA using the Wolfe–Shimmer equation [3]:

$$[DNA]/(\varepsilon_A - \varepsilon_f) = [DNA]/(\varepsilon_b - \varepsilon_f) + 1/[K_b(\varepsilon_b - \varepsilon_f)]$$
(S3)

 K_b is given by the ratio of the slope to the *y*-intercept in the plots [DNA]/($\varepsilon_A - \varepsilon_f$) vs. [DNA] (**Fig. S13**), where [DNA] is the DNA concentration in base pairs and ε_A , ε_f and ε_b are the apparent, free and fully bound complex absorption coefficients, respectively. The apparent extinction coefficient, ε_A , is determined by calculating A_{obsd} /[complex]. ε_f and ε_f correspond to

the extinction coefficient of the bound form of the complex and the extinction coefficient of the free complex.

References

[1] J. R. Lakowicz, Principles of Fluorescence Spectroscopy, Springer, New York, USA, 3rd edn, 2006.

[2] J. R. Lakowicz and G. Weber, Biochemistry, 1973, 12, 4161.

[3] A. Wolf, G. H. Shimer, T. Meehan, Biochemistry, 26 (1987) 6392-6396.

Fig. S1. ¹H NMR spectra of complexes Rh1-Rh4.

Fig. S2. ¹³C NMR spectra of complexes Rh1-Rh4.

Fig. S3. IR spectra of complexes Rh1-Rh4.

Fig. S4. UV-Vis spectra of Rh1-Rh4 complexes

Fig. S5. MERCURY drawing of the overlay of the two crystallographically independent molecules of the **Rh4** complex: the molecule containing the Rh1 atom is shown in magenta, and the molecule containing the Rh2 atom in yellow.

Fig. S6. MERCURY drawing of the crystal packing of **Rh4** viewed along the *c* axis, showing C—H···O contacts (dashed line) which connect molecules in a head-to-tail manner along the *a* axis.

Fig. S7. Emission spectra of HSA in the presence of complexes Rh1-Rh4. [HSA] = 2 μ M, [complex] = 0-20 μ M; λ_{ex} = 295 nm. The arrow shows the changes of the intensity upon increasing the concentration of complexes. The inset shows the plot of F_0/F vs. [Q].

Fig. S8. HSA-ibuprofen emission spectra in the presence of **Rh1-Rh4**. [HSA] = [ibuprofen] = 2 μ M, [complex] = 0-20 μ M; λ_{ex} = 295 nm. The arrow shows the changes of the intensity upon increasing the concentration of complexes. The inset shows the plot of F_0/F vs. [Q].

Fig. S9. HSA-methyl orange emission spectra in the presence of Rh1 - Rh4. [HSA] = [methyl orange] = 2 μ M, [complex] = 0-20 μ M; λ_{ex} = 295 nm. The arrow shows the changes of the intensity upon increasing the concentration of complexes. The inset shows the plot of F_0/F vs. [Q].

Fig S10. Emission spectra of DNA-EB (left)/DNA-HOE (right) in the absence and presence of **Rh1**. [DNA] = 100 μ M; [EB/HOE] = 10 μ M; [**Rh1**] = 0-180 μ M for EB; 0-400 μ M for HOE. $\lambda_{ex(EB)} = 520$ nm; $\lambda_{ex(HOE)} = 346$ nm. Arrow shows the changes of the intensity upon increasing the concentration of complex. The inset shows the plot of F_0/F vs. [Q]. X represents free complex.

Fig S11. Emission spectra of DNA-EB (left)/DNA-HOE (right) in the absence and presence of **Rh2**. [DNA] = 100 μ M; [EB/HOE] = 10 μ M; [**Rh2**] = 0-180 μ M for EB; 0-400 μ M for HOE. $\lambda_{ex(EB)} = 520$ nm; $\lambda_{ex(HOE)} = 346$ nm. Arrow shows the changes of the intensity upon increasing the concentration of complex. The inset shows the plot of F_0/F vs. [Q]. X represents free complex.

Fig S12. Emission spectra of DNA-EB (left)/DNA-HOE (right) in the absence and presence of **Rh3**. [DNA] = 100 μ M; [EB/HOE] = 10 μ M; [**Rh3**] = 0-180 μ M for EB; 0-400 μ M for HOE. $\lambda_{ex(EB)} = 520$ nm; $\lambda_{ex(HOE)} = 346$ nm. Arrow shows the changes of the intensity upon increasing

the concentration of complex. The inset shows the plot of F_0/F vs. [Q]. X represents free complex.

Fig. S13. Absorption spectra of **Rh1-Rh4** complexes in the absence and presence of increasing amounts of CT DNA: [complex] = 100 μ M, [DNA] = 0-500 μ M. Inset: linear plot for the calculation of the intrinsic DNA binding constant (K_b).

Fig. S14. Relative viscosity $(\eta/\eta_0)^{1/3}$ of CT DNA (100 μ M) in PBS buffer in the presence of the increasing amounts of complexes **Rh1-Rh4** (r)

Fig. S15. Interactions of Rh1-Rh4 with residues in binding site of IB domain, obtained by molecular docking.

Fig. S16. Structures with the lowest energy of binding of Rh1-Rh3 in the minor groove of DNA.

Fig. S17. Rh1-Rh4 inhibited the proliferation of Hela cervical, HCT116 colon, and MDA-MB-231 breast cancer cells. Cells were treated with **Rh1-Rh4** and cisplatin at the indicated concentrations (0.3, 1, 3, 10, 30, 60, and 100 mM) for 48h (A) and 24, 48 and 72 h (B). (A) Bar graphs show % of cytotoxic cells of triplicate readings from a representative experiment; bars, \pm standard error. (B) The dose and time response curves were obtained by plotting the % of cytotoxic cells versus the log concentration of **Rh1-Rh4** and cisplatin used. Points, mean % of cell cytotoxicity based on quintuplicate assays, bars, \pm SE. *P<0.05, **P<0.01, and ***P<0.001 vs. the control group (ctrl).

Fig. S18. Effect of Rh1-Rh4 on the morphology of HeLa, HCT116 and MRC-5 cells.

Bond length [Å]					
Rh1—O1	2.035 (4)	Rh2—O5	2.048 (5)		
Rh1—O2	2.038 (4)	Rh2—O6	2.040 (4)		
Rh1—O3 ⁱ	2.044 (4)	Rh2—O7 ⁱⁱ	2.053 (4)		
Rh1—O4 ⁱ	2.043 (4)	Rh2—O8 ⁱⁱ	2.042 (4)		
Rh1—N1	2.237 (5)	Rh2—N3	2.242 (6)		
Rh1—Rh1 ⁱ	2.4032 (9)	Rh2—Rh2 ⁱⁱ	2.4032 (10)		
	Bond a	angles [°]			
O1—Rh1—O2	89.96 (19)	O6—Rh2—O8 ⁱⁱ	175.66 (19)		
O1—Rh1—O4 ⁱ	90.33 (18)	O6—Rh2—O5	90.23 (19)		
O2—Rh1—O4 ⁱ	175.85 (18)	O8 ⁱⁱ —Rh2—O5	89.16 (19)		
O1—Rh1—O3 ⁱ	175.93 (17)	06—Rh2—07 ⁱⁱ	90.09 (19)		
O2—Rh1—O3 ⁱ	89.55 (18)	O8 ⁱⁱ —Rh2—O7 ⁱⁱ	90.17 (19)		
O4 ⁱ —Rh1—O3 ⁱ	89.87 (18)	O5—Rh2—O7 ⁱⁱ	175.41 (19)		
O1—Rh1—N1	90.95 (18)	O6—Rh2—N3	91.53 (19)		
O2—Rh1—N1	91.66 (18)	O8 ⁱⁱ —Rh2—N3	92.79 (19)		
O4 ⁱ —Rh1—N1	92.48 (18)	O5—Rh2—N3	92.61 (19)		
O3 ⁱ —Rh1—N1	93.10 (17)	O7 ⁱⁱ —Rh2—N3	91.96 (18)		
O1—Rh1—Rh1 ⁱ	88.27 (13)	O6—Rh2—Rh2 ⁱⁱ	87.57 (14)		
	Torsion	angles [°]			
Rh1—N1—C5—N2	-178.0 (4)	Rh2—N3—C17—N4	-180.0 (4)		
Rh1—O2—C2—O4	0.8 (10)	Rh2—O6—C13—O8	0.8 (10)		
Rh1—O2—C2—C4	-179.2 (5)	Rh2—O6—C13—C15	-179.2 (6)		
Rh1 ⁱ —O4—C2—O2	-0.3 (9)	Rh2—O5—C12—O7	0.4 (11)		
Rh1 ⁱ —O4—C2—C4	179.8 (5)	Rh2—O5—C12—C14	-178.3 (5)		

Table S1 Selected geometric parameters for complex Rh4.

Symmetry codes: (i) -x+2, -y+1, -z+1; (ii) -x+1, -y+1, -z+1.

D—H···A	<i>D</i> —H (Å)	$\mathbf{H}^{\dots A}(\mathbf{\dot{A}})$	$D \cdots A$ (Å)	D—H···A (°)
C5—H5…O8 ⁱ	0.93	2.55	3.465 (8)	166.8
C17—H17…O2	0.93	2.45	3.364 (8)	167.4

Table S2 C—H···O interactions parameters for complex Rh4.

Symmetry code: (i) -x+1, -y+1, -z+1.

Table S3 HSA constants (K_{sv} , k_q , K_b) and number of binding sites (*n*) for the interactions of **Rh1-Rh4** in the absence and the presence of site markers.

System	$K_{\rm SV}$ (M ⁻¹)	$k_{\rm q} ({ m M}^{-1} { m s}^{-1})$	$K_{\rm b} \left({\rm M}^{-1} ight)$	n
Rh1-HSA	3.30×10^{4}	3.30×10^{12}	1.81×10^{5}	1.16
Rh1-HSA-warfarin	$4.05 imes 10^4$	4.05×10^{12}	$7.26 imes 10^4$	1.05
Rh1-HSA-ibuprofen	$3.55 imes 10^4$	3.55×10^{12}	9.90×10^3	0.88
Rh1-HSA-methyl orange	4.24×10^4	4.24×10^{12}	9.78×10^3	0.86
Rh2-HSA	$3.04 imes 10^4$	3.04×10^{12}	$4.47 imes 10^4$	1.02
Rh2-HSA-warfarin	$2.56 imes 10^4$	2.56×10^{12}	$1.33 imes 10^4$	0.94
Rh2-HSA-ibuprofen	2.81×10^4	2.81×10^{12}	7.57×10^3	0.87
Rh2-HSA-methyl orange	3.51×10^4	3.51×10^{12}	$5.58 imes 10^3$	0.82
Rh3-HSA	$3.34 imes 10^4$	$3.34 imes 10^{12}$	$1.40 imes 10^4$	0.92
Rh3-HSA-warfarin	2.70×10^4	$2.70 imes 10^{12}$	$2.47 imes 10^4$	0.99
Rh3-HSA-ibuprofen	$3.09 imes 10^4$	3.09×10^{12}	$1.04 imes 10^4$	0.89
Rh3-HSA-methyl orange	3.52×10^4	3.52×10^{12}	5.62×10^3	0.82
Rh4-HSA	$3.53 imes 10^4$	3.53×10^{12}	$2.23 imes 10^4$	0.96
Rh4-HSA-warfarin	2.83×10^4	2.83×10^{12}	$1.19 imes 10^4$	0.92
Rh4-HSA-ibuprofen	3.74×10^4	3.74×10^{12}	1.45×10^4	0.91
Rh4-HSA-methyl orange	$4.09 imes 10^4$	4.09×10^{12}	2.80×10^{3}	0.74

Table S4 The DNA Stern–Volmer constants (K_{sv}) and binding constants (K_b) for complexes **Rh1-Rh4** from CT DNA-EB and CT DNA-HOE fluorescence.

Complex	$K_{SV(EB)}[M^{-1}]$	$K_{b(EB)} [M^{-1}]$	$K_{\rm SV(HOE)}$ [M ⁻¹]	$K_{b(HOE)}$ [M ⁻¹]	$K_{\rm b} ^{a} [{ m M}^{-1}]$
Rh1	2.03×10^{3}	7.79×10^{2}	1.59 × 10 ³	1.39×10^4	1.05×10^{4}
Rh2	2.18×10^3	4.36×10^2	2.43×10^{3}	2.71×10^4	7.34×10^3
Rh3	1.93×10^3	5.64×10^2	2.16×10^3	$1.85 imes 10^4$	$1.09 imes 10^4$
Rh4	2.22×10^{3}	5.53×10^2	2.04×10^{3}	1.72×10^4	1.16×10^4

^aUV-Vis data

Table S5 Estimated energies of binding (ΔE_b) of tested compounds with

Electronic Supplementary Information

8,			0 1		
Compound		$\Delta E_{\rm b}$ [kcal	mol ⁻¹]		
Compound	IIA	IIIA	IB	DNA	
Rh1	-4.52	-4.77	-5.56	-4.00	
Rh2	-4.76	-5.01	-5.79	-4.10	
Rh3	-4.74	-5.05	-6.29	-4.30	
Rh4	-5.36	-5.22	-6.58	-4.78	

various targets, obtained from molecular docking experiments.

Table S6 Selectivity index (SI) for Rh1-Rh4 and cisplatin for particular tumor cells for 48h.

Complex				Sel	ectivity ind	ex (SI)			
	24h			48h			72h		
	Hela	HCT116	MDA-	Hela	HCT116	MDA-	Hela	HCT116	MDA-
			MB-231			MB-231			MB-231
Rh1	2.98	0.67	1.45	2.46	2.61	1.28	2.5	2.2	1.12
Rh2	2.03	0.65	0.82	3.13	2.21	1.01	2.7	1.96	1.16
Rh3	2.13	0.43	1.01	3.71	2.22	0.91	2.82	1.9	1.27
Rh4	1.85	0.73	<0.6	4.38	2.1	0.94	3.56	1.98	1.75
Cisplatin	<0.6	<0.6	<0.6	3.7	1.73	1.55	7.33	1.84	2.54

Table S7 Crystallographic data and refinement parameters for complex Rh4.

Crystal data	
Chemical formula	$2(C_{11}H_{18}N_2O_4Rh) \cdot 1[C_7H_8]$
M_r	782.51
Crystal system	Monoclinic
Space group	$P2_{1}/c$
<i>a</i> (Å)	15.7537 (6)
b (Å)	13.5490 (5)
<i>c</i> (Å)	17.3153 (7)
β (°)	110.366 (5)
$V(Å^3)$	3464.9 (3)
Ζ	4
D_x (Mg m ⁻³)	1.500
$\mu (mm^{-1})$	1.00
Crystal size (mm)	$0.40\times0.27\times0.25$
Crystal shape	Prism
Colour	Purple
Data collection	
A.1	16.14.0

Absorption correction

Multi-Scan

T_{\min}, T_{\max}	0.944, 1.000
Reflections collected	17655
Independent reflections	8088
Observed reflections $[I > 2\sigma(I)]$	5710
R _{int}	0.031
Range of h, k, l	$h = -21 \rightarrow 20, k = -17 \rightarrow 17, l = -23 \rightarrow 23$
θ values (°)	$\theta_{max} = 29.3, \ \theta_{min} = 2.0$
Refinement	
$R[F^2 > 2\sigma(F^2)], wR(F^2)$	0.0629, 0.1645
<i>R</i> [<i>all data</i>], <i>wR</i> 2	0.0898, 0.1502
Goodness-of-fit (S)	1.065
No. of reflections	8088
No. of parameters	331
No. of restraints	34
$\Delta ho_{ m max}, \Delta ho_{ m min}$ (e Å ⁻³)	1.11, -0.60
CCDC no.	2340710