Supporting Information

Triptycene as a Scaffold in Metallocene Catalyzed Olefin Polymerization
 Nikita V. Alexeev, ${ }^{a}$ Dmitry V. Uborsky, ${ }^{\text {a }}$ Antonio Vittoria, ${ }^{\text {b }}$ Christian Ehm, ${ }^{\text {b }}$ Peter H. M. Budzelaar, ${ }^{\text {b, }}{ }^{*}$ Roberta Cipullo, ${ }^{\text {b }}$ Vincenzo Busico, , , ${ }^{\text {, }}$ and Alexander Z. Voskoboynikov, ${ }^{\text {a,* }}$
${ }^{a}$ Department of Chemistry, Lomonosov Moscow State University, 119991 Moscow, Russia
${ }^{\text {b }}$ Dipartimento di Scienze Chimiche, Università di Napoli Federico II, 80126 Napoli, Italy + deceased
Table of contents
Synthesis 2
General details 2
Synthesis of complex Ty4 2
Synthesis of complex Ty5 3
Synthesis of complex Ty6 6
Synthesis of complex Ty7 9
Synthesis of complex Ty8 12
Crystal structure determinations 17
NMR spectra 19
Polymerization Experiments and Polymer Characterization 50
Computational Details 53
References 56

Synthesis

General details

All manipulations with compounds, which are sensitive to moisture and air, were performed either in an atmosphere of argon using a standard Schlenk technique or in an inert atmosphere (Ar) of glove box (MBraun). Ethereal solvents were distilled from sodium/benzophenone. Toluene and hexane were sparged with argon and dried over molecular sieves 4A. 1-(Bromomethyl)triptycene, ${ }^{1}$ 2-ethylcyclopenta[a]triptycene (2), ${ }^{1} 6$-amino-2-methylindanone (8), ${ }^{2}$ were prepared according to literature procedures. Other reagents were purchased from commercial sources and used as received. GC/MS analysis was performed on Agilent Technologies 7890A paired with Agilent Technologies 5975C MSD GC/MS system and on Agilent Technologies 8890 GC/5977C MSD system. High-resolution mass spectra (HRMS) were recorded on an Agilent Technologies 6530 Q-TOF LC/MS system paired with Agilent 1260 HPLC and using Agilent JetStream ion source. NMR spectra were recorded on Bruker AVANCE (400 MHz) or Agilent Technologies $400-\mathrm{MR}(400 \mathrm{MHz}) \mathrm{NMR}$ spectrometers and can be found in the respective section of the document. Chemical shifts for ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ are reported relatively to TMS and referenced to the residual ${ }^{1} \mathrm{H}$ or ${ }^{13} \mathrm{C}$ resonances of the deuterated solvents. All ${ }^{1} \mathrm{H}$ NMR data are reported in δ units, parts per million (ppm), and were calibrated relative to residual resonances of the deuterated solvents (7.26 ppm for $\mathrm{CDCl}_{3}, 5.32 \mathrm{ppm}$ for $\mathrm{CD}_{2} \mathrm{Cl}_{2}$) All ${ }^{13} \mathrm{C}-\mathrm{NMR}$ data are reported in ppm relative to residual resonances of the deuterated solvents (77.00 ppm for $\mathrm{CDCl}_{3}, 54.00 \mathrm{ppm}$ for $\mathrm{CD}_{2} \mathrm{Cl}_{2}$) and were obtained with ${ }^{1} \mathrm{H}$ decoupling. The following abbreviations or combinations thereof were used to explain the multiplicities: $\mathrm{s}=\operatorname{singlet,~} \mathrm{d}=\mathrm{doublet}, \mathrm{t}=$ triplet, $q=$ quartet, quin = quintet, sept $=$ septet, $m=$ multiplet, br.s = broad signal. C, H, N microanalyses were done using Perkin Elmer 2400 Series II CHNS/O elemental analyzer.

Synthesis of complex Ty4

Proligand 4b

To a solution of $2.76 \mathrm{~g}(8.61 \mathrm{mmol})$ of 2-ethyl-6,7-(9,10-dihydroanthracene-9,10-diyl)indene 4 a in 120 mL of tetrahydrofuran, 3.45 mL (8.61 mmol) of 2.5 M nBuLi in hexanes was added dropwise at vigorous stirring at $-78{ }^{\circ} \mathrm{C}$. This mixture was stirred for 13 h at room temperature and then cooled to $-80^{\circ} \mathrm{C}$. At this temperature, $50 \mu \mathrm{l}$ of N -methylimidazole was added. Next, to the mixture, $0.50 \mathrm{~mL}(0.75 \mathrm{~g}, 4.31 \mathrm{mmol})$ of $\mathrm{Me}_{2} \mathrm{GeCl}_{2}$ was added. The resulting mixture was stirred overnight at ambient temperature. Then 0.5 mL of water was added and the volatiles were evaporated. The residue was purified by column chromatography on silica gel ($40-63 \mu \mathrm{~m}$, eluent: hexane/dichloromethane $=3 / 1$, vol.), to give $2.27 \mathrm{~g}(71 \%)$ of the product (mixture of isomers rac/meso $=1 / 1$) as a white fluffy powder. HRMS (ESI) m / z calcd for $\mathrm{C}_{52} \mathrm{H}_{43} \mathrm{Ge}[\mathrm{M}-\mathrm{H}]$: 741.2582 found: $741.2573 .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.52$ ($\mathrm{m}, 2 \mathrm{H}$ in rac or 2 H in meso), $7.39-7.47$ ($\mathrm{m}, 14 \mathrm{H}$ in rac and meso), 7.16 ($\mathrm{d}, \mathrm{J}=7.4 \mathrm{~Hz}, 2 \mathrm{H}$ in rac or 2 H in meso), $6.98-7.08(\mathrm{~m}, 18 \mathrm{H}$ in rac and meso), 6.89 ($\mathrm{d}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}$ in meso), $6.86(\mathrm{~m}, 2 \mathrm{H}$ in rac), $6.85(\mathrm{~s}, 2 \mathrm{H}$ in meso) , $6.77(\mathrm{~s}, 2 \mathrm{H}$ in rac), $5.74(\mathrm{~s}, 2 \mathrm{H}$ in rac), $5.70(\mathrm{~s}, 2 \mathrm{H}$ in meso), $5.47(\mathrm{~s}, 2 \mathrm{H}$ in meso), $5.46(\mathrm{~s}, 2 \mathrm{H}$ in rac), $3.62(\mathrm{~s}, 2 \mathrm{H}$ in rac$), 3.58(\mathrm{~s}, 2 \mathrm{H}$ in meso), 2.27-2.36 ($\mathrm{m}, 2 \mathrm{H}$ in meso), 2.13-2.26 ($\mathrm{m}, 4 \mathrm{H}$ in rac), 2.00$2.08(\mathrm{~m}, 2 \mathrm{H}$ in meso), $1.04(\mathrm{t}, J=7.4 \mathrm{~Hz}, 6 \mathrm{H}$ in rac), $0.99(\mathrm{t}, J=7.4 \mathrm{~Hz}, 6 \mathrm{H}$ in rac), $-0.02(\mathrm{~s}, 3 \mathrm{H}$ in meso) , $-0.08(\mathrm{~s}, 6 \mathrm{H}$ in rac), -0.13 (s, 3 H in meso). ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 154.9,154.4,146.2,146.1,146.0,145.5,145.45,145.41$, $145.39,142.2,141.9,139.2,139.1,136.4,136.2,124.9,124.80,124.77,123.52,123.46,123.4,123.3,120.1,119.7$, 119.1, 118.9, 118.2, 54.1, 51.1, 51.0, 46.5, 46.2, 24.3, 24.2, 13.0, 12.9, -2.9, -4.3, -4.8.

To a solution of $2.18 \mathrm{~g}(2.94 \mathrm{mmol})$ of proligand 4 b in 120 mL of diethyl ether, 2.41 mL (6.03 mmol) of 2.5 M nBuLi in hexanes was added at ambient temperature. This mixture was stirred overnight, then cooled to $-80{ }^{\circ} \mathrm{C}$ and $1.11 \mathrm{~g}(2.94 \mathrm{mmol})$ of $\mathrm{ZrCl}_{4}(\mathrm{THF})_{2}$ was added in one portion. The resulting mixture was stirred for 24 h at room temperature and then evaporated to dryness. Further on, 100 mL of toluene was added. The resulting mixture was heated to 110 ${ }^{\circ} \mathrm{C}$ and filtered through a short pad of Celite ${ }^{\circledR} 503$. The filtrate was evaporated to dryness. The residue was recrystallized from toluene to give 320 mg (12% yield) of almost exclusively mesoisomer (meso/rac =95/5). The mother liquor was evaporated to dryness. According to ${ }^{1} \mathrm{H}$ NMR spectrum, the residue ($2.3 \mathrm{~g}, \sim 87 \%$) was a sufficiently pure rac/meso $=1 / 1.5$ mixture of isomers of complex $\mathrm{Ty}_{4}-\mathrm{Cl}_{2}$. This mixture was used in the next step without purification. Meso-Ty4- Cl_{2} : ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right): \delta 7.34-7.42(\mathrm{~m}, 6 \mathrm{H}), 7.29(\mathrm{~m}, 2 \mathrm{H}), 7.24(\mathrm{~m}, 2 \mathrm{H}), 7.03(\mathrm{~d}, \mathrm{~J}=8.7 \mathrm{~Hz}$, $2 \mathrm{H}), 6.99-7.01(\mathrm{~m}, 4 \mathrm{H}), 6.86-6.93(\mathrm{~m}, 6 \mathrm{H}), 5.58(\mathrm{~s}, 2 \mathrm{H}), 5.38(\mathrm{~s}, 2 \mathrm{H}), 2.90(\mathrm{~m}, 2 \mathrm{H}), 2.82(\mathrm{~m}, 2 \mathrm{H}), 1.56(\mathrm{~s}, 3 \mathrm{H}), 1.37(\mathrm{~s}, 3 \mathrm{H})$, $1.31(\mathrm{t}, \mathrm{J}=7.5 \mathrm{~Hz}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right): \delta 146.8,146.3,145.9,145.3,144.3,143.8,140.9,133.9,126.5$, $125.3,125.1,124.9,124.8,124.6,123.60,123.56,122.9,122.6,121.7,113.0,84.8,54.3,51.6,26.7,17.7,3.1,2.9$. Rac-Ty4-Cl2: ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$): $\delta 7.23-7.52(\mathrm{~m}, 1 \mathrm{H}), 7.10(\mathrm{~m}, 4 \mathrm{H}), 6.95-7.02(\mathrm{~m}, 2 \mathrm{H}), 6.86-6.94(\mathrm{~m}, 6 \mathrm{H}), 5.66(\mathrm{~s}$, $2 \mathrm{H}), 5.61(\mathrm{~s}, 2 \mathrm{H}), 2.69(\mathrm{~m}, 2 \mathrm{H}), 2.38(\mathrm{~m}, 2 \mathrm{H}), 1.40(\mathrm{~s}, 6 \mathrm{H}), 1.15(\mathrm{t}, \mathrm{J}=7.5 \mathrm{~Hz}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right): \delta 146.9$, $146.8,146.4,145.9,144.4,142.8,141.9,131.8,125.6,125.2,125.13,125.10,125.05,124.7,123.78,123.75,123.1$, 123.0, 122.1, 114.4, 83.7, 54.7, 51.7, 26.3, 17.3, 3.0.

Complex rac-Ty4

To a suspension of $0.30 \mathrm{~g}(0.33 \mathrm{mmol})$ of a mixture $\mathrm{rac} / \mathrm{meso}-\mathrm{Ty} 4-\mathrm{Cl}_{2}$ (molar ratio $\mathrm{rac} / \mathrm{meso}=$

$1 / 1.5$) in 50 mL of toluene, 1.15 mL of $2.9 \mathrm{M} \mathrm{MeMgBr} \mathrm{(} 3.3 \mathrm{mmol}$) in diethyl ether was added at room temperature. The mixture was stirred for 14 h at $100^{\circ} \mathrm{C}$ and then evaporated to dryness in vacuum. To the residue, 50 mL of toluene was added, the mixture was heated up to $110{ }^{\circ} \mathrm{C}$, and then passed through a short pad of Celite ${ }^{\circledR} 503$. The solvent was evaporated to dryness. According to ${ }^{1} \mathrm{H}$ NMR analysis, a mixture of zirconium dimethyl complexes was obtained with molar ratio rac/meso=1/1.5. This mixture of complexes was dissolved in 50 mL of THF, 4.2 mg of $\mathrm{LiCl}(0.10 \mathrm{mmol})$ was added, and the mixture was stirred in darkness at $50^{\circ} \mathrm{C}$ for 58 h . Then, 10 mL of toluene was added, and the mixture was evaporated to dryness in vacuum. After that, 50 mL of toluene was added and the mixture was filtered through a short pad of Celite 503^{\circledR}. The filtrate was evaporated in vacuum, and the residue was recrystallized from toluene/hexane mixture giving $81 \mathrm{mg}(28 \%$ over two steps from 4 b) of pure rac-isomer of Ty4. Anal. Calcd for $\mathrm{C}_{54} \mathrm{H}_{48} \mathrm{GeZr}: \mathrm{C}, 75.35 ; \mathrm{H}, 5.62$. Found: $\mathrm{C}, 75.73 ; \mathrm{H}, 5.89 .{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right): \delta 7.38-7.42$ $(\mathrm{m}, 6 \mathrm{H}), 7.31(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.16(\mathrm{~d}, \mathrm{~J}=4.0 \mathrm{~Hz}, 4 \mathrm{H}), 6.92-7.01(\mathrm{~m}, 8 \mathrm{H}), 6.86(\mathrm{~s}, 2 \mathrm{H}), 5.63(\mathrm{~s}, 2 \mathrm{H}), 5.51(\mathrm{~s}, 2 \mathrm{H}), 2.48$ (dq, J = $14.6 \mathrm{~Hz}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.08(\mathrm{dq}, J=14.6 \mathrm{~Hz}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 1.15(\mathrm{~s}, 6 \mathrm{H}), 1.08(\mathrm{t}, J=7.4 \mathrm{~Hz}, 6 \mathrm{H}),-2.02(\mathrm{~s}, 6 \mathrm{H})$. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($100 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$): δ 147.4, 147.1, 146.1, 144.5, 143.1, 142.2, 141.2, 127.4, 126.0, 125.2, 125.1, 125.0, $124.9,124.4,123.7,123.6,123.1,121.7,120.9,108.6,78.8,54.6,51.9,35.5,25.5,17.2,3.0$.

Synthesis of complex Ty5
Synthesis of indene 5a:

2-((Triptycen-1-yl)methyl)malonate

Under argon, a solution of $13.6 \mathrm{~g}(85 \mathrm{mmol})$ of diethyl malonate in 20 mL of dry THF was added dropwise to a suspension of 3.4 g ($\sim 60 \mathrm{wt} . \%$ in paraffin, 85 mmol) of NaH in 200 mL of dry THF at $0^{\circ} \mathrm{C}$. The resulting mixture was stirred for 15 min at $0^{\circ} \mathrm{C}$ and $14.7 \mathrm{~g}(42 \mathrm{mmol})$ of 1-(bromomethyl)triptycene in 100 mL of dry THF was added slowly. The reaction mixture was further stirred overnight at room temperature. Then the reaction was quenched with 100 mL of aqueous ammonium chloride and the mixture extracted with diethyl ether ($3 \times 50 \mathrm{~mL}$). The combined organic phases were washed with water (50 mL), brine (50 mL), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and the solvents were evaporated in vacuum. The product was isolated by column chromatography on silica gel ($40-63 \mu \mathrm{~m}$, eluent: hexane/dichloromethane $=5 / 1$, vol.) to give $13.2 \mathrm{~g}\left(73 \%\right.$ yield) of the product as a colorless oil. $\mathrm{HRMS}(\mathrm{ESI}) \mathrm{m} / \mathrm{z}$ calcd. for $\mathrm{C}_{28} \mathrm{H}_{26} \mathrm{NaO}_{4}{ }^{+}[\mathrm{M}+\mathrm{Na}]^{+}: 449.1723$ found: 449.1729. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.48(\mathrm{~m}, 2 \mathrm{H}), 7.39(\mathrm{~m}, 2 \mathrm{H}), 7.29(\mathrm{~m}, 1 \mathrm{H}), 7.01(\mathrm{~m}, 4 \mathrm{H}), 6.93(\mathrm{~m}, 1 \mathrm{H}), 6.91$ $(\mathrm{m}, 1 \mathrm{H}), 5.82(\mathrm{~s}, 1 \mathrm{H}), 5.43(\mathrm{~s}, 1 \mathrm{H}), 4.13(\mathrm{~m}, 4 \mathrm{H}), 3.68(\mathrm{t}, \mathrm{J}=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.51(\mathrm{~d}, \mathrm{~J}=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 1.13(\mathrm{t}, J=7.1 \mathrm{~Hz}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ $\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 168.9,145.6,145.4,144.8,143.7,132.2,126.4,125.12,125.06,124.9,123.8,123.4$, 122.5, 61.5, 54.3, 53.5, 49.9, 31.3, 13.8.

3-(Triptycene-1-yl)propanoic acid

To a solution of $10.3 \mathrm{~g}(24 \mathrm{mmol})$ of diethyl 2 -((triptycen-1-yl)methyl)malonate in 50 mL of ethanol, a solution of $5.4 \mathrm{~g}(96 \mathrm{mmol})$ of KOH in 50 mL of water was added. The mixture was refluxed for 3 h , after that, ethanol was distilled off, and the remaining aqueous solution was washed with 20 mL of diethyl ether. To the aqueous phase, 100 mL of water was added, and the mixture was acidified to pH 1 with 12 M HCl and extracted with diethyl ether ($3 \times 100 \mathrm{~mL}$). The combined organic extracts were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and the solvent was evaporated. The residue was heated at 200 ${ }^{\circ} \mathrm{C}$ under argon until gas evolution has ceased, and complete decarboxylation has occurred. This gave 7.5 g (95% yield) of the product as a yellowish solid. HRMS (ESI) m/z calcd. for $\mathrm{C}_{23} \mathrm{H}_{18} \mathrm{NaO}_{2}{ }^{+}[\mathrm{M}+\mathrm{Na}]^{+}: 349.1199$ found: 349.1206. ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.40(\mathrm{~m}, 4 \mathrm{H}), 7.28(\mathrm{~d}, \mathrm{~J}=7.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.00(\mathrm{~m}, 4 \mathrm{H}), 6.93(\mathrm{~m}, 1 \mathrm{H}), 6.87(\mathrm{~m}, 1 \mathrm{H}), 5.70(\mathrm{~s}, 1 \mathrm{H}), 5.42(\mathrm{~s}$, $\left.1 \mathrm{H}), 3.22(\mathrm{~m}, 2 \mathrm{H}), 2.69(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}^{1} \mathrm{H}\right\} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 178.4,145.6,145.5,144.8,143.3,134.2,125.7,125.3$, 125.19, 125.18, 123.63, 123.56, 122.3, 54.3, 50.0, 35.5, 27.6.

4,5-(9,10-Dihydroanthracene-9,10-diyl)-indan-1-one

To polyphosphoric acid prepared from 306 g of $\mathrm{H}_{3} \mathrm{PO}_{4}$ and 367 g of $\mathrm{P}_{4} \mathrm{O}_{10}$ via mechanical stirring, a solution of $6.95 \mathrm{~g}(21 \mathrm{mmol})$ of 3 -(triptycene-1-yl)propanoic acid in 80 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was added dropwise at $130^{\circ} \mathrm{C}$ within 15 min . The reaction mixture was vigorously stirred at $130^{\circ} \mathrm{C}$ for another 20 min and then poured on 2 kg of ice. The mixture was extracted with diethyl ether ($3 \times 200 \mathrm{~mL}$), the combined organic extracts were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and the solvent was evaporated in vacuum. The residue was purified by column chromatography on silica gel (40-63 $\mu \mathrm{m}$, eluent: dichloromethane) to give $2.5 \mathrm{~g}(35 \%)$ of the starting 3 -(triptycene-1-yl)propanoic acid and $3.8 \mathrm{~g}(54 \%$, or 89% b.r.s.m. yield) of the product as a white solid. HRMS (ESI) m/z calcd. for $\mathrm{C}_{23} \mathrm{H}_{17} \mathrm{O}^{+}[\mathrm{M}+\mathrm{H}]^{+}: 309.1274$ found: 309.1272. ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.46(\mathrm{~m}, 2 \mathrm{H}), 7.42(\mathrm{~m}, 4 \mathrm{H}), 7.02(\mathrm{~m}, 4 \mathrm{H}), 5.62(\mathrm{~s}, 1 \mathrm{H}), 5.54(\mathrm{~s}, 1 \mathrm{H}), 3.28(\mathrm{~m}, 2 \mathrm{H}), 2.69(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (100 MHz, CDCl3): δ 206.0, 152.3, 148.2, 144.5, 144.3, 143.0, 134.6, 125.52, 125.47, 124.0, 123.7, 123.4, 121.3, 54.5, 50.0, 36.3, 23.6.

To a solution of $5.46 \mathrm{~g}(17.7 \mathrm{mmol})$ of 4,5-(9,10-dihydroanthracene-9,10-diyl)-indan-1-one in 50 mL of THF, $0.67 \mathrm{~g}(17.6 \mathrm{mmol})$ of NaBH_{4} was added at $0^{\circ} \mathrm{C}$ followed by addition 50 mL of methanol dropwise at $0{ }^{\circ} \mathrm{C}$. The resulting mixture was stirred for additional 3 h at room temperature. Then, the solvents were evaporated, the residue was dissolved in 100 mL of dichloromethane and the solution was washed with 300 mL of water. The organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and evaporated to dryness. This gave 5.5 g (\sim quant. yield) of the product which was used in the next step without purification. $\mathrm{HRMS}(E S I) \mathrm{m} / \mathrm{z}$ calcd for $\mathrm{C}_{23} \mathrm{H}_{19} \mathrm{O}^{+}[\mathrm{M}+\mathrm{H}]^{+}: 311.1430$ found: 311.1439. ${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.38$ $(\mathrm{m}, 4 \mathrm{H}), 7.29(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.04(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.99(\mathrm{~m}, 4 \mathrm{H}), 5.50(\mathrm{~s}, 1 \mathrm{H}), 5.45(\mathrm{~s}, 1 \mathrm{H}), 3.23(\mathrm{ddd}, J=15.8 \mathrm{~Hz}, J$ $=8.5 \mathrm{~Hz}, J=5.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.96(\mathrm{~m}, 1 \mathrm{H}), 2.45$ (dddd, $J=13.5 \mathrm{~Hz}, J=8.3 \mathrm{~Hz}, J=6.7 \mathrm{~Hz}, J=5.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.95(\mathrm{~m}, 1 \mathrm{H}), 1.60$ (br.s, 1H). ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (100 MHz, CDCl 3): $\delta 145.7,145.5,145.4,144.9,144.8,142.4,141.2,137.5,125.2,125.09,125.08$, $123.67,123.64,123.62,123.59,122.4,120.7,76.3,54.0,51.0,35.9,27.4$.

6,7-(9,10-Dihydroanthracene-9,10-diyl)-indene (5a)

$5.4 \mathrm{~g}(17.4 \mathrm{mmol})$ of 4,5-(9,10-dihydroanthracene-9,10-diyl)-indan-1-ol was dissolved in 100 mL of toluene and 300 mg of p-toluenesulfonic acid was added. The mixture was refluxed under a DeanStark apparatus for 15 min , cooled to room temperature and passed through a short pad of silica gel. The filtrate was evaporated in vacuum to dryness. The residue was purified by flash chromatography on silica gel (40-63 4 m, eluent: hexane), to give 4.12 g of 5 a as a white solid (80% over two steps from 4,5-(9,10-dihydroanthracene-9,10-diyl)-indan-1-one). HRMS (ESI) m / z calcd for $\mathrm{C}_{23} \mathrm{H}_{17}{ }^{+}[\mathrm{M}+\mathrm{H}]^{+}$: 293.1325 found: 293.1318. ${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.44(\mathrm{~m}, 4 \mathrm{H}), 7.37(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.07(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H})$, $7.04(\mathrm{~m}, 4 \mathrm{H}), 6.87(\mathrm{~m}, 1 \mathrm{H}), 6.53(\mathrm{~m}, 1 \mathrm{H}), 5.62(\mathrm{~s}, 1 \mathrm{H}), 5.52(\mathrm{~s}, 1 \mathrm{H}), 3.58(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 145.8$, $144.8,142.4,141.7,140.1,137.5,133.0,132.5,125.2,125.0,123.52,123.47,121.8,117.2,53.9,51.2,36.6$.

Proligand 5b

To a solution of 3.99 g (13.7 mmol) of 6,7-(9,10-dihydroanthracene-9,10-diyl)-indene (5 a) in 50 mL of diethyl ether, $5.75 \mathrm{~mL}(14.4 \mathrm{mmol})$ of 2.5 M nBuLi in hexanes was added dropwise at $-78^{\circ} \mathrm{C}$. This mixture was stirred for 13 h at room temperature and then cooled to $-80^{\circ} \mathrm{C}$. At this temperature, $300 \mathrm{mg}(3.4 \mathrm{mmol})$ of CuCN and $0.83 \mathrm{~mL}(0.88 \mathrm{~g}, 6.8 \mathrm{mmol})$ of $\mathrm{Me}_{2} \mathrm{SiCl}_{2}$ were added. The mixture was stirred overnight at ambient temperature, then quenched with 0.5 mL of water, and the volatiles were evaporated in vacuum. The residue was purified by column chromatography on silica gel ($40-63 \mu \mathrm{~m}$, eluent: hexane/dichloromethane $=3 / 1$, vol.) to give $3.84 \mathrm{~g}(88 \%)$ of the product (mixture of isomers, rac/meso $=1 / 1$) as a white fluffy powder. HRMS (ESI) m / z calcd. for $\mathrm{C}_{48} \mathrm{H}_{36} \mathrm{NaSi}^{+}$ $[\mathrm{M}+\mathrm{Na}]^{+}: 663.2478$ found: $663.2471 .{ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.48-7.56(\mathrm{~m}, 8 \mathrm{H}$ in rac and 8 H in meso), $7.33-7.40$ ($\mathrm{m}, 2 \mathrm{H}$ in rac or 2 H in meso), $7.23(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}$ in rac), $7.06-7.16(\mathrm{~m}, 20 \mathrm{H}$ in rac and meso) , $6.99(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}$ in meso), 6.75 (dd, $J=5.5 \mathrm{~Hz}, J=1.8 \mathrm{~Hz}, 2 \mathrm{H}$ in rac), 6.57 (dd, $J=5.4 \mathrm{~Hz}, J=1.9 \mathrm{~Hz}, 2 \mathrm{H}$ in meso), 5.87 ($\mathrm{s}, 2 \mathrm{H}$ in rac), 5.86 ($\mathrm{s}, 2 \mathrm{H}$ in meso), $5.61(\mathrm{~s}, 2 \mathrm{H}$ in meso), $5.58(\mathrm{~s}, 2 \mathrm{H}$ in rac), $3.64(\mathrm{~m}, 2 \mathrm{H}$ in rac), $3.61(\mathrm{~s}, 2 \mathrm{H}$ in meso), -0.11 ($\mathrm{s}, 3 \mathrm{H}$ in meso), $-0.26(\mathrm{~s}, 6 \mathrm{H}$ in rac$),-0.48\left(\mathrm{~s}, 3 \mathrm{H}\right.$ in meso). ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 146.2,146.0,145.9,145.4,145.3,142.49$, $142.45,142.0,141.9,139.2,137.7,137.6,135.72,135.68,126.3,126.2,124.94,124.92,124.89,124.8,123.5,123.4$, $119.6,119.5,119.2,54.1,51.2,45.08,45.06,-5.3,-5.8,-6.8$.

To a solution of 3.8 g (5.9 mmol) of proligand $5 \mathbf{b}$ in 120 mL of diethyl ether, 4.75 mL (11.8 mmol) of $2.5 \mathrm{M} n \mathrm{BuLi}$ in hexanes was added at ambient temperature. This mixture was stirred overnight, then cooled to $-80^{\circ} \mathrm{C}$ and $2.23 \mathrm{~g}(5.9 \mathrm{mmol})$ of $\mathrm{ZrCl}_{4}(\mathrm{THF})_{2}$ was added in one portion. The resulting mixture was stirred for 24 h at room temperature and then evaporated to dryness. Further on, 100 mL of toluene was added. The resulting mixture was heated to $100^{\circ} \mathrm{C}$ and filtered through a short pad of Celite ${ }^{\circledR}$ 503. The filtrate was evaporated to dryness. The residue was recrystallized from toluene to give 759 mg (16% yield) of meso-isomer. The mother liquor was evaporated to dryness, and the residue was recrystallized from toluene to give 300 mg (6% yield) of rac/meso $=5 / 1$ mixture of isomers. The mother liquor was evaporated to dryness. According to ${ }^{1} \mathrm{H}$ NMR spectrum, the residue consisted of the rac-isomer contaminated with some polymeric material. This mixture was used in the next step without purification. Rac-Ty5$\mathrm{Cl}_{2}:{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right): \delta 7.40-7.42(\mathrm{~m}, 4 \mathrm{H}), 7.35(\mathrm{~m}, 4 \mathrm{H}), 7.25-7.28(\mathrm{~m}, 4 \mathrm{H}), 7.20(\mathrm{~m}, 2 \mathrm{H}), 7.01(\mathrm{~m}, 4 \mathrm{H}), 6.92-$ $6.97(\mathrm{~m}, 4 \mathrm{H}), 6.09(\mathrm{~d}, \mathrm{~J}=3.4 \mathrm{~Hz}, 2 \mathrm{H}), 5.63(\mathrm{~s}, 2 \mathrm{H}), 5.55(\mathrm{~s}, 2 \mathrm{H}), 1.03(\mathrm{~s}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right): \delta 146.7$, $146.6,146.4,145.7,144.4,142.5,131.7,125.3,125.21,125.18,125.09,125.08,124.74,124.68,123.82,123.81,123.2$, 121.7, 119.3, 113.5, 90.3, 54.7, 51.7, -1.5.

Complex rac-Ty5

To a suspension of 3.66 g ($\sim 4.6 \mathrm{mmol}$) of rac- $\mathrm{Ty} 5-\mathrm{Cl}_{2}$ (contaminated with polymeric material) in 200 mL of toluene, 15.7 mL of $2.9 \mathrm{M} \mathrm{MeMgBr}(45.5 \mathrm{mmol})$ in diethyl ether was added at room temperature. This mixture was stirred for 14 h at $100^{\circ} \mathrm{C}$ and then evaporated to dryness in vacuum. To the residue 100 mL of toluene was added and the mixture was heated to $110^{\circ} \mathrm{C}$ and passed through a short pad of Celite ${ }^{\circledR}$ 503. The solvent was evaporated to dryness. The residue was triturated in 50 mL of toluene at $100^{\circ} \mathrm{C}$. The solids were filtered off on a short pad of Celite ${ }^{\circledR}$ 503. The filtrate was evaporated to dryness in vacuum and the residue was recrystallized from toluene to give 190 mg (0.5% over two steps) of pure rac-Ty5. The mother liquor was concentrated and additional 166 mg (0.5% over two steps) of pure rac-Ty5 were isolated after crystallization. Anal. Calcd for $\mathrm{C}_{50} \mathrm{H}_{40} \mathrm{SiZr} \cdot \mathrm{C}_{7} \mathrm{H}_{8}: \mathrm{C}, 80.33 ; \mathrm{H}, 5.68$. Found: $\mathrm{C}, 80.54$; $\mathrm{H}, 5.90$. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$): $\delta 7.35-7.40(\mathrm{~m}, 6 \mathrm{H}), 7.19-7.27(\mathrm{~m}, 4 \mathrm{H}), 7.08(\mathrm{dd}, \mathrm{J}=8.6 \mathrm{~Hz}$, $J=0.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.88-6.99(\mathrm{~m}, 10 \mathrm{H}), 5.91(\mathrm{~d}, \mathrm{~J}=3.4 \mathrm{~Hz}, 2 \mathrm{H}), 5.66(\mathrm{~s}, 2 \mathrm{H}), 5.50(\mathrm{~s}, 2 \mathrm{H}), 0.82(\mathrm{~s}, 6 \mathrm{H}),-2.12(\mathrm{~s}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($100 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$): $\delta 147.2,146.8,146.0,144.6,143.7,141.8,128.2,125.3,125.1,125.0,124.8,124.3,123.2$, 122.3, 121.7, 119.0, 107.5, 85.0, 54.6, 52.0, 35.8, -1.5.

Synthesis of complex Ty6

5-Bromo-6-chloro-2-methylindan-1-one (6b)

$6.5 \mathrm{~g}(0.29 \mathrm{~mol})$ of sodium metal was dissolved in 160 mL of dry ethanol. To the resulting solution $47.0 \mathrm{~g}(0.28 \mathrm{~mol})$ of diethylmethylmalonate was added. This mixture was stirred for 15 min , then $76.8 \mathrm{~g}(0.27 \mathrm{~mol})$ of 2-bromo-4-(bromomethyl)-1-chlorobenzene (6a) was added at a rate that allowed the reaction mixture to maintain a gentle reflux. Additionally, this mixture was refluxed for 4 h , then cooled to room temperature and a solution of 56.0 g of KOH in 150 mL of water was added. The mixture was refluxed for 6 h to saponificate the diester formed and, after that, ethanol was distilled off. To the residue 200 mL of water and then 12 M HCl were added to pH 1 . The precipitated diacid was collected by filtration, washed with 2×100 mL of cold water and dried in air. Next, the diacid was placed in a round bottom flask and decarboxylated by heating at $180^{\circ} \mathrm{C}$ for 1.5 h to give crude 3-(3-bromo-4-chlorophenyl)-2-methylpropanoic acid. To the acid, 59 mL (0.81 mol) of SOCl_{2}, and 100 mL of dichloromethane were added, and the mixture was refluxed for 3 h , then, thionyl chloride and dichloromethane were distilled off, the residue was dried in vacuum and then redissolved in 95 mL of dichloromethane. The solution was added dropwise to a suspension of $53.7 \mathrm{~g}(0.40 \mathrm{~mol})$ of AlCl_{3} in 330 mL of dichloromethane at $0^{\circ} \mathrm{C}$ for

1 h . The mixture was refluxed for 1.5 h , cooled to ambient temperature, and then poured on $500 \mathrm{~cm}^{3}$ of ice. The organic layer was separated, and the aqueous layer was extracted with $3 \times 200 \mathrm{~mL}$ of dichloromethane. The combined organic extract was dried over $\mathrm{K}_{2} \mathrm{CO}_{3}$ and evaporated to dryness. The residue was distilled in vacuum to give 64.2 g of a mixture of 5-bromo-6-chloro-2-methylindan-1-one and 7-bromo-6-chloro-2-methylindan-1-one as a colorless liquid (b.p. 150$190^{\circ} \mathrm{C} / 3 \mathrm{~mm} \mathrm{Hg}$, which rapidly solidified at room temperature. Crystallization of this mixture from 100 mL of n-hexane gave 31.2 g of 5-bromo-6-chloro-2-methylindan-1-one (90% purity, 40% yield) which was used in the next step without purification. $\mathrm{HRMS}(\mathrm{ESI}) \mathrm{m} / \mathrm{z}$ calcd. for $\mathrm{C}_{10} \mathrm{H}_{9} \mathrm{BrClO}^{+}[\mathrm{M}+\mathrm{H}]^{+}: 258.9520$ found: $258.9529 .{ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta 7.72$ $(\mathrm{s}, 1 \mathrm{H}), 7.71(\mathrm{~s}, 1 \mathrm{H}), 3.33-3.29(\mathrm{~m}, 1 \mathrm{H}), 2.71-2.67(\mathrm{~m}, 2 \mathrm{H}), 1.28(\mathrm{~d}, J 7.0 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta 206.9$, 152.1, 135.2, 131.8, 129.6, 126.1, 125.0, 42.4, 34.1, 16.0.

5-Bromo-6-chloro-1-methoxy-2-methylindane (6c)

To a mixture of 120 g of 5-bromo-6-chloro-2-methylindan-1-one of 90% purity (0.42 mol) and 28.1 $\mathrm{g}(0.74 \mathrm{~mol})$ of NaBH_{4} in 650 mL of THF, 300 mL of methanol was added dropwise for 5 h at $5^{\circ} \mathrm{C}$. This mixture was stirred overnight at room temperature and then evaporated to dryness. The residue was partitioned between 400 mL of dichloromethane and 500 mL of 1 M HCl . The organic layer was separated, and the aqueous layer was additionally extracted with $3 \times 200 \mathrm{~mL}$ of dichloromethane. The combined organic extract was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and evaporated to dryness. The residue was dissolved in 600 mL of DMSO, and 103 g (1.85 mol) of KOH and $65.6 \mathrm{~g}(0.46 \mathrm{~mol})$ of Mel were added. This mixture was stirred for 1 h at ambient temperature. Additionally, 65.6 g (0.46 mol) of Mel was added and the mixture was stirred for 3 h at ambient temperature. The solution was decanted from excess of KOH , which was additionally washed with $3 \times 250 \mathrm{~mL}$ of dichloromethane. The combined organic solutions was washed with 3000 mL of water. The organic layer was separated, and the aqueous layer was extracted with $2 \times 250 \mathrm{~mL}$ of dichloromethane. The combined organic extract was washed with $7 \times 1000 \mathrm{~mL}$ of water, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and then evaporated to dryness. The residue was distilled in vacuum to give 117 g of the title product of 90% purity (91% yield) consisting of two diastereomers, b.p. $130-175^{\circ} \mathrm{C} / 4 \mathrm{~mm} \mathrm{Hg}$. HRMS (ESI) m/z calcd. for $\mathrm{C}_{11} \mathrm{H}_{13} \mathrm{BrClO}^{+}$ $[\mathrm{M}+\mathrm{H}]^{+}: 274.9833$ found: 274.9821. Mixture of two diastereomers: ${ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta 7.45(\mathrm{~s}), 7.44(\mathrm{~s}), 7.42$ (s), $7.41(\mathrm{~s}), 4.43(\mathrm{~d}, J=5.5 \mathrm{~Hz}), 4.29(\mathrm{~d}, J=4.4 \mathrm{~Hz}), 3.44(\mathrm{~s}), 3.39(\mathrm{~s}), 3.13(\mathrm{dd}, J=16.1 \mathrm{~Hz}, J=7.6 \mathrm{~Hz}), 2.88-2.81(\mathrm{~m})$, $2.63-2.58(\mathrm{~m}), 2.53-2.45(\mathrm{~m}), 2.37(\mathrm{dd}, J=16.0 \mathrm{~Hz}, J=5.5 \mathrm{~Hz}), 1.13(\mathrm{~d}, J=7.0 \mathrm{~Hz}), 1.04(\mathrm{~d}, J=6.7 \mathrm{~Hz}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}$ $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta 143.7,143.44,143.35,143.29,131.9,131.6,130.0$ (two resonances), 126.8, 126.6, 121.9, 121.6, 90.3, 85.1, 56.9, 56.8, 40.5, 38.9, 37.6, 37.4, 18.9, 13.2.

2-Methyl-5,6-(9,10-dihydroanthracene-9,10-diyl)indene (6d)

To a solution of 12.0 g of 5-bromo-6-chloro-1-methoxy-2-methylindane of 90% purity (39 mmol) and $15.5 \mathrm{~g}(87.2 \mathrm{mmol})$ of anthracene in 1200 mL of toluene a solution of 35 mL (87 mmol) of 2.5 MnBuLi in hexane in 200 mL of toluene was added in dropwise over 3 h at room temperature. Then, 600 mL of water was added, the organic layer was separated and evaporated to dryness. The obtained crude material was taken up in 200 mL of hot n-hexane, excess of anthracene was filtered off and the filtrate was evaporated to dryness. The residue
was dissolved in of 300 mL of methanol, 10 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and 200 mL of conc. HCl were added, and the resulting solution was refluxed for 8 h . After cooling to room temperature, the organic layer was separated, and the aqueous layer was extracted with $2 \times 250 \mathrm{~mL}$ of dichloromethane. The combined organic extract was washed with $2 \times 200 \mathrm{~mL}$ of water, aqueous NaHCO_{3}, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and evaporated to dryness. The product was isolated by column chromatography on silica gel 60 ($40-63 \mu \mathrm{~m}$; eluent: hexanes-dichloromethane $=8: 1$, vol.) and recrystallized from hot n-hexane. HRMS (ESI) m / z calcd. for $\mathrm{C}_{24} \mathrm{H}_{19}{ }^{+}[\mathrm{M}+\mathrm{H}]^{+}: 307.1481$ found: 307.1492 . This procedure gave $3.03 \mathrm{~g}(25 \%)$ of the product as a white solid. ${ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta 7.38(\mathrm{~s}, 1 \mathrm{H}), 7.36-7.34(\mathrm{~m}, 4 \mathrm{H}), 7.28(\mathrm{~s}, 1 \mathrm{H}), 6.96-6.93(\mathrm{~m}, 4 \mathrm{H}), 6.34(\mathrm{~s}, 1 \mathrm{H})$, $5.39(\mathrm{~s}, 1 \mathrm{H}), 5.37(\mathrm{~s}, 1 \mathrm{H}), 3.13(\mathrm{~s}, 2 \mathrm{H}), 2.06(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta 146.0,145.7,143.8,143.1,141.1$, $140.4,126.7,125.0,124.9,123.4,123.3,119.2,115.5,54.3,54.1,42.3,16.8$.

To a suspension of $9.02 \mathrm{~g}(29.4 \mathrm{mmol})$ of 2-methyl-5,6-(9,10-dihydroanthracene-9,10diyl)indene (6 d) in 200 mL of diethyl ether, 12.2 mL (29.7 mmol) of 2.43 M nBuLi in hexanes was added in one portion at $-50^{\circ} \mathrm{C}$. The mixture was stirred overnight at room temperature. Then the mixture was cooled to $-60^{\circ} \mathrm{C}$ and 40 mL of THF was added followed by $200 \mathrm{mg}(2.2 \mathrm{mmol})$ of CuCN . The mixture was stirred for 15 min at $-25^{\circ} \mathrm{C}$, then 1.90 g (14.7 mmol) of dichlorodimethylsilane was added in one portion. The mixture was stirred overnight at room temperature, then 250 mL of dichloromethane was added and the resulting mixture was filtered through a pad of silica gel, which was additionally washed by $2 \times 50 \mathrm{~mL}$ of dichloromethane. The combined filtrate was evaporated under reduced pressure and the product was isolated by flash-chromatography on silica gel 60 (40-63 $\mu \mathrm{m}$; eluent: hexanes-dichloromethane $=3: 1 \rightarrow 2: 1$). This procedure gave $7.04 \mathrm{~g}(72 \%)$ of the product as a white solid. According to ${ }^{1} \mathrm{H}$ NMR, the product was a $\sim 4 / 1$ mixture of meso and rac isomers. $\left.{ }^{1} \mathrm{H} \mathrm{NMR} \mathrm{(CDCl} 3,400 \mathrm{MHz}\right): \delta 7.61$ ($\mathrm{s}, 2 \mathrm{H}$ in meso), $7.46-7.27(\mathrm{~m}, 10 \mathrm{H}$ in rac and meso), $7.05-6.91(\mathrm{~m}, 8 \mathrm{H}$ in rac and meso) , $6.51(\mathrm{~s}, 2 \mathrm{H}$ in meso), $6.33(\mathrm{~s}$, 2 H in rac), 5.44 ($\mathrm{s}, 2 \mathrm{H}$ in rac), 5.42 ($\mathrm{s}, 2 \mathrm{H}$ in meso), 5.40 ($\mathrm{s}, 2 \mathrm{H}$ in rac), 5.31 ($\mathrm{s}, 2 \mathrm{H}$ in meso) 3.55 ($\mathrm{s}, 2 \mathrm{H}$ in meso), 3.54 (s , 2 H in rac), 2.17 ($\mathrm{s}, 6 \mathrm{H}$, meso), $206\left(\mathrm{~s}, 6 \mathrm{H}\right.$ in rac), -0.33 ($\mathrm{s}, 3 \mathrm{H}$ in meso), -0.35 ($\mathrm{s}, 6 \mathrm{H}$ in rac) , -0.42 ($\mathrm{s}, 3 \mathrm{H}$ in meso). ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($\left.\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta 147.1,145.92,145.86,147.78,142.7,142.6,141.8,140.3,126.5,124.9,123.55,123.45$, $123.34,123.27,115.72,115.66,54.30,24.23,46.85,46.77,17.9,14.1,-5.5,-5.7,-6.1$.

Complex rac-Ty6-Cl2

To a suspension of $7.04 \mathrm{~g}(10.52 \mathrm{mmol})$ of 6 e in 200 mL of diethyl ether, $8.7 \mathrm{~mL}(21.1$ mmol) of $2.43 \mathrm{M} n \mathrm{BuLi}$ in hexanes were added in one portion at $-50^{\circ} \mathrm{C}$. The mixture was stirred overnight at room temperature. Then it was cooled to $-60^{\circ} \mathrm{C}$ and $2.46 \mathrm{~g}(10.56$ mmol) of ZrCl_{4} was added. The mixture was stirred for 24 h resulting in light yellow solution with a lot of yellow precipitate. The resulting mixture was evaporated to dryness and the residue was taken up in 400 mL of hot toluene. A yellow precipitate isolated by hot filtration of the suspension formed through a glass frit was a mixture of rac-Ty6-Cl2 with lithium chloride ($\sim 3.0 \mathrm{~g}, \sim 34 \%$). A yellow solid that precipitated from the mother liquor overnight at room temperature was collected and dried in vacuum. This procedure gave 1.25 g (14%) of meso-zirconium dichloride complex. The mixture of rac-complex and LiCl was used in the next step without further purification. Rac-complex: ${ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right.$, $400 \mathrm{MHz}): \delta 7.48(\mathrm{~s}, 2 \mathrm{H}), 7.41-7.31(\mathrm{~m}, 8 \mathrm{H}), 7.26(\mathrm{~s}, 2 \mathrm{H}), 7.05-6.94(\mathrm{~m}, 8 \mathrm{H}), 6.45(\mathrm{~s}, 2 \mathrm{H}), 5.39(\mathrm{~s}, 2 \mathrm{H}), 5.20(\mathrm{~s}, 2 \mathrm{H}), 2.02$ ($\mathrm{s}, 6 \mathrm{H}$), 1.27 ($\mathrm{s}, 6 \mathrm{H}$). Meso-complex: Anal. Calcd for $\mathrm{C}_{50} \mathrm{H}_{38} \mathrm{Cl}_{2} \mathrm{SiZr}: \mathrm{C}, 72.44 ; \mathrm{H}, 4.62$. Found: C, 72.70; H, 4.85. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta 7.49(\mathrm{~s}, 2 \mathrm{H}), 7.33-7.23(\mathrm{~m}, 8 \mathrm{H}), 6.98-6.90(\mathrm{~m}, 6 \mathrm{H}), 6.81-6.77(\mathrm{~m}, 4 \mathrm{H}), 6.54(\mathrm{~s}, 2 \mathrm{H}), 5.23(\mathrm{~s}, 2 \mathrm{H}), 5.12$ $(\mathrm{s}, 2 \mathrm{H}), 2.33(\mathrm{~s}, 6 \mathrm{H}), 1.42(\mathrm{~s}, 3 \mathrm{H}), 1.09(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta 144.8,144.7,144.2,143.9,143.0,141.6$, $135.3,135.0,126.7,126.0,125.6,125.41,125.39,123.6,123.51,123.45,123.3,121.5,119.0,118.2,85.6,54.1,53.6$, 18.7, 2.79, 2.75.

To a suspension of $\sim 3.0 \mathrm{~g}$ ($\sim 3.6 \mathrm{mmol})$ of rac- $-\mathrm{Ty} 6-\mathrm{Cl}_{2}$ in 400 mL of diethyl ether, 8.0 mL (21.6 mmol) of 2.7 M MeMgBr in diethyl ether was added in one portion. This mixture was stirred for 3 days at room temperature. Then 50 mL of toluene was added and the suspension was additionally refluxed for 12 h . Then the mixture was evaporated to dryness and extracted with 120 mL of hot toluene, and the toluenic extract was evaporated to ${ }^{\sim} 20 \mathrm{~mL}$. A solid that precipitated form the concentrated solution at room temperature was collected and dried in vacuum. This procedure gave 1.88 g (66%, or 22% from $6 e$) of the product as a yellow solid. Anal. Calcd for $\mathrm{C}_{52} \mathrm{H}_{44} \mathrm{SiZr}$: C, 79.24; H, 5.63. Found: C, 79.72; H, 5.91. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta 7.42(\mathrm{~s}, 2 \mathrm{H}), 7.38-$ $7.35(\mathrm{~m}, 6 \mathrm{H}), 7.31-7.26(\mathrm{~m}, 2 \mathrm{H}), 7.23-7.19(\mathrm{~m}, 2 \mathrm{H}), 7.03-6.99(\mathrm{~m}, 4 \mathrm{H}), 6.97-6.93(\mathrm{~m}$, $4 \mathrm{H}), 6.39(\mathrm{~s}, 2 \mathrm{H}), 5.34(\mathrm{~s}, 2 \mathrm{H}), 5.19(\mathrm{~s}, 2 \mathrm{H}), 1.88(\mathrm{~s}, 6 \mathrm{H}), 1.06(\mathrm{~s}, 6 \mathrm{H}),-1.93(\mathrm{~s}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($\left.\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta 145.5,144.30,144.25,144.1,142.1,140.2,133.5,126.3$, $125.49,125.45,125.42,125.3,125.0,123.54,123.50,123.2,123.0,119.11,119.07,115.0,78.5,54.0,53.6,33.1,17.5$, 2.9.

Synthesis of complex Ty7

5,6-Dibromo-2,4,7-trimethylindan-1-one (7b)

To a suspension of $325 \mathrm{~g}(2.44 \mathrm{~mol})$ of AlCl_{3} in 300 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 211 \mathrm{~g}(0.92 \mathrm{~mol})$ of 2-bromo-2methylpropionyl bromide was added dropwise at $-30^{\circ} \mathrm{C}$ over 15 minutes. The reaction mixture was stirred at $-30^{\circ} \mathrm{C}$ for 0.5 h , then the temperature was raised to $-20^{\circ} \mathrm{C}$ and a solution of $97.5 \mathrm{~g}(0.92$ mol) of p-xylene in 300 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was added dropwise over 30 minutes. The cooling bath was removed, the temperature was brought to room temperature and the reaction mixture was stirred at this temperature for 3 hours. Further on, $323 \mathrm{~g}(2.02 \mathrm{~mol})$ of bromine was added dropwise over 3 h . The resulting mixture was stirred overnight at room temperature and then poured onto 2 L of the crushed ice. The organic layer was separated, and the aqueous layer was extracted with $3 \times 1000 \mathrm{~mL}$ of dichloromethane. The combined organic extract was washed with aqueous $\mathrm{K}_{2} \mathrm{CO}_{3}$, dried over $\mathrm{K}_{2} \mathrm{CO}_{3}$, passed through a short pad of silica gel ($40-63 \mu \mathrm{~m}$), and then evaporated to dryness. The crude product was treated with 2000 mL of warm n-hexane and filtered. This procedure gave 215 g (70% yield) of pure product as a white powder. HRMS (ESI) m/z calcd. for $\mathrm{C}_{12} \mathrm{H}_{13} \mathrm{Br}_{2} \mathrm{O}^{+}[\mathrm{M}+\mathrm{H}]^{+}: 330.9328$ found: 330.9333. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta 3.24(\mathrm{dd}, J=17.1 \mathrm{~Hz}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.79(\mathrm{~s}, 3 \mathrm{H}), 2.74-2.65(\mathrm{~m}, 1 \mathrm{H}), 2.54(\mathrm{dd}, J=17.1 \mathrm{~Hz}, J=4.2 \mathrm{~Hz}$, $1 \mathrm{H}), 2.45(\mathrm{~s}, 3 \mathrm{H}), 1.31(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta 208.9,152.0,138.0,135.1,134.3,133.1$, 128.6, 42.5, 33.9, 20.1, 18.6, 16.4.

5,6-Dibromo-1-methoxy-2,4,7-trimethylindane (7c)

To a mixture of $215 \mathrm{~g}(646 \mathrm{mmol})$ of 5,6-dibromo-2,4,7-trimethylindan-1-one (7b) and $36.7 \mathrm{~g}(970$ mmol) of NaBH_{4} in 1050 mL of THF, 520 mL of methanol was added dropwise at $5{ }^{\circ} \mathrm{C}$ for 5 h . The mixture was stirred overnight at room temperature and then evaporated to dryness. The residue was partitioned between 1000 mL of dichloromethane and 1000 mL of 2 M HCl . The organic layer was separated, and the aqueous layer was additionally extracted with $3 \times 500 \mathrm{~mL}$ of dichloromethane. The combined organic extract was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and evaporated to dryness. The residue was dissolved in 1300 mL of DMSO, and 145 g $(2.59 \mathrm{~mol})$ of KOH and $185 \mathrm{~g}(1.29 \mathrm{~mol})$ of Mel were added. This mixture was stirred for 5 h at ambient temperature. The solution was decanted from excess of KOH , the latter was additionally washed with $3 \times 300 \mathrm{~mL}$ of dichloromethane. The combined organic extract was washed with 3000 mL of water. The organic layer was separated, and the aqueous layer was extracted with $2 \times 300 \mathrm{~mL}$ of dichloromethane. The combined organic extract was washed with $7 \times 500 \mathrm{~mL}$ of water, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and then evaporated to dryness. Crude product was isolated by column chromatography on silica gel ($40-63 \mu \mathrm{~m}$; eluent: hexanes-dichloromethane $=1: 1$, vol.). The crude product was crystallized from 200 mL of n-hexane at $-30^{\circ} \mathrm{C}$ to give $198 \mathrm{~g}(88 \%)$ of pure 5,6 -dibromo-1-methoxy-2,4,7-trimethylindane as a mixture of two
diastereomers. HRMS (ESI) m/z calcd. for $\mathrm{C}_{13} \mathrm{H}_{17} \mathrm{Br}_{2} \mathrm{O}^{+}[\mathrm{M}+\mathrm{H}]^{+}: 346.9641$ found: 346.9636 . ${ }^{1} \mathrm{H}$ NMR ($\mathrm{CDCl}_{3}, 400 \mathrm{MHz}$, mixture of isomers): $\delta 4.61(\mathrm{~d}, J=5.8 \mathrm{~Hz}), 4.42(\mathrm{~s}), 3.39(\mathrm{~s}), 3.37(\mathrm{~s}), 3.21(\mathrm{dd}, J=16.4 \mathrm{~Hz}, J=7.5 \mathrm{~Hz}), 2.88-2.80(\mathrm{~m})$, $2.65-2.55(\mathrm{~m}), 2.48(\mathrm{~s}), 2.45(\mathrm{~s}), 2.43-2.38(\mathrm{~m}), 2.35(\mathrm{~s}), 1.22(\mathrm{~d}, \mathrm{~J}=6.8 \mathrm{~Hz}), 1.07(\mathrm{~d}, \mathrm{~J}=7.3 \mathrm{~Hz}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 100\right.$ MHz , mixture of isomers): $\delta 143.0,142.5,141.6,139.9,135.6,134.8,133.9,133.5,128.1,127.8,126.2,126.0,91.2$, 85.4, 57.8, 55.9, 38.8, 38.7, 36.2, 25.5, 21.4 (two resonances), 21.3, 20.9, 20.3, 13.8.

2,4,7-Trimethyl-5,6-(9,10-dihydroanthracene-9,10-diy) indene (7d)

To a solution of $17.4 \mathrm{~g}(50.0 \mathrm{mmol})$ of 5,6 -dibromo-1-methoxy-2,4,7-trimethylindane (7c) and 20.0 g (112.2 mmol) of anthracene in 1400 mL of toluene a solution of $30.0 \mathrm{~mL}(75.0 \mathrm{mmol})$ of 2.5 M nBuLi in hexanes in 250 mL of toluene was added dropwise over 5 h at room temperature. The resulting mixture was stirred overnight at room temperature. Then, 250 mL of water was added, the organic layer was separated and evaporated to dryness. Thus obtained crude material was treated with a mixture of 200 mL of n-hexane and 100 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, excess of anthracene was filtered off and the filtrate was evaporated to dryness. The intermediate product 1-methoxy-2,4,7-trimethyl-5,6-(9,10-dihydroanthracene-9,10-diyl)indane was purified by column chromatography on silica gel 60 ($40-63 \mu \mathrm{~m}$; eluent: hexanes-dichloromethane $=2: 1$, vol.). This procedure gave $\sim 7.5 \mathrm{~g}$ of a white solid which was dissolved in 130 mL of toluene, then, 200 mg of $p \mathrm{TsOH}$ was added, and the mixture was refluxed under Dean-Stark head for 1 h . After cooling to room temperature, the mixture was washed with 400 mL of 10% aqueous NaHCO_{3}. The organic layer was separated, and the aqueous layer was additionally extracted with 300 mL of dichloromethane. The combined organic extract was evaporated to dryness. The residue was treated with 200 mL of warm n-hexane and the solid product was isolated by filtration. This procedure gave $3.04 \mathrm{~g}(18 \%$ yield) of the product. HRMS (ESI) m / z calcd. for $\mathrm{C}_{26} \mathrm{H}_{23}{ }^{+}[\mathrm{M}+\mathrm{H}]^{+}: 335.1794$ found: $335.1796 .{ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): 87.37-7.34(\mathrm{~m}, 4 \mathrm{H}), 6.96-6.91(\mathrm{~m}, 4 \mathrm{H}), 6.46(\mathrm{~s}$, $1 \mathrm{H}), 5.68(\mathrm{~s}, 1 \mathrm{H}), 5.65(\mathrm{~s}, 1 \mathrm{H}), 3.04(\mathrm{~s}, 2 \mathrm{H}), 2.50(\mathrm{~s}, 3 \mathrm{H}), 2.42(\mathrm{~s}, 3 \mathrm{H}), 2.07(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta 145.9$, 144.9, 142.2, 141.4, 139.5, 138.9, 125.7, 124.91, 124.87, 124.5, 123.5, 123.4, 121.1, 50.6, 50.4, 42.0, 16.9, 14.8, 14.6.

Proligand 7e

To a suspension of $10.0 \mathrm{~g}(30.0 \mathrm{mmol})$ of 2,4,7-trimethyl-5,6-(9,10-dihydroanthracene9,10 -diyl) indene (7 d) in 200 mL of diethyl ether, 12.3 mL (29.9 mmol) of 2.43 MnBuLi in hexanes was added in one portion at $-50^{\circ} \mathrm{C}$. This mixture was stirred for 6 h at room temperature. Then the mixture was cooled to $-50^{\circ} \mathrm{C}$ and 20 mL of THF was added followed by 200 mg of CuCN . The resulting mixture was stirred for 15 min at $-25^{\circ} \mathrm{C}$, then $1.94 \mathrm{~g}(15.03 \mathrm{mmol})$ of dichlorodimethylsilane was added in one portion. This mixture was stirred overnight at room temperature, then 250 mL of dichloromethane was added and the resulting mixture was filtered through a pad of silica gel which was additionally washed by $2 \times 50 \mathrm{~mL}$ of dichloromethane. The combined filtrate was evaporated under reduced pressure, and the solid residue was dried in vacuum to give 12.2 g (ca. 100\%, containing LiCl and THF) of the product (approx. $1.5 / 1$ mixture of rac and meso isomers) as a white powder which was used on the next step without further purification. ${ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta 7.43-7.27(\mathrm{~m}, 8 \mathrm{H}$ in rac and meso), $7.10-6.88(\mathrm{~m}, 8 \mathrm{H}$ in rac and meso), $6.47(\mathrm{~s}, 2 \mathrm{H}$ in rac), $6.44(\mathrm{~s}, 2 \mathrm{H}$ in meso), $5.65(\mathrm{~s}, 2 \mathrm{H}$ in meso) , $5.63(\mathrm{~s}, 2 \mathrm{H}$ in rac), 5.46 $(\mathrm{s}+\mathrm{s}, 1 \mathrm{H}$ in rac and 1 H in meso), $3.55(\mathrm{~s}, 2 \mathrm{H}$ in meso), $3.27(\mathrm{~s}, 2 \mathrm{H}$ in rac), $2.50(\mathrm{~s}, 6 \mathrm{H}$ in meso), 2.47 ($\mathrm{s}, 6 \mathrm{H}$ in rac), 2.11 (s, 6 H in rac), 2.02 ($\mathrm{s}, 6 \mathrm{H}$ in meso), $1.96(\mathrm{~s}, 6 \mathrm{H}$ in meso), $1.89(\mathrm{~s}, 6 \mathrm{H}$ in rac), $-0.29(\mathrm{~s}, 3 \mathrm{H}$ in meso), $-0.38(\mathrm{~s}, 6 \mathrm{H}$ in rac), -0.77 ($\mathrm{s}, 3 \mathrm{H}$ in meso).

A suspension of 11.35 g (ca. 15.65 mmol) of 7 e in 300 mL of diethyl ether was cooled to $50^{\circ} \mathrm{C}$ and 12.9 mL (31.4 mmol) of 2.43 M nBuLi in hexanes were added in one portion. The mixture was stirred overnight at room temperature. The mixture was then cooled to $-60^{\circ} \mathrm{C}$ and 3.65 g (15.66 mmol) of ZrCl_{4} was added. The reaction mixture was stirred for 24 h at room temperature, then, it was evaporated to dryness and the residue was taken up in 400 mL of toluene. The mixture was filtered while hot through glass frit. The filtrate was evaporated to a volume ca. 120 ml . The yellow solid that precipitated from this solution overnight at room temperature was collected and dried in vacuum. This procedure gave 1.2 g of zirconium dichloride complex rac- $\mathrm{Ty} 7-\mathrm{Cl}_{2}$. Subsequent recrystallization of the evaporated mother liquor from 50 mL , and then from 30 mL of toluene, gave respectively 0.55 g and 0.37 g of rac-Ty7-Cl2. Thus, the total yield of rac-Ty7-Cl2 isolated in this synthesis was $2.12 \mathrm{~g}(15 \%)$. Anal. Calcd for $\mathrm{C}_{54} \mathrm{H}_{46} \mathrm{Cl}_{2} \mathrm{SiZr}: \mathrm{C}, 73.27 ; \mathrm{H}, 5.24$. Found: $\mathrm{C}, 73.48 ; \mathrm{H}, 5.41$. $\left.{ }^{1} \mathrm{H} \mathrm{NMR} \mathrm{(} \mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta 7.38-7.32(\mathrm{~m}, 6 \mathrm{H}), 7.26-$ $7.24(\mathrm{~m}, 2 \mathrm{H}), 7.04-6.97(\mathrm{~m}, 8 \mathrm{H}), 6.59(\mathrm{~s}, 2 \mathrm{H}), 5.66(\mathrm{~s}, 12 \mathrm{H}), 5.49(\mathrm{~s}, 2 \mathrm{H}), 2.63(\mathrm{~s}, 6 \mathrm{H}), 2.33(\mathrm{~s}, 6 \mathrm{H}), 1.91(\mathrm{~s}, 6 \mathrm{H}), 1.24(\mathrm{~s}$, $6 \mathrm{H}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta 145.5,144.6,143.9,143.8,142.5,141.1,132.4,131.4,129.4,125.68,125.65$, $125.55,125.4,125.3,123.7,123.6,123.53,123.50,123.1,122.8,82.1,50.6,49.7,20.1,19.1,14.6,8.5$.

To a suspension of $1.00 \mathrm{~g}(1.13 \mathrm{mmol})$ of rac- $\mathrm{Ty} 7-\mathrm{Cl}_{2}$ in a mixture of 40 mL of toluene and 30 mL of diethyl ether, $2.0 \mathrm{~mL}(5.4 \mathrm{mmol})$ of 2.7 M MeMgBr in diethyl ether was added in one portion. This mixture was refluxed for 12 h , and then evaporated to dryness. The residue was extracted with 30 mL of hot toluene, and the toluenic extract was evaporated to ca. 10 mL . The yellow solid that precipitated from this solution at room temperature was collected and dried in vacuum. This procedure gave $0.45 \mathrm{~g}(47 \%)$ of the zirconium dimethyl complex rac-Ty7. Anal. Calcd for $\mathrm{C}_{56} \mathrm{H}_{52} \mathrm{SiZr}$: C, 79.66; H, 6.21. Found: C, 79.91; $\mathrm{H}, 6.54 .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta 7.38-7.36(\mathrm{~m}, 2 \mathrm{H}), 7.34-7.32(\mathrm{~m}, 2 \mathrm{H}), 7.29-7.27(\mathrm{~m}$, $2 \mathrm{H}), 7.25-7.23(\mathrm{~m}, 2 \mathrm{H}), 7.02-6.93(\mathrm{~m}, 8 \mathrm{H}), 6.49(\mathrm{~s}, 2 \mathrm{H}), 5.63(\mathrm{~s}, 2 \mathrm{H}), 5.50(\mathrm{~s}, 2 \mathrm{H}), 2.57(\mathrm{~s}$, $6 \mathrm{H}), 2.39(\mathrm{~s}, 6 \mathrm{H}), 1.77(\mathrm{~s}, 6 \mathrm{H}), 1.05(\mathrm{~s}, 6 \mathrm{H}),-1.92(\mathrm{~s}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta$ $146.0,144.8,144.7,144.2,140.4,138.5,132.5,130.3,126.0,125.4,125.3,125.2,125.0$, $124.2,123.4,123.3,123.1,115.6,77.7,50.6,49.7,32.4,20.1,18.6,14.7,8.6$.

Synthesis of complex Ty8

6-Amino-7-bromo-2-methylindan-1-one
 To solution of $23.1 \mathrm{~g}(0.143 \mathrm{~mol})$ of 6 -amino-2-methylindan-1-one (8) in 450 mL of DMF, a solution of $25.5 \mathrm{~g}(0.143 \mathrm{~mol})$ of N-bromosuccinimide in 200 mL of DMF was added dropwise at $-30^{\circ} \mathrm{C}$. Then the reaction mixture was stirred for 3 h at room temperature and poured into 2.5 L of water. The mixture was extracted with diethyl ether $(3 \times 300 \mathrm{ml})$. The organic layer was washed with water $(3 \times 200 \mathrm{ml})$, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and the solvent was evaporated. The residue was dissolved in 200 mL of dichloromethane and 400 mL of toluene was added. The solvents were evaporated until precipitate started to form. The mixture was cooled to room temperature, the precipitate was filtered and washed with toluene. The resulting pale brown solid was dried in vacuo to give $31.4 \mathrm{~g}\left(92 \%\right.$ yield) of the product. HRMS (ESI) m / z calcd. for $\mathrm{C}_{10} \mathrm{H}_{11} \mathrm{BrNO}^{+}[\mathrm{M}+\mathrm{H}]^{+}: 240.0019$ found: $240.0016 .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.35$ (d, J = $8.2 \mathrm{~Hz}, 1 \mathrm{H}$), $7.24(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.62$ (br.s., 2 H), 3.27 (dd, J=16.5 Hz, J $=7.8$ $\mathrm{Hz}, 1 \mathrm{H}), 2.78(\mathrm{~m}, 1 \mathrm{H}), 2.60(\mathrm{~m}, 1 \mathrm{H}), 1.28(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 207.0,145.7,144.1,133.5$, 125.6, 122.4, 103.5, 43.0, 33.0, 16.3.

6-Amino-7-(4-tert-butylphenyl)-2-methylindan-1-one

The mixture of $31.4 \mathrm{~g}(0.131 \mathrm{~mol})$ of 6 -amino-7-bromo-2-methylindan-1-one, $30.7 \mathrm{~g}(0.170 \mathrm{~mol})$ of 4-tert-butylphenylboronic acid, $107 \mathrm{~g}(0.328 \mathrm{~mol})$ of cesium carbonate, $3.0 \mathrm{~g}(2.62 \mathrm{mmol})$ of $\mathrm{Pd}\left[\mathrm{PPh}_{3}\right]_{4}, 600 \mathrm{~mL}$ of dioxane and 300 mL of water was stirred at $95{ }^{\circ} \mathrm{C}$ overnight under inert atmosphere in pressure vessel. Then, dioxane was rotary evaporated, and 500 mL of water was added. The mixture was extracted with dichloromethane ($3 \times 200 \mathrm{ml}$). The combined organic extracts were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and the solvent was evaporated. The residue was purified by flash chromatography on silica gel (40-63 $\mu \mathrm{m}$, eluent: hexane-ethyl acetate $=10: 1$, vol.) to give $38.7 \mathrm{~g}(99 \%)$ of the product. HRMS (ESI) m/z calcd. for $\mathrm{C}_{20} \mathrm{H}_{24} \mathrm{NO}^{+}[\mathrm{M}+\mathrm{H}]^{+}: 294.1852$ found: 294.1859 . ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.46(\mathrm{~m}, 2 \mathrm{H}), 7.15-$ $7.25(\mathrm{~m}, 3 \mathrm{H}), 7.04(\mathrm{~m}, 1 \mathrm{H}), 3.96($ br.s., 2 H$), 3.27(\mathrm{~m}, 1 \mathrm{H}), 2.60(\mathrm{~m}, 2 \mathrm{H}), 1.35(\mathrm{~s}, 9 \mathrm{H}), 1.22(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}$ ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) : $\delta 208.6,150.2,144.2,143.8,133.9,131.7,129.0,125.9,125.5,124.3,122.3,42.9,34.6,33.6,31.4$, 16.0.

To solution of $38.0 \mathrm{~g}(0.129 \mathrm{~mol})$ of 6-amino-7-(4-tert-butylphenyl)-2-methylindan-1-one in 400 mL $7.48(\mathrm{~m}, 2 \mathrm{H}), 7.21(\mathrm{~m}, 2 \mathrm{H}), 4.35(\mathrm{br} . \mathrm{s} ., 2 \mathrm{H}), 3.25(\mathrm{~m}, 1 \mathrm{H}), 2.60(\mathrm{~m}, 2 \mathrm{H}), 1.36(\mathrm{~s}, 9 \mathrm{H}), 1.21(\mathrm{~d}, \mathrm{~J}=7.1 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 207.8,150.8,143.5,141.8,133.0,131.4,129.2,128.8,125.8,125.7,124.9,117.2,42.9,34.7,33.3$, 31.4, 16.0.

5,6-Dibromo-7-(4-tert-butylphenyl)-2-methylindan-1-one (8b)

To suspension of $34.6 \mathrm{~g}(0.155 \mathrm{~mol})$ of CuBr_{2} in 900 mL of acetonitrile, $26.0 \mathrm{~mL}(0.193 \mathrm{~mol})$ of amyl
 nitrite was added dropwise at $50^{\circ} \mathrm{C}$. Then, a solution of $47.9 \mathrm{~g}(0.129 \mathrm{~mol})$ 6-amino-5-bromo-7-(4-tert-butylphenyl)-2-methylindan-1-one (8a) in 900 mL of acetonitrile was added over an hour at 50 ${ }^{\circ} \mathrm{C}$. The mixture was stirred at $50^{\circ} \mathrm{C}$ for an additional hour and poured into 4 L of water. The resulting mixture was extracted with dichloromethane ($3 \times 200 \mathrm{ml}$), the combined organic extracts were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and the solvent was evaporated. The residue was suspended in 100 mL of diethyl ether and filtered. The precipitate was collected, dissolved in 300 mL of dichloromethane and the solution was passed through a short pad of silica to get rid of copper-containing byproducts. The solvent was evaporated to give $41.3 \mathrm{~g}(74 \%)$ of the pure product. HRMS (ESI) m / z calcd. for $\mathrm{C}_{20} \mathrm{H}_{21} \mathrm{Br}_{2} \mathrm{O}^{+}[\mathrm{M}+\mathrm{H}]^{+}: 434.9954$ found: $434.9964 .{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.78(\mathrm{~s}, 1 \mathrm{H}), 7.45(\mathrm{~m}, 2 \mathrm{H}), 7.12(\mathrm{~m}, 1 \mathrm{H}), 7.04(\mathrm{~m}, 1 \mathrm{H}), 3.31(\mathrm{~m}, 1 \mathrm{H}), 2.62-2.69(\mathrm{~m}, 2 \mathrm{H}), 1.38(\mathrm{~s}, 9 \mathrm{H})$, $1.23(\mathrm{~d}, \mathrm{~J}=7.1 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 205.8,153.2,150.9,143.4,134.6,133.8,132.3,130.7,128.3$, 128.0, 126.9, 124.9, 124.8, 42.8, 34.7, 33.6, 31.4, 15.8.

5,6-Dibromo-7-(4-tert-butylphenyl)-1-methoxy-2-methylindane (8c)

Sodium borohydride ($5.30 \mathrm{~g}, 0.139 \mathrm{~mol}$) was added to a solution of $40.3 \mathrm{~g}(0.092 \mathrm{~mol})$ of $5,6-$ dibromo-7-(4-tert-butylphenyl)-2-methylindan-1-one (8b) in 500 mL of THF at $0^{\circ} \mathrm{C}$. Then, 500 mL of methanol was added dropwise at $0^{\circ} \mathrm{C}$. The mixture was stirred for additional 3 hours at room temperature. Then, the solvents were evaporated, and the residue was dissolved in 200 mL of dichloromethane and washed with 500 mL of water. The combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and evaporated to dryness. The residue was dissolved in 200 mL of dry THF and added to a mixture of $3.3 \mathrm{~g}(0.138 \mathrm{mmol})$ of NaH (prepared from 60 wt . \% suspension in paraffin) and dry THF under inert atmosphere at $0^{\circ} \mathrm{C}$. Then, $11.5 \mathrm{~mL}(0.184 \mathrm{~mol})$ of methyl iodide was added dropwise at $0^{\circ} \mathrm{C}$ and the reaction mixture was stirred overnight at room temperature. Next, the reaction mixture was poured into 1000 mL of water, and the mixture was extracted with diethyl ether ($3 \times 200 \mathrm{ml}$). The combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and the solvents were evaporated to give 28.3 g (98% yield) of the product (a mixture of syn- and anti-diastereomers) as a colorless oil. HRMS (ESI) m/z calcd. for $\mathrm{C}_{21} \mathrm{H}_{25} \mathrm{Br}_{2} \mathrm{O}^{+}[\mathrm{M}+\mathrm{H}]^{+}: 451.0267$ found: 451.0258 . Syn-isomer: ${ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right): \delta 7.52(\mathrm{~m}, 1 \mathrm{H}), 7.43-7.47(\mathrm{~m}, 2 \mathrm{H}), 7.29-7.33(\mathrm{~m}, 1 \mathrm{H}), 7.14(\mathrm{~m}, 1 \mathrm{H}), 3.92(\mathrm{~d}, \mathrm{~J}=1.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.96(\mathrm{~s}, 3 \mathrm{H}), 2.76-$ $2.86(\mathrm{~m}, 1 \mathrm{H}), 2.40(\mathrm{~m}, 2 \mathrm{H}), 1.39(\mathrm{~s}, 9 \mathrm{H}), 0.97(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H})$. Anti-isomer: ${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.54(\mathrm{~m}, 1 \mathrm{H})$, $7.43-7.47(\mathrm{~m}, 2 \mathrm{H}), 7.29-7.33(\mathrm{~m}, 1 \mathrm{H}), 7.12(\mathrm{~m}, 1 \mathrm{H}), 4.16(\mathrm{~d}, J=5.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.28-3.35(\mathrm{~m}, 1 \mathrm{H}), 2.88(\mathrm{~s}, 3 \mathrm{H}), 2.47(\mathrm{~m}, 2 \mathrm{H})$, $1.38(\mathrm{~s}, 9 \mathrm{H}), 1.18(\mathrm{~d}, \mathrm{~J}=7.0 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$, mixture of isomers): $\delta 150.6,150.5,144.9,144.2$, $143.8,143.5,142.6,141.8,137.2,136.9,129.8,129.6,129.4,128.8,128.1,127.9,125.8,125.5,124.8,124.7,124.6$, $124.5,123.8,123.5,90.3,85.1,67.9,58.5,56.8,39.9,38.4,38.3,38.0,34.6,31.4,25.6,19.2,13.6$.

To a solution of $11.0 \mathrm{~g}(24.3 \mathrm{mmol})$ of 5,6-dibromo-7-(4-tert-butylphenyl)-1-methoxy-2methylindane (8 c) and $8.70 \mathrm{~g}(48.7 \mathrm{mmol})$ of anthracene in 600 mL of toluene, 19.5 mL (48.7 mmol) of 2.5 M solution of $n \mathrm{BuLi}$ in hexane were added dropwise at room temperature. Then the reaction mixture was stirred for additional 3 h at room temperature and poured into 1000 mL of water. The organic layer was separated and aqueous layer was extracted with 100 mL of toluene. The combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and the solvent was evaporated. To the residue 70 mL of hexane was added, the mixture was heated to $70^{\circ} \mathrm{C}$ and filtered to get rid of the excess of anthracene. The filtrate was evaporated to dryness. The residue was dissolved in 500 mL of toluene and $2.00 \mathrm{~g}(8.80 \mathrm{mmol})$ of p-toluenesulfonic acid was added. The reaction mixture was refluxed with Dean-Stark apparatus for 1 h . The reaction mixture was cooled down to room temperature and passed through a short pad of silica gel. The filtrate was evaporated to dryness. The residue was purified by flash chromatography on silica gel (40-63 $\mu \mathrm{m}$, eluent: hexane-ethyl acetate $=20: 1$, vol.) to give $2.10 \mathrm{~g}(20 \%)$ of the product as a white solid. HRMS (ESI) m / z calcd. for $\mathrm{C}_{34} \mathrm{H}_{31}{ }^{+}[\mathrm{M}+\mathrm{H}]^{+}: 439.2420$ found: 439.2427 . ${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.55$ $(\mathrm{m}, 2 \mathrm{H}), 7.41(\mathrm{~m}, 3 \mathrm{H}), 7.26-7.33(\mathrm{~m}, 4 \mathrm{H}), 6.97(\mathrm{~m}, 4 \mathrm{H}), 6.26(\mathrm{~s}, 1 \mathrm{H}), 5.59(\mathrm{~s}, 2 \mathrm{H}), 5.45(\mathrm{~s}, 2 \mathrm{H}), 3.23(\mathrm{~s}, 2 \mathrm{H}), 2.04(\mathrm{~s}, 3 \mathrm{H})$, 1.48 ($\mathrm{s}, 9 \mathrm{H}$).

Proligand 8 e

To a solution of $2.10 \mathrm{~g}(4.80 \mathrm{mmol})$ of 2-methyl-4-(4-tert-butylphenyl)-5,6-(9,10-dihydroanthracene-9,10-diyl)indene (8d) in 100 mL of diethyl ether, 1.93 mL of 2.5 M nBuLi $(4.80 \mathrm{mmol})$ in hexanes was added dropwise at vigorous stirring at room temperature. The mixture was stirred for 13 h at room temperature and then cooled to $-80{ }^{\circ} \mathrm{C}$. At this temperature, $10.0 \mu \mathrm{l}$ of N -methylimidazole was added. Next, to the mixture $293 \mu \mathrm{~L}(2.40 \mathrm{mmol})$ of $\mathrm{Me}_{2} \mathrm{SiCl}_{2}$ was added. The resulting mixture was stirred overnight at room temperature, and white precipitate was formed. The mixture was poured into water, the organic layer was separated and the aqueous layer was extracted with dichloromethane $(3 \times 100 \mathrm{~mL})$. The combined organic phases was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and evaporated to dryness. The residue was purified by flash chromatography on silica gel ($40-63 \mu \mathrm{~m}$, eluent: hexane-dichloromethane $=5: 1$, vol.) to give $1.45 \mathrm{~g}(64 \%)$ of the product. HRMS (ESI) m/z calcd. for $\mathrm{C}_{70} \mathrm{H}_{64} \mathrm{NaSi}^{+}[\mathrm{M}+\mathrm{Na}]^{+}: 955.4669$ found: $955.4679 .{ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.57$ $(\mathrm{m}, 4 \mathrm{H}), 7.28-7.37(\mathrm{~m}, 14 \mathrm{H}), 6.98(\mathrm{~m}, 8 \mathrm{H}), 6.36(\mathrm{~s}, 2 \mathrm{H}), 5.57(\mathrm{~s}, 2 \mathrm{H}), 5.33(\mathrm{~s}, 2 \mathrm{H}), 3.61(\mathrm{~s}, 2 \mathrm{H}), 2.09(\mathrm{~s}, 6 \mathrm{H}), 1.48(\mathrm{~s}, 18 \mathrm{H})$, $-0.27(\mathrm{~s}, 3 \mathrm{H}),-0.37(\mathrm{~s}, 3 \mathrm{H})$.

Complex rac-Ty8-Cl2

To a solution of 3.40 g (3.64 mmol) of proligand 8 e in 120 mL of diethyl ether, 3.00 mL (7.30 mmol) of 2.5 M nBuLi in hexanes was added at ambient temperature. This mixture was stirred overnight, and then $1.40 \mathrm{~g}(3.64 \mathrm{mmol})$ of $\mathrm{ZrCl}_{4}(\mathrm{THF})_{2}$ was added at $-80{ }^{\circ} \mathrm{C}$ in one portion. The resulting mixture was stirred for 24 h at room temperature and then evaporated to dryness. Further on, 100 mL of toluene was added. The resulting mixture was heated to $110{ }^{\circ} \mathrm{C}$ and filtered through a short pad of Celite 503. The filtrate was evaporated to dryness. The residue was recrystallized from toluene to give 50 mg of pure meso-Ty8- Cl_{2} as a first crop. The mother liquor was evaporated to dryness and the residue was recrystallized from toluene to give 300 mg of pure meso- $\mathrm{Ty} 8-\mathrm{Cl}_{2}$ as orange crystals. The overall yield of the pure meso-complex was 350 mg (9\%). The mother liquor was again evaporated and the residue was recrystallized from toluene/hexane mixture to give 1.30 g of a mixture of rac- and meso- $\mathrm{Ty} 8-\mathrm{Cl}_{2}$ with ratio $\mathrm{rac} / \mathrm{meso}=5 / 1$. This crop was washed with hot toluene $(50 \mathrm{~mL})$ and hot hexane $(20 \mathrm{~mL})$ to give $0.50 \mathrm{~g}(12 \%)$ of pure rac- $\mathrm{Ty} 8-\mathrm{Cl}_{2}$ as a yellow powder. Meso-isomer: ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.57(\mathrm{~s}, 2 \mathrm{H}), 7.50(\mathrm{~m}, 4 \mathrm{H}), 7.40(\mathrm{~m}, 2 \mathrm{H}), 7.16-7.29(\mathrm{~m}, 6 \mathrm{H}), 7.14(\mathrm{~m}$, $2 \mathrm{H}), 6.92-7.02(\mathrm{~m}, 8 \mathrm{H}), 6.83(\mathrm{~m}, 2 \mathrm{H}), 6.36(\mathrm{~s}, 2 \mathrm{H}), 5.41(\mathrm{~s}, 2 \mathrm{H}), 5.23(\mathrm{~s}, 2 \mathrm{H}), 2.28(\mathrm{~s}, 6 \mathrm{H}), 1.50(\mathrm{~s}, 3 \mathrm{H}), 1.43(\mathrm{~s}, 18 \mathrm{H}), 1.11$
($\mathrm{s}, 3 \mathrm{H}$). ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 150.3,145.5,145.3,144.1,143.8,142.5,141.1,135.7,134.8,134.6,131.5$, $129.3,126.7,126.0,125.4,125.3,123.7,123.6,123.5,123.4,122.5,118.1,86.0,55.0,50.2,34.7,31.5,18.5,2.89,2.85$. Rac-isomer: Anal. calc. for $\mathrm{C}_{70} \mathrm{H}_{62} \mathrm{Cl}_{2} \mathrm{SiZr}: \mathrm{C}, 76.89 ; \mathrm{H}, 5.72$. Found: $\mathrm{C}, 77.08 ; \mathrm{H}, 5.95 .{ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.42-$ $7.51(\mathrm{~m}, 8 \mathrm{H}), 7.40(\mathrm{~m}, 2 \mathrm{H}), 7.35(\mathrm{~m}, 2 \mathrm{H}), 7.22(\mathrm{~m}, 2 \mathrm{H}), 7.15-7.18(\mathrm{~m}, 4 \mathrm{H}), 7.03(\mathrm{~m}, 4 \mathrm{H}), 6.96(\mathrm{~m}, 4 \mathrm{H}), 6.36(\mathrm{~s}, 2 \mathrm{H}), 5.53$ $(\mathrm{s}, 2 \mathrm{H}), 5.23(\mathrm{~s}, 2 \mathrm{H}), 6.07(\mathrm{~s}, 6 \mathrm{H}), 1.39(\mathrm{~s}, 18 \mathrm{H}), 1.29(\mathrm{~s}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 150.1,145.2,144.3,143.8$, $142.5,141.9,134.2,134.1,132.1,131.7,129.5,129.1,125.9,125.7,125.6,125.5,124.8,124.4,123.7,123.0,121.9$, 117.9, 82.7, 54.5, 50.0, 34.7, 31.5, 17.9, 2.9.

To a suspension of $300 \mathrm{mg}(0.27 \mathrm{mmol})$ of rac-Ty8- Cl_{2} in 40 mL of toluene, 0.94 mL of 2.9 $\mathrm{M} \mathrm{MeMgBr}(2.70 \mathrm{mmol})$ in diethyl ether was added at room temperature. This mixture was stirred for 24 h at $100^{\circ} \mathrm{C}$ and then evaporated to dryness in vacuum. To the residue 100 mL of toluene was added, and the mixture was heated to $110{ }^{\circ} \mathrm{C}$ and then passed through a short pad of Celite ${ }^{\circledR}$ 503. The filtrate was evaporated to dryness. The residue was washed with hot hexane to give 210 mg (73% yield) of pure rac-Ty8 as a pale yellow solid. Anal. calc. for $\mathrm{C}_{72} \mathrm{H}_{68} \mathrm{SiZr}$: C, 82.15; H, 6.51. Found: C, 82.57; H, 6.81. ${ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.51(\mathrm{~m}, 2 \mathrm{H}), 7.38-7.42(\mathrm{~m}, 6 \mathrm{H}), 7.28-7.33(\mathrm{~m}, 6 \mathrm{H}), 7.19(\mathrm{~m}, 2 \mathrm{H}), 7.14(\mathrm{~m}$, $2 \mathrm{H}), 7.02(\mathrm{~m}, 4 \mathrm{H}), 6.92(\mathrm{~m}, 4 \mathrm{H}), 6.36(\mathrm{~s}, 2 \mathrm{H}), 5.53(\mathrm{~s}, 2 \mathrm{H}), 5.22(\mathrm{~s}, 2 \mathrm{H}), 1.90(\mathrm{~s}, 6 \mathrm{H}), 1.40$ $(\mathrm{s}, 18 \mathrm{H}), 1.09(\mathrm{~s}, 6 \mathrm{H}),-1.81(\mathrm{~s}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 150.0,145.6,144.7$, $144.6,144.4,140.7,139.1,134.9,133.6,132.0,129.7,129.1,128.7,128.3,127.2,125.5$, $125.4,125.3,125.2,124.6,123.6,123.3,123.0,118.4,115.6,78.2,54.6,50.0,34.7,33.0$,
31.5, 17.5, 3.0.

Crystal structure determinations

X-ray experiments were carried out using Bruker D8 Quest with Photon III detector diffractometer ($\lambda(\mathrm{Mo}-\mathrm{K} \alpha)=0.71073$ \AA, graphite monochromator, ω-scans) at 100 K. Structure was solved by the direct methods and refined by the fullmatrix least-squares procedure in anisotropic approximation for non-hydrogen atoms. All hydrogen atoms were placed in geometrically calculated positions and included in the refinement using riding model. The details of data collection and crystal structure refinement for which we used SAINT Plus, SADABS and SHELXL-2018/3 program packages, are summarized in Table S1. Crystallographic data for Ty7-Cl 2 have been deposited with the Cambridge Crystallographic Data Center, CCDC No. 2308227. Copies of this information may be obtained from the Director, CCDC, 12 Union Road, Cambridge CB2 1EZ, UK (Fax: +44 1223 336033; e-mail: deposit@ccdc.cam.ac.uk or www.ccdc.cam.ac.uk).

Figure S1. Image of crystal structure of $\mathbf{T y} 7-\mathrm{Cl}_{2}$ generated by CCDC's Mercury software ${ }^{3}$ with thermal ellipsoids at 50\% probability level; hydrogen atoms omitted for clarity.

Table S1. Crystal data and structure refinement for $\mathrm{Ty} 7-\mathrm{Cl}_{2}$.

Identification code
Empirical formula
Formula weight
Temperature
Wavelength
Crystal system
Space group
Unit cell dimensions

Volume
Z
Density (calculated)
Absorption coefficient
F(000)
Crystal size
Theta range for data collection
Index ranges
Reflections collected
Independent reflections
Completeness to theta $=25.242^{\circ}$
Absorption correction
Refinement method
Data / restraints / parameters
Goodness-of-fit on F2
Final R indices for 10193 refl. With [I>2sigma(I)]
R indices (all data)
Extinction coefficient
Largest diff. peak and hole

Ty7-Cl2
C68 H62 Cl2 Si Zr
1069.38

120(2) K
0.71073 A

Triclinic
P-1
$a=13.3784(7) \AA \quad \alpha=110.9348(10)^{\circ}$.
$b=14.5841(8) \AA \quad \beta=103.3509(11)^{\circ}$.
$c=15.1837(8) \AA \quad \gamma=96.2143(11)^{\circ}$.
2632.2(2) Å 3

2
$1.349 \mathrm{Mg} / \mathrm{m}^{3}$
$0.377 \mathrm{~mm}^{-1}$
1116
$0.250 \times 0.220 \times 0.220 \mathrm{~mm}^{3}$
1.600 to 29.000°.
$-18<=h<=18,-19<=k<=19,-20<=\mid<=20$
53217
14004 [R (int) $=0.0705$]
99.9 \%

Semi-empirical from equivalents
Full-matrix least-squares on F2
14004/45 / 652
1.003
$R 1=0.0430, w R 2=0.0881$
$R 1=0.0729, w R 2=0.1016$
n/a
0.551 and -0.590 e. \AA^{-3}

Figure $\mathrm{S} 2 .{ }^{1} \mathrm{H}$ NMR spectrum of proligand $\mathbf{4 b}$ in CDCl_{3} at room temperature. ($\left.{ }^{*}\right)$ - signals of n-hexane.

Figure $\mathrm{S} 3 .{ }^{13} \mathrm{C}$ NMR spectrum of proligand 4 b in CDCl_{3} at room temperature.

Figure $\mathrm{S} 4 .{ }^{1} \mathrm{H}$ NMR spectrum of crude mixture of rac- and meso- $\mathrm{Ty} 4-\mathrm{Cl}_{2}$ in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$ at room temperature.

Figure $\mathrm{S} 5 .{ }^{13} \mathrm{C}$ NMR spectrum of crude mixture of rac- and meso- $\mathrm{Ty} 4-\mathrm{Cl}_{2}$ in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$ at room temperature.

Figure S6. ${ }^{1} \mathrm{H}$ NMR spectrum of rac-Ty4 in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$ at room temperature.

Figure S7. ${ }^{1} \mathrm{H}$ NMR spectrum of rac-Ty4 in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$ at room temperature.

Figure S8. ${ }^{1} \mathrm{H}$ NMR spectrum of 2-((triptycen-1-yl)methyl)malonate in CDCl_{3} at room temperature.

Figure S9. ${ }^{13} \mathrm{C}$ NMR spectrum of 2-((triptycen-1-yl)methyl)malonate in CDCl_{3} at room temperature.

Figure S10. ${ }^{1} \mathrm{H}$ NMR spectrum of 3-(triptycene-1-yl)propanoic acid in CDCl_{3} at room temperature.

Figure S12．${ }^{1} \mathrm{H}$ NMR spectrum of 4，5－（9，10－dihydroanthracene－9，10－diyl）－indan－1－one in CDCl_{3} at room temperature．

$\stackrel{\substack{8 \\ \sim \\ \hline}}{ }$	ल풍․ －9きまき	$\stackrel{\square}{\square}$	$\begin{aligned} & \text { qeang } \\ & \text { Nogng } \end{aligned}$	$\begin{aligned} & 0 \\ & 8 \\ & 8 \\ & \text { i } \\ & \hline \end{aligned}$	\％	§	－

Figure S13．${ }^{13} \mathrm{C}$ NMR spectrum of 4，5－（9，10－dihydroanthracene－9，10－diyl）－indan－1－one in CDCl_{3} at room temperature．

Figure S14. ${ }^{1} \mathrm{H}$ NMR spectrum of 4,5-(9,10-dihydroanthracene-9,10-diyl)-indan-1-ol in CDCl_{3} at room temperature.

Figure S15. ${ }^{13} \mathrm{C}$ NMR spectrum of 4,5-(9,10-dihydroanthracene-9,10-diyl)-indan-1-ol in CDCl_{3} at room temperature.

Figure $\mathrm{S} 16 .{ }^{1} \mathrm{H}$ NMR spectrum of 5 a in CDCl_{3} at room temperature.

Figure S17. ${ }^{13} \mathrm{C}$ NMR spectrum of 5 a in CDCl_{3} at room temperature.

Figure $\mathrm{S} 18 .{ }^{1} \mathrm{H}$ NMR spectrum of proligand 5 b in CDCl_{3} at room temperature. (${ }^{*}$) - signals of n-hexane.

Figure $\mathrm{S} 19 .{ }^{13} \mathrm{C}$ NMR spectrum of proligand 5 b in CDCl_{3} at room temperature. (${ }^{*}$) - signals of n-hexane.

Figure S20. ${ }^{1} \mathrm{H}$ NMR spectrum of crude rac- $\mathrm{Ty} 5-\mathrm{Cl}_{2}$ in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$ at room temperature.

Figure S21. ${ }^{13} \mathrm{C}$ NMR spectrum of crude rac- $\mathrm{Ty} 5-\mathrm{Cl}_{2}$ in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$ at room temperature.

Figure S22. ${ }^{1} \mathrm{H}$ NMR spectrum of rac- Ty 5 in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$ at room temperature. $\left(^{*}\right)$ - signals of toluene.

Figure S23. ${ }^{13} \mathrm{C}$ NMR spectrum of rac-Ty5 in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$ at room temperature.

Figure S24. ${ }^{1} \mathrm{H}$ NMR spectrum of 5-bromo-6-chloro-1-methoxy-2-methylindane (6 b) in CDCl_{3} at room temperature.

Figure $\mathrm{S} 25 .{ }^{13} \mathrm{C}$ NMR spectrum of 5-bromo-6-chloro-1-methoxy-2-methylindane (6 c) in CDCl_{3} at room temperature.

Figure S26. ${ }^{1} \mathrm{H}$ NMR spectrum of 2-methyl-5,6-(9,10-dihydroanthracene-9,10-diyl)indene (6d) in CDCl_{3} at room temperature.

Figure S27. ${ }^{13} \mathrm{C}$ NMR spectrum of 2-methyl-5,6-(9,10-dihydroanthracene-9,10-diyl)indene (6 d) in CDCl_{3} at room temperature.

Figure $\mathrm{S} 28 .{ }^{1} \mathrm{H}$ NMR spectrum of proligand 6 e in CDCl_{3} at room temperature (residual n -hexane).

Figure S29. ${ }^{13} \mathrm{C}$ NMR spectrum of proligand 6 e in CDCl_{3} at room temperature.

Figure $\mathrm{S} 30 .{ }^{1} \mathrm{H}$ NMR spectrum of meso- $\mathrm{Ty} 6-\mathrm{Cl}_{2}$ in CDCl_{3} at room temperature.

Figure $\mathrm{S} 31 .{ }^{13} \mathrm{C}$ NMR spectrum of meso- $\mathrm{Ty} 6-\mathrm{Cl}_{2}$ in CDCl_{3} at room temperature.

Figure $\mathrm{S} 32 .{ }^{1} \mathrm{H}$ NMR spectrum of $\mathrm{rac}-\mathrm{Ty} 6-\mathrm{Cl}_{2}$ in CDCl_{3} at room temperature.

Figure S33. ${ }^{1} \mathrm{H}$ NMR spectrum of rac-Ty6 in CDCl_{3} at room temperature.

Figure $\mathrm{S} 34 .{ }^{13} \mathrm{C}$ NMR spectrum of rac-Ty6 in CDCl_{3} at room temperature.

Figure S35. ${ }^{1} \mathrm{H}$ NMR spectrum of dibromo-2,4,7-trimethylindan-1-one (7b) in CDCl_{3} at room temperature.

Figure S36. ${ }^{13} \mathrm{C}$ NMR spectrum of dibromo-2,4,7-trimethylindan-1-one (7b) in CDCl_{3} at room temperature.

Figure S37. ${ }^{1} \mathrm{H}$ NMR spectrum of 5,6-dibromo-1-methoxy-2,4,7-trimethylindane (7c) in CDCl_{3} at room temperature.

Figure S38. ${ }^{13} \mathrm{C}$ NMR spectrum of 5,6-dibromo-1-methoxy-2,4,7-trimethylindane (7c) in CDCl_{3} at room temperature.

Figure S39. ${ }^{1} \mathrm{H}$ NMR spectrum of 2,4,7-trimethyl-5,6-(9,10-dihydroanthracene-9,10-diyl)indene (7d)_n CDCl_{3} at room temperature.

Figure S40. ${ }^{13} \mathrm{C}$ NMR spectrum of 2,4,7-trimethyl-5,6-(9,10-dihydroanthracene-9,10-diyl)indene (7d) in CDCl_{3} at room temperature.

Figure $\mathrm{S} 41 .{ }^{1} \mathrm{H}$ NMR spectrum of rac- $\mathrm{Ty} 7-\mathrm{Cl}_{2}$ in CDCl_{3} at room temperature.

Figure $\mathrm{S} 42 .{ }^{13} \mathrm{C}$ NMR spectrum of rac- $\mathrm{Ty} 7-\mathrm{Cl}_{2}$ in CDCl_{3} at room temperature.

Figure S43. ${ }^{1} \mathrm{H}$ NMR spectrum of rac-Ty7 in CDCl_{3} at room temperature.

Figure $\mathrm{S} 44 .{ }^{13} \mathrm{C}$ NMR spectrum of rac-Ty7 in CDCl_{3} at room temperature.

Figure $\mathrm{S} 45 .{ }^{1} \mathrm{H}$ NMR spectrum of 6-amino-7-bromo-2-methylindan-1-one in CDCl_{3} at room temperature.

Figure S46. ${ }^{13} \mathrm{C}$ NMR spectrum of 6-amino-7-bromo-2-methylindan-1-one in CDCl_{3} at room temperature.

Figure S47. ${ }^{1} \mathrm{H}$ NMR spectrum of 6-amino-7-(4-tert-butylphenyl)-2-methylindan-1-one in CDCl_{3} at room temperature.

Figure S48. ${ }^{13} \mathrm{C}$ NMR spectrum of 6-amino-7-(4-tert-butylphenyl)-2-methylindan-1-one in CDCl_{3} at room temperature.

Figure S49. ${ }^{1} \mathrm{H}$ NMR spectrum of 6-amino-5-bromo-7-(4-tert-butylphenyl)-2-methylindan-1-one (8a) in CDCl_{3} at room temperature.

Figure S50. ${ }^{13} \mathrm{C}$ NMR spectrum of 6-amino-5-bromo-7-(4-tert-butylphenyl)-2-methylindan-1-one (8a) in CDCl_{3} at room temperature.

Figure S51. ${ }^{1} \mathrm{H}$ NMR spectrum of 5,6-dibromo-7-(4-tert-butylphenyl)-2-methylindan-1-one (8b) in CDCl_{3} at room temperature.

Figure S52. ${ }^{13} \mathrm{C}$ NMR spectrum of 5,6-dibromo-7-(4-tert-butylphenyl)-2-methylindan-1-one (8b) in CDCl_{3} at room temperature.

Figure S53. ${ }^{1} \mathrm{H}$ NMR spectrum of 5,6-dibromo-7-(4-tert-butylphenyl)-1-methoxy-2-methylindane (8c) in CDCl_{3} at room temperature.

Figure S54. ${ }^{13} \mathrm{C}$ NMR spectrum of 5,6-dibromo-7-(4-tert-butylphenyl)-1-methoxy-2-methylindane (8c) in CDCl_{3} at room temperature.

Figure S55. ${ }^{1} \mathrm{H}$ NMR spectrum of 2-methyl-4-(4-tert-butylphenyl)-5,6-(9,10-dihydroanthracene-9,10-diyl)indene (8d) in CDCl_{3} at room temperature.

Figure $\mathrm{S} 56 .{ }^{1} \mathrm{H}$ NMR spectrum of proligand 8 e in CDCl_{3} at room temperature.

Figure $\mathrm{S} 57 .{ }^{1} \mathrm{H}$ NMR spectrum of rac-Ty8- Cl_{2} in CDCl_{3} at room temperature.

Figure $\mathrm{S} 58 .{ }^{13} \mathrm{C}$ NMR spectrum of rac-Ty8-Cl2 in CDCl_{3} at room temperature.

Figure S59. ${ }^{1} \mathrm{H}$ NMR spectrum of rac-Ty8 in CDCl_{3} at room temperature.

4.
$\begin{array}{lllllllllllllllllllllll}200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & 0 & -10 & -20\end{array}$
Figure $\mathrm{S} 60 .{ }^{13} \mathrm{C}$ NMR spectrum of rac-Ty8 in CDCl_{3} at room temperature.

Polymerization Experiments and Polymer Characterization

Table S1. Stir paddles, scavenger amounts, monomer pressure and solvent choice for the polymerization experiments.

	Propene Homopolymerization		Ethene/1-Hexene Copolymerization
Temperature	$T_{\text {p }}=60^{\circ} \mathrm{C}$	$T_{\mathrm{p}}=100^{\circ} \mathrm{C}$	$T_{\text {p }}=60^{\circ} \mathrm{C}$
$\boldsymbol{P}_{\text {monomer }}$	95 psi (6.6 bar)	115 psi (7.9 bar)	65 psi (4.5 bar)
Stir Paddles	polyether ether ketone (PEEK)	Titanium	polyether ether ketone (PEEK)
TiBA Scavenger	$5 \mu \mathrm{~mol}$	$10 \mu \mathrm{~mol}$	$5 \mu \mathrm{~mol}$
Reaction Volume	5 mL	5 mL	6 mL
Solvent (cell, chaser and buffer)	toluene	mixed alkane diluent (ISOPAR-G)	toluene

Cat	$\begin{gathered} T_{\mathrm{p}} \\ \left({ }^{\circ} \mathrm{C}\right) \end{gathered}$	$\underset{(\mathrm{psi})}{p}$	B/M ${ }^{*}$	$\begin{gathered} \text { Cat } \\ \text { (nmol) } \end{gathered}$	$\begin{aligned} & \boldsymbol{t}_{\mathrm{p}} \\ & (\mathrm{~s} \end{aligned}$	Yield (mg)	$R_{p}{ }^{*}$	$\begin{gathered} M_{n}, \\ (\mathbf{k D a}) \end{gathered}$	PDI	mmrrmm (\%)	$\sigma^{(a)}$	$\begin{aligned} & {[2,1]} \\ & (\%) \end{aligned}$	$\begin{aligned} & [3,1]] \\ & (\%) \end{aligned}$
Ty4	60	95	2	3	641	108	202	790	2.7	n.d	20.9998	0.20	n.d.
Ty4	60	95	2	2	1064	63	107	960	2.4	n.d	20.9998	0.18	n.d.
Ty4	100	115	10	3	2152	120	67	140	2.5	n.d.	20.9998	0.24	0.02
Ty4	100	115	10	3	2275	80	42	160	2.5	n.d.	20.9998	0.24	0.03
Ty5	60	95	2	3	416	87	252	60	2.1	0.04	0.9996	1.0	n.d.
Ty5	60	95	2	3	373	97	313	60	2.0	0.05	0.9995	1.0	n.d
Ty6	60	95	5	3.5	1768	93	54	40	2.1	1.0	0.989	1.3	0.03
Ty6	60	65	5	5	543	46	61	40	1.9	1.2	0.987	1.2	0.07
Ty7	60	95	2	60	1763	93	3	24	2.1	0.43	0.9957	7.9	0.10
Ty7	60	95	2	60	1872	99	3	26	2.0	0.43	0.9957	7.9	0.10
Ty8	60	95	2	4	1729	41	21	440	2.0	0.03	0.9997	1.3	0.02
Ty8	60	95	2	4	1279	37	26	420	2.2	0.03	0.9997	1.3	0.02
Ty8	100	115	10	12.5	1415	61	12	70	2.1	0.11	0.9989	1.4	0.50
Ty8	100	115	10	12.5	1421	68	14	70	2.1	0.09	0.9991	1.4	0.45

* in $\mathrm{kg} \mathrm{mmol}_{\mathrm{M}}{ }^{-1} \mathrm{~h}^{-1}$, $\mathrm{H}^{\mathrm{B}} / \mathrm{M}=$ activator:metal ratio. (a) Probability of inserting propene with the favored enantioface at each of the two enantiotopic sites.

Cat	$\begin{array}{r} V_{c 6} \\ (\mu l) \\ \hline \end{array}$	B/M ${ }^{\text {\# }}$	$\begin{gathered} \text { Cat } \\ \text { (nmol) } \end{gathered}$	$\begin{aligned} & \hline \text { Yield } \\ & \text { (mg) } \\ & \hline \end{aligned}$	$\begin{gathered} \hline t_{\mathrm{p}} \\ (\mathrm{~s}) \\ \hline \end{gathered}$	$R_{p}{ }^{*}$	$\begin{gathered} M_{\mathrm{n}}, \\ (\mathrm{kDa}) \\ \hline \end{gathered}$	PDI	$\begin{gathered} {[\mathrm{H}]} \\ (\mathrm{mol} \%) \\ \hline \end{gathered}$	$r_{\text {E }}$	$r_{\text {H }}$
Ty1	560	2	5	70	929	54	63	2.3	34.6	4.6	0.23
Ty1	560	2	5	76	1189	47	64	2.3	36.7	3.9	0.24
Ty1	850	2	5	88	1461	43	65	2.4	45.0	4.2	0.22
Ty1	850	2	5	102	1426	52	76	2.1	47.4	3.4	0.23
Ty2	560	5	6	64.7	655	59	64	2.4	38.0	3.5	0.24
Ty2	560	5	6	65.1	684	57	58	2.8	38.3	3.4	0.23
Ty2	850	5	6	86.7	1008	52	101	1.9	47.4	3.4	0.22
Ty3	560	2	5	79.8	3513.0	16	100	2.3	40.0	3.2	0.26
Ty3	560	2	6	28.4	1308.0	13	148	2.4	41.9	3.2	0.29
Ty3	850	2	3	56.7	3488.0	20	126	2.4	48.4	3.4	0.24
Ty3	850	2	8	83.5	697.0	54	88	2.1	47.5	3.4	0.22
Ty4	560	2	5	89.2	1067.0	43	58	2.3	33.3	4.7	0.22
Ty4	850	2	3	67.2	891.0	22	70	2.3	43.6	4.3	0.20
Ty4	850	2	3	68.0	3600.0	23	72	2.3	43.3	4.2	0.20
Ty5	560	2	6	101.4	1188	51	12	2.0	39.3	3.2	0.26
Ty5	560	2	6	103.7	1189	52	12	2.0	38.9	3.6	0.27
Ty6	560	2	2.5	68	158	618	40	2.2	18.1	9.1	0.01
Ty6	850	2	5	83	157	382	40	1.9	23.1	9.2	0.01
Ty6	850	2	4	101	11	791	33	2.0	24.4	8.2	0.01
Ty7	560	2	5	59	140	301	44	2.0	13.1	18.6	0.12
Ty7	850	2	5	49	386	91	41	2.0	19.1	18.9	0.11
Ty7	850	2	5	63	147	310	39	1.9	18.6	19.5	0.12
Ty8	560	2	12.5	85	980	25	78	2.2	40.3	3.3	0.29
Ty8	560	2	15	85	567	36	69	2.4	40.7	3.3	0.31
Ty8	850	2	5	59	4449	9.5	82	2.2	50.3	3.4	0.27
Ty8	850	2	12.5	105	1474	21	75	2.1	49.7	3.3	0.28

Other experimental conditions: $\mathrm{T}_{\mathrm{p}}=60^{\circ} \mathrm{C} ; p\left(\mathrm{C}_{2} \mathrm{H}_{6}\right)=65 \mathrm{psi} ; *$ in $\mathrm{kg} \mathrm{mmol}_{\mathrm{M}} \mathrm{H}^{-1}, \# \mathrm{~B} / \mathrm{M}=$ activator:metal ratio

Computational Details

QSAR models

The following QSAR equations (from Ref 4) were used to predict the performance of catalysts Ty1-Ty8 at $T_{\mathrm{p}}=60^{\circ} \mathrm{C}$.

Stereoselectivity Model

$\Delta \Delta G^{\ddagger}{ }_{\text {enantio, exp }}=$
$0.474 \Delta \% V_{\text {Bur, } \mathrm{Zr}}-3.247$

Molecular Weight Model

$\Delta \Delta G^{\ddagger}{ }_{\mathrm{T}, \exp }=$
$0.127 \Delta \% V_{\text {Bur, } \mathrm{Zr}}+0.023 \% V_{\text {Bur, } \mathrm{C}}+0.039 \% V_{\text {Bur,C5-6 }}-0.220 \% V_{\text {Bur,open }}-0.099 \% V_{\text {Bur,C2-3,Front }}+13.971$

Regioselectivity Model

$\Delta \Delta G^{\ddagger}{ }_{\text {regiotot, exp }}=$

The descriptor values were determined as described in $\operatorname{Ref}{ }^{910}$, with the exception of $\% V_{B u r}$, c4, which is used to screen steric bulk coming backwards from the active pocket. In this case, the triptycene part linked to the 5-position (going away from the active pocket) was additionally deleted as shown in Ref ${ }^{1}$.

Table S3. Predicted vs Observed Performance at $T_{\mathrm{p}}=60^{\circ} \mathrm{C}$. iPP.

Catalyst	Descriptors							Experimental Observables			Experimental Observables (as $\Delta \Delta G \ddagger$)			QSPR model predictions			QSPR model deviation		
	$\Delta \% V^{\prime \prime}{ }_{\text {bur, }}{ }^{\text {a }}$	$\% V_{\text {Bur, }}$ ca	$\% V_{\text {Bur,cs. } 6}$		$\% V_{\text {Bur,open }}$	$\% V_{\text {Bur, } 22.3, \text { ront }}$	$\mathrm{e}_{\text {ercrin , NPA }}$	σ	$\begin{gathered} 2,1+3,1, \\ \% \\ \hline \end{gathered}$	M_{n} kDa	$\Delta \Delta G^{\dagger}{ }_{\text {enantio, exp }}$	$\Delta \Delta G^{\text {regiotot, exp }}$	$\Delta \Delta G^{\dagger}{ }_{\text {mn, exp }}$	$\Delta \Delta G^{\ddagger}{ }_{\text {enanio, }}$ SaR	$\Delta G^{\ddagger}{ }_{\text {regiotot, } \text { aSAR }}$ 1/mol	$\Delta \Delta G^{\dagger}{ }_{\text {mr, QSAR }}$	$\Delta \Delta G^{\ddagger}{ }_{\text {enantio }}$	$\Delta \Delta G^{\ddagger}{ }_{\text {regitotot }}$	$\Delta \Delta G^{\dagger}{ }_{\text {m }}$
Ty1	19.2	45.9	53.1	46.5	34.6	118.0	0.396	0.9998	0.26	1100	5.6	3.9	6.7	5.9	4.5	7.3	0.2	0.6	0.6
Ty2	19.2	45.4	53.8	47.0	34.6	126.8	0.405	0.9997	0.18	1900	5.4	4.2	7.1	5.9	4.7	7.3	0.5	0.5	0.2
Ty3	19.2	46.5	53.9	47.0	35.2	118.0	0.400	0.9997	0.11	1400	5.4	4.5	6.9	5.9	4.1	7.2	0.5	0.4	0.3
Ty4	20.8	55.5	53.8	47.0	34.9	126.7	0.400	0.9998	0.19	880	5.6	4.1	6.6	6.6	4.9	7.7	1.0	0.8	1.1
Ty5	21.1	40.7	51.1	37.0	34.2	99.2	0.343	0.9995	1.0	60	5.0	3.0	4.8	6.8	4.6	8.4	1.7	1.5	3.6
Ty6	12.5	6.0	72.3	46.6	34.5	112.2	0.384	0.989	1.35	40	2.9	2.8	4.5	2.7	2.7	6.3	0.2	0.2	1.8
Ty7	13.4	12.4	77.1	46.3	38.3	118.9	0.388	0.9957	8.0	25	3.6	1.6	4.2	3.1	0.9	6.0	0.5	0.7	1.7
Ty8	17.7	21.6	73.1	46.8	35.3	130.4	0.402	0.9997	1.32	430	5.4	2.9	6.1	5.1	3.2	7.2	0.2	0.4	1.1

Table S4. Predicted vs Observed Performance at $T_{\mathrm{p}}=60^{\circ} \mathrm{C}$. E/H Copolymerization.

Catalyst	Descriptors								Experimental Observables		Experimental Observables (as $\Delta \Delta G \ddagger$)		QSPR model predictions		QSPR model deviation	
									$r_{\text {E }}$	$r_{\text {H }}$	$\Delta \Delta G^{\dagger}{ }_{\text {EHEE }}$	$\Delta \Delta G^{\dagger}{ }_{\text {HE:HH }}$	$\Delta \Delta G_{\text {EHHE, }{ }^{\dagger} \text { SSAR }} \Delta$	$\Delta \Delta^{*}{ }_{\text {HEFHH,SSAR }}$	$\Delta \Delta G^{\ddagger}{ }_{\text {EH.EE }}$	$\Delta \Delta G^{\text {нEEHH }}$
													kcal/mol			
Ty1	19.2	45.9	53.1	46.5	34.6	118.0	0.396	170	4.0	0.23	0.9	-1.0	0.3	-0.7	0.6	0.2
Ty2	19.2	45.4	53.8	47.0	34.6	126.8	0.405	170	3.5	0.23	0.8	-1.0	0.4	-0.7	0.5	0.3
ty 3	19.2	46.5	53.9	47.0	35.2	118.0	0.400	170	3.3	0.25	0.8	-0.9	0.6	-0.8	0.2	0.1
Ty4	20.8	55.5	53.8	47.0	34.9	126.7	0.400	170	4.4	0.21	1.0	-1.0	0.3	-0.5	0.7	0.5
Ty5	21.1	40.7	51.1	37.0	34.2	99.2	0.343	170	3.4	0.27	0.8	-0.9	0.3	-0.8	0.5	0.1
Ty6	12.5	6.0	72.3	46.6	34.5	112.2	0.384	120	8.8	0.014	1.4	-2.8	1.9	-3.0	0.5	0.2
Ty7	13.4	12.4	77.1	46.3	38.3	118.9	0.388	170	19	0.12	1.9	-1.4	2.9	-2.3	0.9	0.9
Ty8	17.7	21.6	73.1	46.8	35.3	130.4	0.402	170	3.3	0.29	0.8	-0.8	1.2	-1.0	0.5	0.2

Table S5. Energies, Enthalpies and Gibbs free energies for all DFT structures for species for Ty7.

Name	Elimination @	Formula	Energy(Dz)	Energy(TZ)	S2()	alue('conveumNegativelata('vibrati			ZPE()	$y \operatorname{Corr}(\mathrm{p}=1.0 / \operatorname{Corr}(\mathrm{p}=1.0$,		H	G	$\Delta \mathrm{H}$	G \triangle
2_Me_4_7_Me_5_6-triptycene_after21_beta_A_BHE_TS	$\beta-\mathrm{C}_{\text {chain }}$	C58H55Sizr	-2580.273957	-2579.369981	0	FALSE	1	true	0.934287	0.990125	0.141686	-2578.379856	-2578.47479	3.1	4.2
2_Me_4_7_Me_5_6-triptycene_after21_beta_B_BHE_TS	$\beta-C_{\text {methy }}$	C58H55Sizr	-2580.261004	-2579.35657	0	FALSE	1	true	0.934217	0.990618	0.143196	-2578.365951	-2578.46189	11.9	2.3
2_Me_4_7_Me_5_6-triptycene_after21_beta_C_BHE_TS	$\beta-C_{\text {chain }}$	C58H55Sizr	-2580.26641	-2579.361519	0	FALSE	1	true	0.933956	0.990459	0.143186	-2578.37106	-2578.467	8.7	9.1
2_Me_4_7_Me_5_6-triptycene_RS_after21_alpha_agostic		C58H55Sizr	-2580.264833	-2579.364076	0	FALSE	0	true	0.93783	0.994861	0.145956	-2578.369215	-2578.46701	9.8	9.1
2_Me_4_7_Me_5_6-triptycene_RS_after21_beta_agostic_A		C58H55Sizr	-2580.284538	-2579.369981	0	false	0	true	0.938084	0.994888	0.144874	-2578.375093	-2578.47216	6.1	5.9
2_Me_4_7_Me_5_6-triptycene_RS_after21_beta_agostic_B		C58H55Sizr	-2580.284793	-2579.35657	0	FALSE	0	TRUE	0.937988	0.994635	0.143699	-2578.361935	-2578.45821	14.4	4.6
2_Me_4_7_Me_5_6-triptycene_RS_after21_beta_agostic_C		C58H55Sizr	-2580.283141	-2579.36152	0	FALSE	0	true	0.938354	0.99491	0.143409	-2578.366609	-2578.46269	11.5	1.8
2_Me_4_7_Me_5_6-triptycene_RS_after21_gamma_agostic		C58H55Sizr	-2580.275659	-2579.379445	0	FALSE	0	true	0.93776	0.99457	0.144272	-2578.384875	-2578.48154	0.0	0.0

References

(1) Kulyabin, P. S.; Goryunov, G. P.; Sharikov, M. I.; Izmer, V. V.; Vittoria, A.; Budzelaar, P. H. M.; Busico, V.; Voskoboynikov, A. Z.; Ehm, C.; Cipullo, R.; et al. ansa-Zirconocene Catalysts for Isotactic-Selective Propene Polymerization at High Temperature: A Long Story Finds a Happy Ending. J. Am. Chem. Soc. 2021, 143, 7641-7647. DOI: 10.1021/jacs.1c03380.
(2) Alcalde, E.; Mesquida, N.; Frigola, J.; López-Pérez, S.; Mercè, R. Indene-based scaffolds. Design and synthesis of novel serotonin 5-HT6receptor ligands. Organic \& Biomolecular Chemistry 2008, 6, 3795-3810, 10.1039/B808641A. DOI: 10.1039/B808641A.
(3) Macrae, C. F.; Bruno, I. J.; Chisholm, J. A.; Edgington, P. R.; McCabe, P.; Pidcock, E.; Rodriguez-Monge, L.; Taylor, R.; van de Streek, J.; Wood, P. A. Mercury CSD 2.0 - new features for the visualization and investigation of crystal structures. Journal of Applied Crystallography 2008, 41, 466-470. DOI: doi:10.1107/S0021889807067908.
(4) Ehm, C.; Vittoria, A.; Goryunov, P. G.; Izmer, V. V.; Kononovich, S. D.; Samsonov, V. O.; Di Girolamo, R.; Budzelaar, H. M. P.; Voskoboynikov, Z. A.; Busico, V.; et al. An Integrated High Throughput Experimentation/Predictive QSAR Modeling Approach to ansa-Zirconocene Catalysts for Isotactic Polypropylene. Polymers 2020, 12, 1005-1005. DOI: 10.3390/polym12051005.

