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1. Additional synthetic details

General procedure for the preparation of ditosylates, 4[n].

To a solution of tetraecthylene glycol, HO(CH.CH2O)sH (500 mg, 2.57 mmol),
hexaethylene glycol, HO(CH,CH20)¢H (726 mg, 2.57 mmol) or nonaethylene glycol,
HO(CH2CH20)9H (1.07 g, 2.57 mmol) in CH2Cl; (15 mL), triethylamine (2.2 mL, 15.42
mmol) and 4-toluenesulfonyl chloride (98 mg, 5.14 mmol) were added. The reaction
mixture was allowed to stir overnight. Water (40 mL) was added into the solution and
CHCl> layer was extracted (3 x 15 mL). The organic layer was collected and dried
(Na2S04) and the solvent was removed in rotary evaporator to get the crude product, which

was purified by column chromatography.

Tetraethylene glycol ditosylate (4[4]).!

The crude product obtained using HO(CH.CHO);H (6.1 g, 31.41 mmol), 4-
toluenesulfonyl chloride (11.98 g, 68.81 mmol) and triethylamine (26 mL, 188.43 mmol)
was purified by column chromatography (SiO., CH2Clo/CH3CN, 4:1) to give 12.5 g (79%
yield) of pure 4[4] as a colourless oil. "TH NMR (400 MHz, CDCl3) § 7.78 (d, J = 8.4 Hz,
4H), 7.33 (d, J=8.3 Hz, 4H), 4.14 (d, /= 4.8 Hz, 4H), 3.67 (d, /= 4.8 Hz, 4H), 3.58-3.53
(m, 8H), 2.44 (s, 6H). 3C{'H} NMR (101 MHz, CDCls) § 145.0, 133.1, 130.0, 128.1, 70.9,
70.7, 69.4, 68.8, 21.8. HRMS (ESI-TOF) m/z: [M + H]" calcd for C22H3109S>: 503.1409,
found: 503.1382.

Hexaethylene glycol ditosylate (4[6]).

The crude product obtained using HO(CH,CH:0)¢H (4.0 g, 14.17 mmol), 4-
toluenesulfonyl chloride (5.40 g, 28.34 mmol) and triethylamine (12 mL, 85.02 mmol) was
purified by column chromatography (SiO>, CH2Cl2/EtOAc, 7:3) to give 5.98 g (72% yield)
of pure 4[6] as a colourless oil. 'H NMR (400 MHz, CDCl3) & 7.79 (d, J = 8.3 Hz, 4H),
7.33 (d, J= 8.0 Hz, 4H), 4.15 (t, J = 4.8 Hz, 4H), 3.67 (t, J = 4.9 Hz, 4H), 3.63-3.56 (m,
16H), 2.44 (s, 6H). *C{'H} NMR (101 MHz, CDCIl3) § 144.9, 133.1, 130.0, 128.1, 70.9,

S2



70.72, 70.66, 70.62, 69.4, 68.8, 21.8. HRMS (ESI-TOF) m/z: [M + H]" calcd for
C26H39011S2: 591.1934, found: 591.1898.

Nonaethylene glycol ditosylate (4[9]).

The crude product obtained using HO(CH2CH20)9H (4.0 g, 9.65 mmol), 4-toluenesulfonyl
chloride (3.67 g, 19.30 mmol) and triethylamine (8 mL, 57.90 mmol) was purified by
column chromatography (SiO2, CH2Clo/CH3CN, 3:2) to give 5.05 g (72% yield) of pure
4[9] as a colourless oil. 'H NMR (400 MHz, CDCl3)  7.78 (d, J= 8.3 Hz, 4H), 7.33 (d, J
=8.1 Hz, 4H), 4.14 (t,J= 5.0, 4H), 3.67 (t, J = 4.8, 4H), 3.64-3.55 (m, 28H), 2.43 (s, 6H).
BC{'H} NMR (101 MHz, CDCl3) § 144.9, 133.1, 129.9, 128.1, 70.8, 70.69, 70.65, 70.60,
69.4, 68.8,21.8. HRMS (ESI-TOF) m/z: [M + H]" caled for C32Hs1014S5: 723.2720, found:
723.2712.
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2. NMR spectra
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Figure S1. '"H NMR spectrum of 2F[4] (CDCl3, 400 MHz).
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Figure S3. 3C{'H} NMR spectrum of 2F[4] (CDCl3, 101 MHz).
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Figure S40. '"H NMR spectrum of S2[Li] (CD3;CN, 400 MHz).
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Figure S41. ''B NMR spectrum of S2[Li] (CD3;CN, 128 MHz).
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Figure S42. BC{'H} NMR spectrum of S2[Li] (CDsCN, 101 MHz).
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Figure S43. "Li NMR spectrum of S2[Li] (CDCls, 156MHz).
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3. DSC measurements

DSC data were obtained with a DSC-2500 instrument and are shown in Figures S44-S48.

Heating and cooling rates were 10 K min'!.

SmA cooling
-
T
Cr N I
heating
[ ‘ { ‘ { ‘ { ‘ { ‘ {
60 80 100 120 140 160

temperature /°C
Figure S44. DSC trace of 2F[4].
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heatlng

{ ‘ \
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temperature /°C

Figure S45. DSC trace of 2F[6].
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Figure S46. DSC trace of 2F[9].
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Figure S47. DSC trace of the electrolyte sample 2F[6]-S2[Li].
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Figure S48. DSC trace of the electrolyte sample 2F[9]-S2[Li].

4. Additional photomicrographs of LC textures

isotropic phase. Left: nematic phase at 151 °C. Right: monotropic SmA phase and
crystals growing from the nematic phase at 86 °C.
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Figure S50. Photomicrographs of textures for 2F[9] obtained on cooling from the
isotropic phase. Left: nematic phase at 76 °C. Right: monotropic SmA phase at 66 °C.
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Figure S51. Photomicrographs of 2F[6]-S2[Li] in a gold interdigitated electrode:
nematic at 120 °C (left) and SmA phase at 100 °C (right).
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Figure S52. Photomicrographs of 2F[6]-S2[Li] in an ITO cell with planar alignment:
nematic at 120 °C (left) and SmA phase at 115 °C (right).
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Figure S53. Photomicrographs of 2F[9]-S2[Li]: nematic growing from the isotropic
phase at 94 °C (left) and SmA phase at 86 °C (right).

S. Powder XRD data
Broad angle X-ray diffraction studies were performed for unaligned samples using a
Bruker D8 GADDS instrument (Cu Ka radiation, A=1.54 A, incident beam formed by
Gobel mirror monochromator and point collimator 0.5 mm, two-dimensional detector
Vantec 2000). Samples were prepared in a form of a droplet on a heated surface; their
temperature was controlled with a modified Linkam heating stage. Results are shown in

the main text.

6. Sample preparation for EIS measurements

e Interdigitated gold electrode
The interdigitated gold electrode (gaps 10 um between the electrodes) was purchased from
Metrohm Dropsens (Figure S54).
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Figure S54. Interdigitated gold electrode.

The electrode surface was cleaned properly by wiping it with EtOH, and the
electrolyte sample was deposited on the electrode surface. Then the cell was heated to the
smectic phase temperature of the sample, and a glass plate was placed on top of the
electrolyte sample and gently pressed on the top of the glass plate to fill the electrolyte
sample on the electrode surface. Using a polarized optical microscope, the parallel
alignment of the sample in the smectic phase was confirmed by heating the sample to the
isotropic temperature and then cooling it to the smectic phase (for images see 2F[6]-S2[Li]
in the folder POM images). Copper wires were soldered to the cells in order to establish a

proper connection for the EIS measurements (Figure S55).
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Cover glass

Electrolyte sample on electrode surface

Copper wires

Figure S55. Interdigitated gold electrode containing the electrolyte sample.

e ITO cell
HG cells (homogeneous cells for parallel alignment of the sample) with different cell
thicknesses and alignment layers were used. HG cells coated with polyimides gave only a
partial alignment of the sample, while HG cells coated with nylon 6 having a 10 pm
provided good parallel alignment of the sample. Therefore, nylon 6-coated cells with 10
um thickness were used for preparing a parallelly aligned electrolyte sample for the ionic
conductivity studies (Figure S56).

The ITO cells were filled with the electrolyte samples at their isotropic temperature
by capillary flow. Then, the sample was cooled down slowly (2 K/min) to the smectic phase
temperature range using a hot stage, and the alignment of the sample was studied using a
polarized optical microscope (POM) to confirm parallel alignment of the sample inside the

cells (for images see 2F[6]-S2[Li] above).
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Figure S56. ITO cell connected with copper wires.

7. EIS measurements
Electrochemical impedance spectroscopy measurements were performed in the range of 60 to
140 °C using two types of cells for measuring the ionic conductivity in the parallel and
perpendicular directions relative to the smectic layer (interdigitated gold electrode and ITO
cell, respectively). A computer-interfaced multichannel potentiostat with a frequency range of
500 kHz to 1 Hz and a 5 mV AC signal amplitude was used for the electrochemical impedance
spectroscopy measurements. Two types of cells were used for measuring the ionic conductivity
in the parallel and perpendicular directions (interdigitated gold electrode and ITO cell,

respectively). Cells were filled with the electrolytes in their respective isotropic phases. At
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each temperature point the cells were thermostated for a minimum of one hour using a cryostat-
thermostat system (Haake K75 with a DC50 temperature controller), before taking a series of
measurements, which were averaged. The obtained data are shown in Tables S1 and S2, while

Arrhenius plots of the data are presented in Figures S57—-S58.

Table S1. Data for anisotropic conductivity for the system 2F[6]-S2[Li].

Temperature o, oj

/°C /mS cm-1 /mS cm-1
40 0.00035 0.00018
60 0.00123 0.00345
70 0.00517 0.01383
80 0.01028 0.02139
90 0.01962 0.03007
100 0.03695 0.03675
110 0.06443 0.04374
120 0.09361 0.05131
125 0.02590
130 0.08382

135 0.03413
140 0.11132 0.03839
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Table S2. Data for anisotropic conductivity for the system 2F[9]-S2[Li].

Temperature o, oj
/°C /mS cm-1 /mS cm-1
60 0.00399 0.00066
65 0.01299 0.00431
70 0.01772 0.00611
75 0.02022 0.00752
80 0.02743 0.00907
85 0.03540 0.01284
90 0.05261 0.01569
95 0.06675 0.01799
9.5 _T=120°C T=100°C SmA phase
100 ) 2F[6]-S2[Li]
In(o /Scm’™)
-10.5 — In(o)
-11.0 |
| T=80°C
-11.5 -
-12.0 |
| In(o))
125 N e B e
2510° 2610° 2710° 2810° 2910° 310°
T1 K1

Figure S57. Temperature dependent ionic conductivity in the electrolyte sample 2F[6]-
S2[Li] in the parallel and perpendicular directions. Best fitting lines:

In(cy) =-8323(47)x1/T + 12.1(1), * = 0.999;

In(o)) = -2540(52)x1/T — 3.4(1), r* = 0.999.
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-10.1 N phase 2F[6]-S2[Li]

-10.2
In(o /Scm™)

-10.34

-10.4 4

-10.5
In(o,)

106 ‘ ‘ ‘
2.410° 2.4510° 2510° 2.55 107
T KT
Figure S58. Temperature dependent ionic conductivity of the electrolyte sample 2F[6]-
S2[Li] in the parallel direction in the nematic phase. Best fitting line:

In(oy) = -4341(122)x1/T + 0.34(30), 72 = 0.999.

95 e T-90° 2F[9]-S2[Li]
-10.0 I

In(c /Scm™) g
-10.5

-11.0 —|

-11.5 —

-12.0 4

In(o,)

125 ‘ \ ‘ \ ‘ \
2710° 2810° 2910° 310°

T K
Figure S59. Temperature dependent ionic conductivity in the electrolyte sample 2F[9]-
S2[Li] in the parallel and perpendicular direction in the SmA phase. Best fitting lines:
In(c1) =-6789(359)x1/T + 8.8(10), r* = 0.986;

In(oy) = -5974(252)x1/T + 5.5(7), 1> = 0.991.

8. Computational details

Geometry optimization for anion S2 and host half molecules were carried out with the
B3LYP3** method and 6-31(d) basis sets™® using Gaussian 09 package’ in vacuum and
default convergence limits. The alkyl and oligoethylene oxide chains were initially set at

most extended trans conformation. Optimized geometries are shown in Figure S60.
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Figure S60 Two views of DFT optimized molecule corresponding to half molecule of host
2F[6] and 2F[9] and the anion S2 in vacuum.
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2F[6] half molecule
I\1\GINC-GAUSIANDELL\FOpt\RB3LYP\6-31G (d) \C32H38F206\PKASZYNSKI\18-Mar
-2024\0\\#P B3LYP/6-31G(d) fopt geom=(nodistance,noangle) scf=direct\\
C6PhCOO-PhPhF2-0 (CH2CH20) 3-Me, half of the 2F[6]host\\0,1\C,-8.6177677
332,1.8419122353,-2.7060904218\C,-9.1976734931,1.5048840829,-1.4737841
992\C,-8.3481189853,1.2788238024,-0.3805562852\C,-6.9661193926,1.38447
05845,-0.5067409213\C,-6.3990206879,1.7196681308,-1.7446915097\C,-7.23
81861288,1.9479095453,-2.8443537495\H,-8.7780418747,1.0100222598,0.581
7428951\H,-6.7888875439,2.2014035413,-3.7989916993\H,-6.3234719398,1.2
01853323,0.3469858029\H, -9.2585574727,2.0156488165,-3.5675575383\C,-10
.6995183404,1.4211287766,-1.3187471899\C,-11.3345342084,2.7491399989, -
0.8554082195\H,-10.951450949,0.6347509283,-0.5948616676\H,-11.15132504
57,1.1235076219,-2.2740038835\H,-10.8830407435,3.0490137884,0.10050727
76\H,-11.0789602034,3.5400057424,-1.574100032\C,-12.858008444,2.660884
5312,-0.7027991943\C,-13.5015823633,3.9707163872,-0.2300162868\H,-13.1
057367067,1.8574213191,0.0068585012\H,~-13.3024837993,2.3634553956,-1.6
642504657\C,-15.0260960123,3.8834166743,-0.0810641988\H,-13.0596851821
,4.2663587944,0.7331966086\H,-13.2521716629,4.7755791512,-0.9373459539
\C,-15.6626106405,5.1928456702,0.3958638175\H,-15.4674388239,3.5910621
298,-1.0445287539\H,-15.2747811427,3.0770911626,0.6235732804\H,-16.750
2847204,5.0979470188,0.4911493668\H,-15.2673207779,5.4924556476,1.3743
341824\H,-15.4599271719,6.0110287744,-0.3062443825\C,-4.9331620443,1.8
328186787,-1.9579786168\0,-4.4043707594,2.0897599319,-3.016634371\0, -4
.2415441786,1.609616746,-0.7933372671\C,-2.8491706147,1.6369657369, -0.
7621752821\C,-2.2734048435,2.2897010232,0.3262358973\C,-2.052545607,0.
9820375798,-1.7008660896\C,-0.8905989947,2.2890880432,0.4825232778\H, -
2.9167060987,2.7853557239,1.046432595\C,-0.6696410067,0.9934265203,-1.
5352155271\H,-2.5007032937,0.4907379504,-2.5547513735\C,-0.0602530568,
1.6360076645,-0.4443732345\H,-0.45429463,2.7932876416,1.337139036\H, -0
.0493718776,0.5062980906,-2.2819419617\C,1.4132726997,1.584412019,-0.2
774875278\C,2.1460108165,0.4253232462,-0.5727975306\C,2.1584833333,2.6
857342772,0.1707675956\C,3.5327764392,0.3551623527,-0.435138669\H,1.60
85472358,-0.4596790903,-0.8981699199\C,3.537251375,2.6363853989,0.3163
150418\C,4.2513286469,1.4679223983,0.0139807771\H,4.0458578267,-0.5702
961437,-0.6679276683\F,1.5536996187,3.8529593732,0.4682916413\F,4.1949
363844,3.7264159533,0.7429516007\0,5.5958553917,1.5330272939,0.1974389
622\C,6.3678119037,0.3669215919,-0.072143741\C,7.8171261548,0.72437726
44,0.2232203072\H, 6.2608208879,0.0622302536,-1.1213958963\H,6.04931548
69,-0.4670512136,0.5668358567\H,8.1351935948,1.5611894266,-0.418405644
2\H,7.9154264525,1.0497573504,1.2708868934\C,9.9670165217,-0.256029625
6,0.2083037125\H,10.3797861561,0.5310062245,-0.4422379241\H,10.1539626
053,0.0403177152,1.2524552537\C,10.6565125308,-1.5810451197,-0.0827704
078\H,10.4670054833,-1.8780193879,-1.1268555731\H,10.2406302861,-2.367
2956214,0.5676763214\C,12.8007529916,-2.5697262874,-0.0824544585\C, 14.
256770185,-2.2365238117,0.2079232513\H,12.4712453758,-3.3955862496,0.5
679744677\H,12.6970274956,-2.905595105,-1.1265201745\H,14.5855467694, -
1.4085312981,-0.4416242121\H,14.3601835593,-1.899625979,1.2526209468\C
,16.3933371613,-3.2200298311,0.2082821187\H,16.8197485216,-2.442800639
4,-0.4463568175\H,16.5922453408,-2.937329654,1.2546873758\0,8.58215652
75,-0.4361683787,-0.0280565204\0,12.0381344153,-1.401036521,0.15377721
88\0,15.0146215424,-3.4048676658,-0.0298441492\H,16.8875624483,-4.1720
516021,-0.0024012506\\Version=ES64L-G09RevD.01\State=1-A\HF=-1893.2785
839\RMSD=6.573e-09\RMSF=1.647e-06\Dipole=-0.2674202,-1.0320413,0.42096
96\Quadrupole=42.4718716,-24.7482565,-17.7236151,-6.3153485,-1.1486505
,0.7276196\PG=C01 [X(C32H38F206) ]\\
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2F[9] half molecule
I\1\GINC-GAUSIANDELL\FOpt\RB3LYP\6-31G (d) \C34H42F207\PKASZYNSKI\18-Mar
-2024\0\\#P B3LYP/6-31G(d) fopt geom=(nodistance,noangle) scf=direct\\
C6PhCOO-PhPhF2-0 (CH2CH20) 4-Me, half of the 2F[9]host\\0,1\C,8.71832347
32,-1.770595615,1.0075607113\C,9.2097670849,-1.4736736004,-0.273074309
2\C,8.3072680995,-0.9997287482,-1.2362713424\C,6.9593758096,-0.8219998
608,-0.9367442181\C,6.4817024851,-1.1198011563,0.3473067783\C,7.374414
4273,-1.5972110979,1.3177133454\H,8.6673047403,-0.7705909885,-2.236725
8393\H,6.9933506466,-1.829931931,2.3066690764\H,6.27432509,-0.45763263
44,-1.6937868632\H,9.4003741614,-2.1463955468,1.7668867861\C,10.680726
8571,-1.62156481,-0.5908444471\C,11.4992083941,-0.3621970199,-0.235940
7988\H,10.8077698951,-1.8421526991,-1.6586988087\H,11.0914643735,-2.47
94906283,-0.0421983085\H,11.0923651067,0.4969141221,-0.7872187075\H, 11
.359797348,-0.1333860774,0.829759556\C,12.9947167696,-0.5122229104, -0.
5404512503\C,13.8158774734,0.7334152354,-0.1829027044\H,13.1280161819,
-0.7418717972,-1.6081021125\H,13.3919595868,-1.3791961891,0.0081833749
\C,15.3136408989,0.5863813756,-0.4809218486\H,13.4201756319,1.60028052
21,-0.7327665894\H,13.6798679462,0.9639858567,0.8842015898\C,16.126305
2006,1.833416764,-0.1178369875\H,15.7083939041,-0.280538842,0.06786057
44\H,15.4500322345,0.3580691798,-1.5476392124\H,17.1900889362,1.698087
0309,-0.3440765514\H,15.7761325593,2.7109349903,-0.6752821492\H,16.039
9280788,2.065534572,0.9508138644\C,5.0574414763,-0.9598631587,0.738577
4033\0,4.6082760566,-1.2151479835,1.8340574775\0,4.3054059644,-0.47889
6151,-0.3036632447\C,2.93771426,-0.2495225727,-0.173557529\C,2.4544290
547,0.9016303281,-0.7938106764\C,2.0646437304,-1.1365637421,0.45600275
83\C,1.0900229254,1.1739167278,-0.7855120109\H,3.1542237352,1.57073573
25,-1.2845209426\C,0.7018092953,-0.8481379846,0.4621545033\H,2.4419926
352,-2.0211435466,0.951353109\C,0.1841544049,0.3014161857,-0.157913511
8\H, 0.7262095815,2.0686811753,-1.277222542\H,0.027828741,-1.5245785965
,0.9795352636\C,-1.2786232768,0.5504070882,-0.1628731014\C,-2.20226534
14,-0.4947973655,-0.3124885996\C,-1.8239204345,1.8336578722,-0.0031406
322\C,-3.5822440323,-0.2886103337,-0.3022463247\H,-1.8268500113,-1.501
451821,-0.46614613\C,-3.1924708116,2.0607226134,0.0068366828\C,-4.0989
371614,1.0008748751,-0.1395781799\H, -4.2485031974,-1.132970529,-0.4325
771224\F,-1.0261198664,2.9071139249,0.1642293458\F,-3.6519032702,3.311
4878887,0.1719325791\0,-5.4140529494,1.3405035479,-0.1144380379\C,-6.3
799650924,0.3018220428,-0.2431824653\C,-7.7466247578,0.9652596625,-0.1
559150925\H,-6.267878856,-0.4366251974,0.5613918738\H,-6.272302132,-0.
2137132767,-1.2064982199\H,-7.8451594944,1.4924630302,0.8060517691\H, -
7.8521909932,1.7117329075,-0.9589003805\C,-10.0420214186,0.4108770953,
-0.2164858028\H,-10.2350562581,0.9215456146,0.7400533436\H,-10.2450122
908,1.1292071812,-1.0263319329\C,-10.9617950996,-0.7936832224,-0.35265
80345\H,-10.7575359769,-1.5115152792,0.4580138599\H,-10.7659500606, -1.
3060621961,-1.3083577072\C,-13.2567145692,-1.3488880942,-0.401886766\C
,—14.6310752883,-0.7006622679,-0.3204224659\H,-13.1542569471,-1.886451
3733,-1.358088767\H,-13.1441088173,-2.086190625,0.4090034898\H,-14.731
8011926,-0.1602025996,0.6344792766\H,-14.7448299852,0.0349314394,-1.13
28825623\C,-16.925622399,-1.2583982828,-0.3687585081\H,-17.1189570155,
-0.7342002582,0.5807669484\H,-17.1311018836,-0.5508226694,-1.187843048
7\0,-8.7083713052,-0.0619592735,-0.2795328024\0,-12.2919662597,-0.3197
320099,-0.2911590238\0,-15.5931477934,-1.7311252102,-0.426899984\C,-17
.8469785616,-2.4634983045,-0.4874447568\H,-17.641259605,-3.1709607347,
0.3328138053\H,-17.6505106862,-2.9898819571,-1.4361210234\C,-20.130484
599,-3.0247475559,-0.5309998263\H,-20.041771207,-3.5711195112,-1.48397
81435\H,-20.0324223488,-3.7499054937,0.2930781197\0,-19.1767359361, -1.
9894145801,-0.4319809969\H,-21.1183937822,-2.5595983713,-0.4789591014\
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\Version=ES64L-GO9RevD.01\State=1-A\HF=-2047.1093184\RMSD=4.311e-09\RM
SF=1.152e-06\Dipole=0.192928,-1.1599695,-0.8442169\Quadrupole=38.19183
53,-19.6310083,-18.560827,11.5400734,-6.4049453,-2.5218636\PG=C01l [X(C
34H42F207) 1\ \@

S2
I\1\GINC-GAUSIANDELL\FOpt\RB3LYP\6-31G (d) \C27H44B1102 (1-) \PKASZYNSKI\2
3-Mar-2024\0\\#P B3LYP/6-31G(d) Fopt geom=(nodistance,noangle) SCF=dir
ect\\CB11-1-CH2CH2C6H40COPh-Chx-C5\\-1,1\B,9.2308958428,-2.0907646025,
-0.066922149\B, 9.2655574546,-0.9751473221,1.3139234992\B, 9.3236932261,
-1.1249458385,-1.5521070392\B, 9.3978909567,0.680614054,0.6849110808\B,
9.4177598354,0.5864188215,-1.0880341722\B,10.9279001313,0.8320304974, -
0.1893768072\B,10.8329479889,-0.1422751183,1.3100072936\B,10.884299945
1,-0.2888897575,-1.5790888599\B,10.7644624454,-1.9549880598,-0.9414376
923\B,10.7316594904,-1.8630209049,0.8438051576\B,11.7617838517,-0.7433
200057,-0.0911548123\C,8.504338177,-0.5307169682,-0.1585688885\H, 8.504
8210573,-3.0365399172,-0.0297913633\H,8.5714773151,-1.1916135069,2.261
0716408\H,8.6596246117,-1.4350923847,-2.4933705232\H,8.8124101768,1.56
56083728,1.2233073768\H,8.8231407689,1.4006266384,-1.7279022496\H,11.5
025075841,1.8790903629,-0.2325193157\H,11.3402582492,0.2121704798,2.33
24066306\H,11.4271489832,-0.0400115845,-2.6143817716\H,11.2207764729, -
2.8940187787,-1.5232179931\H,11.1660702618,-2.7358504018,1.5350864351\
H,12.9547726217,-0.8189195569,-0.0648076425\C, 6.969020727,-0.493613270
7,-0.2324021862\H,6.671884149,-0.4418369648,-1.2861423933\H,6.57977952
67,-1.4440669212,0.1502386518\C, 6.2850885608,0.6607362835,0.5294298026
\H, 6.6550815248,1.6164592481,0.1436735875\H,6.5735252263,0.6161844272,
1.5851401957\C,4.7781051321,0.6089975519,0.4075034774\C,4.0030581708, -
0.1390233426,1.3057742448\C,4.1107306409,1.2848115409,-0.6235558964\C,
2.6146953474,-0.2160595443,1.1947686346\C,2.7236355562,1.2245057305,-0
.7511161894\C,1.986271799,0.4776113211,0.1630576851\0,0.6039913296,0.4
020054058,-0.0725268674\H,4.4975475015,-0.6724097808,2.1142496148\H, 4.
6866796809,1.8706749701,-1.3360079054\H,2.0323991076,-0.7910884635,1.9
043015165\H,2.2068514205,1.7500067228,-1.5487285052\C,-0.2936407447,0.
5952615878,0.9328992083\0,0.0012958631,0.8171028991,2.0876373304\C,-1.
6953146493,0.5035302644,0.4316986512\C,-2.7333817586,0.6879913165,1.35
53956383\C,-2.0125321369,0.2516822907,-0.9086821333\C,-4.0602056517,0.
6246371558,0.9455040576\H,-2.4758388494,0.8825809507,2.391452586\C, -3.
3457438344,0.1902453186,-1.3094306665\H,-1.2159361678,0.1070295715,-1.
6297052081\C,-4.3931485704,0.3758319553,-0.3965334138\H,-4.8479280533,
0.7725928752,1.6799411387\H,-3.5792880472,-0.0045022284,-2.3538993728\
C,-5.8395269711,0.3093722866,-0.8553637819\C,-6.6158987699,-0.85268186
65,-0.1961849825\C,-6.5920269152,1.639816132,-0.6313576187\H,-5.831270
9388,0.1198489836,-1.9393595662\C,-8.070820921,-0.9146719751,-0.682701
3569\H,-6.6018736311,-0.7238115735,0.8954309464\H,-6.1051331317,-1.801
6346363,-0.4018244004\C,-8.048468668,1.567437179,-1.1144409643\H,-6.57
72480988,1.8884441039,0.4392839919\H,-6.0633383555,2.4532060759,-1.143
8293105\C,-8.8274882047,0.4090301309,-0.4622908741\H,-8.5974773622,-1.
7334868574,-0.1740928021\H,-8.0846558762,-1.1586848694,-1.7564083958\H
,—8.5431962855,2.5256167975,-0.9138139237\H,-8.0638643172,1.4329451566
,—2.2075416442\H,-8.8567998923,0.5965718908,0.6244783237\C,-10.2810086
803,0.3040727059,-0.9599798915\C,-11.1854285295,1.490854365,-0.5978936
264\H,-10.7248008588,-0.6134346766,-0.5455206079\H,-10.277188579,0.169
6028304,-2.0527497314\C,-12.6423776453,1.297624378,-1.0387834548\H, -11
.1549611727,1.6501028649,0.4905727151\H,-10.7962974498,2.4128426421,-1
.0509954046\H,-12.6748062626,1.132452757,-2.1262809563\H,-13.042903380
7,0.3800772066,-0.5819274099\C,-13.5536350471,2.4787896897,-0.68095578
43\C,-15.006663601,2.2785920743,-1.1236539194\H,-13.1547467024,3.39527
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7691,-1.138760355\H,-13.5215754501,2.6442055187,0.4054481969\H,-15.630
5711886,3.1384616072,-0.8535353862\H,-15.0752280434,2.1457743268,-2.21
05604369\H,-15.4450224083,1.3887587805,-0.6548473965\\Version=ES64L-G0
9RevD.01\State=1-A\HF=-1479.5389113\RMSD=5.210e-09\RMSF=3.775e-05\Dipo
le=-19.4655543,1.6482771,-0.7583526\Quadrupole=-247.9625631,121.786218
7,126.1763444,36.396546,-0.897124,-2.9432273\PG=C01 [X(C27H44B1102) 1\\
@
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