Engineering of VO$_x$ structure integrating oxygen vacancies for improved zinc ions storage based on cations doping regulation with electric density

Juan Xu*, Nengneng Han, Sihao Chen, Yahui Zhang, Yuezhou Jing, Pibin Bing, Zhongyang Li*

School of Electrical College, North China University of Water Resources and Electric Power, Zhengzhou 450045, P. R. China

Fig. S1 (a,b,c,d,e) SEM images of K-VO$_x$, Fe-VO$_x$, Sn-VO$_x$, Nb-VO$_x$ and W-VO$_x$ compounds, respectively.

Fig. S2 CV curves of K-VO$_x$, Cu-VO$_x$, Fe-VO$_x$, Sn-VO$_x$, Nb-VO$_x$ and W-VO$_x$ electrodes at the scan rate of 0.1 mV s$^{-1}$, respectively.
Fig. S3 (a,b,c,d,e) CV curves of K-VO_x, Fe-VO_x, Sn-VO_x, Nb-VO_x and W-VO_x electrodes at various scan rates from 0.2 to 1 mV s^{−1}, respectively.

Fig. S4 Discharging GITT curves of K-VO_x, Fe-VO_x, Sn-VO_x, Nb-VO_x and W-VO_x electrodes, respectively.