Electronic Supplementary information

Dual role of arsenite in hydrolysis and post-hydrolysis fluorescence sensing of selective pH-dependent probe

Pushpendra Singh and Kalyan K. Sadhu*

Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee - 247667, Uttarakhand, India

Figure S1. ¹H-NMR spectrum of 1 in DMSO-*d*₆.

Figure S2. ¹³C-NMR spectrum of 1 in DMSO- d_6 .

Figure S3. HRMS spectrum of 1.

Figure S4. HPLC chromatogram of 2-amino-6-nitrobenzothiazole, 2-hydroxy-1-naphthaldehyde, and 1.

Figure S5. ¹H-NMR spectrum of 2 in CDCl₃.

Figure S6. ¹³C-NMR spectrum of 2 in CDCl₃.

Figure S7. HRMS spectrum of 2.

Figure S8. HPLC chromatogram of 4-diethylamino-2-hydroxybenzaldehyde and 2.

Figure S9. ¹H-NMR spectrum of 3 in CDCl₃.

Figure S10. ¹³C-NMR spectrum of 3 in CDCl₃.

Figure S11. HRMS spectrum of 3.

Figure S12. HPLC chromatogram of 8-hydroxyjulolidine-9-carboxaldehyde and 3.

Figure S13. ¹H-NMR spectrum of 4 in CDCl₃.

Figure S14. ¹³C-NMR spectrum of 4 in DMSO-*d*₆.

Figure S15. HRMS spectrum of 4.

Figure S16. HPLC chromatogram of 4-methoxysalicyaldehyde and 4.

Figure S17. ¹H-NMR spectrum of 5 in DMSO-*d*₆

Figure S18. ¹³C-NMR spectrum of 5 in DMSO-*d*₆

Figure S19. HRMS spectrum of 5.

Figure S20. HPLC chromatogram of 2,4-dihydroxybenzaldehyde and 5.

Figure S21. ¹H-NMR spectrum of 6 in CDCl₃.

Figure S22. ¹³C NMR spectrum of 6 in DMSO- d_6 .

Figure S23. HRMS spectrum of 6.

Figure S24. HPLC chromatogram of salicylaldehyde and 6.

Figure S25. ¹H-NMR spectrum of 7 in DMSO-*d*₆.

Figure S26. ¹³C-NMR spectrum of 7 in DMSO- d_6 .

Figure S27. HRMS spectrum of 7.

Figure S28. HPLC chromatogram of 4-hydroxybenzaldehyde and 7.

Figure S29. Crystal structure of 2.

Table S1. Crystallographic information of 2.

Empirical formulaC17.99H18N4O3SFormula weight (g/mol)370.09 g/molTemperature (K)100(2) KCrystal Systemtriclinic	
Formula weight (g/mol)370.09 g/molTemperature (K)100(2) KCrystal Systemtriclinic	
Temperature (K)100(2) KCrystal Systemtriclinic	
Crystal System triclinic	
Space group P-1	
Unit cell dimension $a = 6.9321(10) \text{ Å},$	
b = 7.3574(10) Å,	
c = 18.068(3) Å,	
$\alpha = 95.580(9)^{\circ}$	
$\beta = 97.514(9)^{\circ}$	
$\gamma = 111.201(9)^{\circ}$	
Volume $841.3(2) Å^3$	
Z 2	
Density (Calculated) (g/cm^3) 1.461 g/cm^3	
Absorbance Coefficient mm^{-1} 0.220 mm^{-1}	
F000 388	
Crystal Size mm^3 0.010 x 0.030 x 0.256 mm	
Theta Range for data collection2.30 to 25.15°	
Index range $-8 \le h \le 8, -8 \le k \le 8, -21 \le l \le 21$	
Reflections collected 25481	
Independent reflections $2978 [R(int) = 0.1602]$	
Coverage of Independent reflection 99.6%	
Absorption correction Multi-Scan	
Max and min transmission 0.9980 and 0.9460	
Refinement method Full-matrix least-squares on F ²	
Data/ restrains/ parameters 2978 / 616 / 347	
Goodness of fit on F^2 1.070	
Final R indices $11769 \text{ data; } I > 2\sigma(I), R1 = 0.0926,$	
wR2 = 0.1744	
R Indices (all data) $R1 = 0.1558, wR2 = 0.2027$	
Largest diff. peak and hole $(e^{A^{-3}})$ 0.540 and -0.376 $e^{A^{-3}}$	

	рН		рН
Probe 1	6.30	$1 + N_{3}^{-}$	8.15
$1 + AsO_{2}^{-}$	10.20	$1 + NO_{3}^{-}$	6.27
$1 + HAsO_{4}^{2-}$	9.50	$1 + NO_{2}^{-}$	7.60
$1 + PO_4^{3-}$	10.22	$1 + F^{-}$	9.82
$1 + HPO_4^{2-}$	9.37	$1 + Cl^{-}$	6.0
$1 + H_2 PO_4^{2-}$	5.50	$1 + Br^{-}$	6.42
$1 + CO_3^{2-}$	10.03	$1 + I^{-}$	6.12
$1 + HCO_{3}^{-}$	10.12	$1 + ClO_{4}^{-}$	6.10
$1 + AcO^{-}$	9.84		
$1 + SO_4^{2-}$	6.58		

Table S2. Change in pH of probe 1 (50 μ M) with the addition of different anions (500 μ M).

Figure S30. (a) Absorbance spectra of **1** in 5% aqueous acetonitrile; (b) Change absorbance of spectra of **1** with different anions (recorded immediately after the addition of each anion).

Figure S31. Benesi–Hildebrand plots¹ for calculation of binding constant of 1 for (a) AsO_2^- , (b) PO_4^{3-} , (c) CO_3^{2-} .

Figure S32. Absorbance response of 1 (1 μ M) with (left) ppb conc. of AsO₂⁻ and (right) calibration curve for calculation of LOD for AsO₂⁻.

The limit of detection was calculated by a well-known formula = $3\sigma/S$

where, σ = Standard deviation of blank and S = Slope

Figure S33. Absorbance (a) and emission (b) of 1 with various cations ($\lambda_{ex} = 420 \text{ nm}$). ClO₄⁻ is present as counter anion for all the cations.

Figure S34. (a) Fluorescence spectrum of 1 (conc. 50 μ M) in 5% aqueous acetonitrile; (b) change in the fluorescence spectrum of 1 (conc. 50 μ M) with gradually increasing AsO₂⁻ (0-500 μ M).

Figure S35. Fluorescence lifetime spectrum of probe 1, (left) without AsO_2^- ($\lambda_{em.}=515$ nm) (right) with AsO_2^- ($\lambda_{em.}=450$ nm) recorded after 10 min. $\lambda_{ex.}=405$ nm was used in both samples.

Figure S36. Time-dependent emission spectra of 1 (conc. 50 μ M) with all anions (conc. 100 μ M) in the (a) presence of AsO₂⁻ and (b) absence of AsO₂⁻ (each trace was recorded after 4 min intervals).

Figure 37. (a) Absorbance and (b) emission spectra ($\lambda_{ex} = 420$ nm) of 2-hydroxy-1-naphthaldehyde (50 μ M) with addition AsO₂⁻ (500 μ M).

Figure S38. (a) Absorbance and (b) emission spectra ($\lambda_{ex} = 420$ nm) of 2-hydroxy-1-naphthaldehyde at different pH.

Figure S39. HPLC chromatogram of 1 with (a) AsO_2^- and (b) PO_4^{3-} anions.

Figure S40. HPLC chromatogram of 1 with (a) SO_4^{2-} and (b) Cl⁻ anions.

Figure S41. HPLC chromatogram of 1 with $(AsO_2^- + H_2PO_4^-)$.

Figure S42. pH response of probes 1-3 in buffer.

Figure S43. pH response of probe 4-7 in buffer.

Figure S44. Absorbance spectra of (a) 2 and (b) 3 with and without AsO_2^- .

Figure S45. Time-dependent absorbance spectra of (a) 2 and (b) 3 with AsO₂⁻ (each trace was recorded after 1 min intervals).

Figure S46. HPLC chromatogram of (a) 2 and (b) 3 with AsO_2^- at different time intervals.

Figure S47. Absorbance spectra of (a) 5 with and without AsO_2^- ; (b) time-dependent absorbance spectra of 5 with AsO_2^- (each trace was recorded after 1 min intervals).

Figure S48. Absorbance spectra of (a) 4 and (b) 6 with and without AsO_2^- .

Figure S49. Time-dependent absorbance spectra of (a) 4 and (b) 6 with AsO_2^- each trace was recorded after 1 min intervals.

Figure S50. HPLC chromatogram of 4 with (a) AsO_2^- and (b) $HAsO_4^{2-}$ at different time intervals.

Figure S51. HPLC chromatogram of 4 with (a) SO_4^{2-} and (b) Cl^- at different time intervals.

Figure S52. HPLC chromatogram of 4 with (a) PO_4^{3-} and (b) $(AsO_2^- + H_2PO_4^-)$ combination.

Figure S53. Absorbance spectra of (a) 4 and (b) 6 with different anions were recorded immediately after the addition of each anion.

Figure S54. Change in time-dependent absorption spectra of 1 (50 μ M) with variable concentration of AsO₂⁻.

Figure S55. Time-dependent absorption spectra of (a) **1**, (b) **4**, and (c) **6** with $(AsO_2^- + H_2PO_4^-)$ combination (each trace was recorded after 1 min intervals).

Figure S56. (a) Absorbance spectra of 7 with and without AsO_2^- ; (b) time-dependent absorbance spectra of 7 with AsO_2^- (each trace was recorded after 1 min intervals); (c) HPLC chromatogram of 7 with AsO_2^- .

References

1. Shiraishi, Y.; Sumiya, S.; Kohno, Y.; Hirai, T. A Rhodamine-Cyclen Conjugate as a Highly Sensitive and Selective Fluorescent Chemosensor for Hg(II). J. Org. Chem. 2008, 73, 8571.