Supplementary Information (SI) for Dalton Transactions. This journal is © The Royal Society of Chemistry 2024

Revised Supplementary Dithiocarbamate based novel anti-histaminic agents: Synthesis, characterization, crystal structure and thermal study

Anupam Singh^a, Rajesh Kumar^{b,c}, Riya Patel^a, Trishna^a, Ram Nayan Gautam^a, M. K. Bharty^a, and Lal Bahadur Prasad^{a*}

^aDepartment of Chemistry, Institute of Science, Banaras Hindu University, Varanasi 221005, India

^bDepartment of Pharmacology, Institute of Medical Science, Banaras Hindu University, Varanasi - 221005, India.

^cDepartment of Pharmacology, Maharaja Agrasen School of Pharmacy, Maharaja Agrasen University, Solan, Himachal Pradesh – 174103, India.

*Corresponding authors' Email: <u>lbprasad@bhu.ac.in</u> (L. B. Prasad)

S.N.	Contents	Page No.
1	FTIR Spectra	2-4
2	NMR Spectra	5-12
3	HRMS Spectra	13-15
5	X-Ray Crystallography	15-19
6	Biological Application	20-21
7	References	21

1. FTIR Spectra:

Fig. S1: FTIR spectra of ligand.

Fig. S2: FTIR spectra of complex 1.

Fig. S3: FTIR spectra of complex 2.

Fig. S4: FTIR spectra of complex 3.

Fig. S5: FTIR spectra of complex 4.

2. NMR Spectra:

Fig. S6: ¹H NMR spectrum of ligand.

Fig. S7: ¹H NMR spectrum of complex 1.

Fig. S10: ¹³C NMR spectrum of Ligand.

Fig. S12: ¹³C NMR spectrum of complex 2.

Fig. S13: ¹³C NMR spectrum of complex 4.

3. HRMS Spectra:

Fig. S14: HRMS spectrum of ligand.

Fig. S15: HRMS spectrum of complex 1.

Fig. S16: HRMS spectrum of complex 2.

Fig. S17: HRMS spectrum of complex 3.

Fig. S18: HRMS spectrum of complex 4.

4. X-ray crystallography

X-Ray diffraction measurements of complexes **1** and **2** were performed using Oxford Gemini and Bruker three-circle diffractometer equipped with a CrysAlisPro/CrysAlis CCD software using a graphite mono-chromated Mo K α (λ = 0.71073 Å) radiation source at 296 K. The details of the temperature and monochromator of diffractometers are mentioned in the crystallographic data tables. Multi-scan absorption correction was applied to the X-ray data collection for all the compounds. The structures were solved by direct methods (SHELXS-08) and refined against all data by full matrix least-square on F² using anisotropic displacement parameters for all nonhydrogen atoms. All hydrogen atoms were included in the refinement at geometrically ideal position and refined with a riding model¹. The MERCURY package and ORTEP-3 for Windows program were used for generating structures^{2,3}.

Fig. S19: Showing C-H…F hydrogen bonding interactions leading to a wave-like architecture of complex 1.

Fig. S20: Showing C-H^{...}S and C-H^{...}F hydrogen bonding interactions leading to supramolecular architecture of complex **2**.

Fig. S21: Showing C-H…N hydrogen bonding interactions leading to ladder like architectures of complex 2.

Bond len	gth (Å)	Bon	d angle (°)
Co(1)-S(4)	2.2574(11)	S(4)-Co(1)-S(6)	93.92(4)
Co(1)-S(6)	2.2590(11)	S(4)-Co(1)-S(3)	76.57(4)
Co(1)-S(3)	2.2667(10)	S(6)-Co(1)-S(3)	93.78(4)
Co(1)-S(2)	2.2661(11)	S(4)-Co(1)-S(2)	167.28(4)
Co(1)-S(5)	2.2765(10)	S(6)-Co(1)-S(2)	93.87(4)
Co(1)-S(1)	2.2841(10)	S(3)-Co(1)-S(2)	92.89(4)
S(5)-C(29)	1.710(4)	S(4)-Co(1)-S(5)	91.82(4)
S(3)-C(15)	1.715(4)	S(6)-Co(1)-S(5)	76.48(4)
S(4)-C(15)	1.714(4)	S(2)-Co(1)-S(5)	99.78(4)

Table S1. Bond lengsth (Å) and angles (°) for complex 1

S(1)-C(1)	1.714(4)	S(4)-Co(1)-S(1)	96.80(4)
S(2)-C(1)	1.705(4)	S(6)-Co(1)-S(1)	167.96(5)
S(6)-C(29)	1.707(4)	S(3)-Co(1)-S(1)	94.03(4)
N(3)-C(15)	1.323(5)	S(2)-Co(1)-S(1)	76.61(4)
N(3)-C(22)	1.454(5)	S(5)-Co(1)-S(1)	97.65(4)
N(3)-C(16)	1.466(5)	S(4)-Co(1)-S(6)	93.92(4)
N(5)-C(29)	1.324(4)	S(4)-Co(1)-S(3)	76.57(4)

Table S2. Bond length (Å) and angles (°) for complex 2

Bone	d length (Å)	Bond a	angle (°)
Ni-S(1)#1	2.1976(9)	S(1)#1-Ni-S(2)	100.73(3)
Ni-S(1)	2.1977(10)	S(1)-Ni-S(2)	79.27(3)
Ni-S(2)	2.2089(9)	S(1)#1-Ni-S(2)#1	79.27(3)
Ni-S(2)#1	2.2090(9)	S(1)-Ni-S(2)#1	100.73(3)
S(2)-C(1)	1.711(4)	S(2)-Ni-S(2)#1	180.0
S(1)-C(1)	1.721(4)	C(1)-S(2)-Ni	85.31(12)
N(1)-C(1)	1.325(4)	C(1)-S(1)-Ni	85.44(12)
N(1)-C(2)	1.470(4)	C(1)-N(1)-C(2)	122.3(3)
N(1)-C(8)	1.471(4)	C(1)-N(1)-C(8)	121.7(3)
F-C(12)	1.367(5)	C(2)-N(1)-C(8)	115.9(3)
N(2)-C(7)	1.336(5)	C(7)-N(2)-C(3)	115.6(3)
N(2)-C(3)	1.346(4)	N(1)-C(2)-C(3)	113.0(3)

Symmetry transformations used to generate equivalent atoms:

#1 -x+2,-y+1,-z+1

 Table S3. Hydrogen bond parameters for Complex-1.

D-H···A	d(D-H)	d(H···A)	d(D···A)	<(DHA)
C(16)-H(16B)S(3)	0.97	2.60	3.090(4)	111.5
C(2)-H(2A)F(3)#1	0.97	2.53	3.409(7)	151.0
C(22)-H(22B)S(4)	0.97	2.57	3.076(4)	112.8

C(36)-H(36A)S(6)	0.97	2.55	3.073(4)	113.5
C(36)-H(36B)N(6)	0.97	2.69	3.342(6)	124.8
C(21)-H(21)F(12A^a)#2	0.93	2.62	3.363(11)	137.6

Symmetry transformations used to generate equivalent atoms: #1 x+1,y+1,z+1 #2 -x+1,-y+2,-z+2

Table S4. Hydrogen bond parameters for Complex-2.

D-H···A	d(D-H)	d(H···A)	d(D····A)	<(DHA)
C(2)-H(2A)S(1)	0.97	2.57	3.085(4)	113.3
C(2)-H(2B)F#2	0.97	2.58	3.122(5)	115.2
C(8)-H(8A)S(2)	0.97	2.59	3.102(4)	113.3
C(13)-H(13)N(2)#3	0.93	2.66	3.519(5)	153.4
C(6)-H(6)S(2)#4	0.93	3.02	3.903(5)	160.0
C(2)-H(2A)S(1)	0.97	2.57	3.085(4)	113.3
C(2)-H(2B)F#2	0.97	2.58	3.122(5)	115.2
C(8)-H(8A)S(2)	0.97	2.59	3.102(4)	113.3
C(13)-H(13)N(2)#3	0.93	2.66	3.519(5)	153.4
C(6)-H(6)S(2)#4	0.93	3.02	3.903(5)	160.0

Symmetry transformations used to generate equivalent atoms:

 $\#1 \ \textbf{-x+2,-y+1,-z+1} \quad \#2 \ \textbf{-x+3/2,y+1/2,-z+3/2} \quad \#3 \ \textbf{-x+1/2,y-1/2,-z+3/2} \quad \#4 \ \textbf{x-1,y+1,z}$

5. Biological application

Fig. S22: Animals showing catalepsy during experiments induced via clonidine and haloperidol.

Time (Min.)	Control	Induced Control	fbpm	1	2	3	4	Chlorpheniramine maleate
30	3.3±0.78	103.75±7.47	110.75±5.35	107.75±6.08	98.25±6.25	78.75±10.80	118.75±8.34	42.25±5.97
60	3.26±1.09	108.75±6.88	117.5±9.63	102±8.39	102.25±7.37	69.25±6.57	123.75±8.96	54.75±7.47

Table S5: Effect of various synthetic compounds on clonidine induced catalepsy.

90	3.87±1.14	105.5±5.92	104.25±2.52	115.25±6.60	119.5±9.42	65.5±9.53	129.75±7.52	80.75±5.02
120	2.87±1.1	120.25±9.04	92.25±6.47	92±6.62	91.5±8.14	60.5±6.53	108.75±8.98	62.5±6.07
150	2.85±1.08	74.75±5.17	85.75±6.57	86.25±9.62	84±5.40	51±5.67	98.5±8.17	40.25±6.81
180	2.6±0.69	60.25±6.92	83.5±7.81	96.5±6.70	79.75±6.16	45.75±5.48	84±5.70	29.5±3.22

Values are expressed as mean±SEM, two-way ANOVA followed by Dunnette's test, p value <0.01 considered as significant, (n=6).

Table S6: Effect of various synthetic compounds on haloperidol induced catalepsy.

Time	Control	Induced	fbpm	1	2	3	4	Chlorpheniramine
(Min.)		Control						maleate
30	3.35±1.04	67.75±17.75	91.5±5.90	109.75±7.02	107.25±8.03	93.75±7.58	156±14.60	54.75±12.57
60	3.43±1.10	134.25±27.46	86.25±7.26	104.5±9.40	114.75±10.41	131±7.42	181.75±17.26	67.25±12.61
90	4.6±0.68	142±30.36	106.25±6.28	119.5±6.40	134.5±4.34	120.25±10.13	123.75±18.08	98.25±9.36
120	2.37±0.70	129.25±19.77	113±12.90	94.25±7.40	120.25±5.20	109±9.60	173.75±29.68	77.25±9.48
150	3.35±0.89	149.5±18.90	102±6.12	88.75±9.23	110.75±8.18	121±9.63	118.5±28.73	70.25±5.86
180	3.07±0.94	176±37.50	92.5±6.03	99±6.60	104±8.89	93.25±20.62	77±9.56	62±4.91

Values are expressed as mean±SEM, two-way ANOVA followed by Dunnette's test, p value <0.01 considered as significant, (n=6).

6. References:

- [1] G.M. Sheldrick, ActaCrystallogr. Section A, 2008, 64, 112-122.
- [2] C.F. Macrae, I.J. Bruno, J.A. Chisholm, P.R. Edgington, P. McCabe, E. Pidcock, L. Rodriguez-Monge, R. Taylor, J.Van de Streek, P.A., Wood, Appl. Cryst., 2008, 41, 466-470.
- [3] L.J. Farrugia, J. Appl. Cryst., 2012, 45, 849-854.