Supplementary Information

Syntheses, crystal structure, and photoelectric properties of two selenoantimonate A-Zn–Sb–Se (A = Rb and Cs)

Lirong Zhang ^a, Gele Teri ^b, Liming Qi ^a, Sagala Bai ^a, Xin Liu*^c and Menghe Baiyin*^a

1. Computational Details

Spin-polarized first-principles-based calculations were performed with Cambridge Sequential Total Energy Package (CASTEP)^[1-2] with Perdew–Burke–Ernzerhof (PBE) functional^[3] within GGA.^[4] The crystal structures of compounds $Rb_4Zn_2Sb_2Se_7$ (1) and $Cs_4Zn_2Sb_2Se_7$ (2) were firstly fully optimized without any constrains. All the calculations were performed with On-the-fly-generated (OFTG) ultrasoft pseudopotentials and the energy cutoff was set as 435.40 eV based on convergence tests.^[5-6] Monkhorst k-point grids with separation smaller than 0.03 Å were used for the Brillouin-zone integrations.^[7]

2. Figures and Tables

Figure S1. SEM image (a) and EDS analysis (b) of 1.

^a Key Laboratory of Advanced Materials Chemistry and Devices (AMC&DLab) of the Department of Education Inner Mongolia Autonomous Region, College of Chemistry & Environmental Science, Inner Mongolia Normal University, Hohhot 010022, China

E-mail: baiymh@imnu.edu.cn

^b Institute for Science and Applications of Molecular Ferroelectrics, Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Normal University, Jinhua, 321004, China. *E-mail: Terigele@zjnu.edu.cn*

[°] School of Chemistry, Dalian University of Technology, Dalian, 116024, China

E-mail: xliu@dlut.edu.cn

^{*} Corresponding author. E-mail address: xliu@dlut.edu.cn (X. Liu); baiymh@imnu.edu.cn (M. Baiyin).

Figure S2. SEM image (a) and EDS analysis (b) of 2

Figure. S3. Calibration curves (a) Rb; (b) Zn; (c) Sb; (d) Se; (e) Cs.

Figure S4. TG-DSC curves figure of the compounds 1 and 2

Figure S5. Degradation rate of compounds 1 and 2 to different concentrations of MB.

Sb1-Se1	2.5005(17)	Se4-Sb2-Se6 ¹	99.59(6)
Sb1-Se2	2.5239(19)	Se5-Sb2-Se6 ¹	102.95(6)
Sb1-Se3 ²	2.5733(18)	Se5-Sb2-Se4	96.87(6)
Sb2-Se4	2.5141(17)	Se2-Zn1-Se3	124.14(8)
Sb2-Se5	2.5301(16)	Se2-Zn1-Se4	105.12(8)
Sb2-Se6 ¹	2.5593(17)	Se2-Zn1-Se7 ⁸	104.99(7)
Zn1-Se2	2.409(2)	Se3-Zn1-Se7 ⁸	105.33(7)
Zn1-Se3	2.406(2)	Se4-Zn1-Se7 ⁸	112.32(7)
Zn1-Se4	2.475(2)	Se4-Zn1-Se3	105.04(8)
Zn2-Se5	2.474(2)	Se5-Zn2-Se6	108.25(7)

Table S1. Selected bond lengths (Å) and angles (°) for 1.

Zn2-Se6	2.486(2)	Se5-Zn2-Se7	116.85(7)
Zn2-Se7	2.4650(19)	Se5-Zn2-Se7 ⁴	109.29(8)
Se2-Sb1-Se1	100.30(6)	Se6-Zn2-Se7	108.79(7)
Se2-Sb1-Se3 ²	95.79(6)	Se6-Zn2-Se7 ⁴	113.71(7)
Se3 ² -Sb1-Se1	100.53(6)		

Symmetry transformations used to generate equivalent atoms: ¹-*x*, -*y*, 1-*z*; ²1-*x*, 2-*y*, 1-*z*; ⁴-*x*, -*y*, 1*z*; ⁸+*x*, 1+*y*, +*z*

Zn-Se1	2.470(3)	Se6-Sb2-Se7	100.72(9)
Zn1-Se2	2.488(3)	Se6-Sb2-Se5 ²	96.79(9)
Zn1-Se3	2.492(3)	Zn2 ³ -Se1-Zn1	125.51(10)
Zn2-Se5	2.402(3)	Zn2 ³ -Se1-Zn1 ⁴	120.10(9)
Zn2-Se4	2.479(3)	Se2-Zn1-Se1	109.67(10)
Zn2-Se6	2.407(3)	Se2-Zn1-Se1 ⁴	114.44(10)
Sb1-Se2 ¹	2.544(2)	Se3-Zn1-Se1	118.23(10)
Sb1-Se3	2.536(2)	Se3-Zn1-Se1 ⁴	110.25(10)
Sb1-Se4	2.512(2)	Se3-Zn1-Se2	106.41(10)
Sb2-Se5 ²	2.556(3)	Se5-Zn2-Se1 ⁵	107.90(10)
Sb2-Se6	2.526(3)	Se4-Zn2-Se1 ⁵	112.35(10)
Sb2-Se7	2.495(2)	Se4-Zn2-Se5	104.05(11)
Se3-Sb1-Se2 ¹	102.73(8)	Se6-Zn2-Se1 ⁵	105.53(11)
Se4-Sb1-Se2 ¹	99.91(8)	Se6-Zn2-Se5	121.39(11)
Se4-Sb1-Se3	98.01(8)	Se6-Zn2-Se4	105.73(11)
Se5 ² -Sb2-Se7	100.51(8)		

Table S2. Selected bond lengths (Å) and angles (°) for **2**.

Symmetry transformations used to generate equivalent atoms: ¹-*x*, -*y*, 1-*z*; ²1-*x*, 2-*y*, 1-*z*; ³+*x*, 1+*y*, +*z*; ⁴-*x*, 2-*y*, 1-*z*; ⁵+*x*, -1+y, +*z*

Compounds	Photocurrent density (μ A/cm ²)	Ref.	
[pipH ₂] _{0.5} [Ag ₂ SbS ₃]	0.430	Г 01	
[pipH ₂] _{0.5} [Ag ₂ SbSe ₃]	0.495	[8]	
KCu ₂ SbS ₃	~2.60	[9]	
BaCuSbS ₃	~0.06	[10]	
BaCuSbSe ₃	~0.03	[10]	
SrOCuSbS ₂	~1500	[11]	
$Rb_2Ba_3Cu_2Sb_2S_{10}$	~0.05	[12]	

Table S3. List of photocurrent densities of antimony chalcogenides

Rb ₂ CuSb ₇ S ₁₂	~0.01	[13]
$(C_4H_{14}N_2)_{0.5}Cu_2SbSe_3$	1.42	[14]
$Sr_6Cd_2Sb_6S_{10}O_7$	2.5	[15]
[Mn(en) ₃]CdSb ₂ Se ₅	2.59	[16]
[Ga ₁₀ S ₁₉ SHSb]·3[Mn(TEPA)]·xH ₂ O	7.16	
[Ga ₁₀ S ₁₉ SHSb]·3[Ni(TEPA)]·xH ₂ O	2.63	[17]
[Ga ₁₀ S ₁₉ SHSb]·3[Fe(TEPA)]·xH ₂ O	0.75	
Mn(tren)GaSbS ₄	~7.41	[10]
Fe(tren)GaSbS4	~3.23	[18]
[V ^{III} (dap) ₂ SbS ₃]	5.8	
[V ^{III} (dap) ₂ SbSe ₃]	67.5	[10]
$[H_2 dien][V^{III}_2(en)_2(dien)_2(\mu_2 -$	5.5	[19]
O)][SbSe ₄] ₂	19.3	
[V ^{III} (dien) ₂ SbSe ₄]		
$Mn(en)_3Sb_2S_4$	1.12	[20]
$Co(en)_3Sb_2Se_4$	0.68	
[Zn(tren) ₂ H]SbSe ₄	~6.3	
$[\mathrm{Ni}(1, 2\text{-dap})_3]_2\mathrm{Zn}(1, 2\text{-dap})\mathrm{Sb}_2\mathrm{Se}_8$	~7.4	[21]
$Rb_2ZnSb_4S_8$	~11.3	
$Cs_2ZnSb_2S_5$	~2.9	[22]
$[Zn(tren)]_2Sb_2Se_5$	1.86	[23]
[Zn(tepa)H] ₂ Sb ₂ S ₆	0.88	
$Rb_4Zn_2Sb_2Se_7$	27.22	This work
$Cs_4Zn_2Sb_2Se_7$	25.50	

Table S4. Summary of MB degradation rates of antimony chalcogenides containing Zn

Compounds	Efficiency (%)	Ref.	
$[Zn(trien)]Sb_4S_7$	Not found	[24]	
$[Zn(dap)_3]_2(Sb_2Se_5) \cdot H_2O$	Not found	[25]	
$[Zn(C_4H_{13}N_3)_2]_n[CdSb_2Se_5]_n$	Not found	[26]	
[Zn(tren)Sb ₄ S ₇]	Not found	[27]	
[Zn(tren) ₂ H]SbSe ₄			
$[Ni(1,2-dap)_3]_2Zn(1,2-dap)Sb_2Se_8$	Not found	[21]	
$Rb_2ZnSb_4S_8$			
Cu ₂ ZnSbS ₄	Not found	[28]	
$Cs_2ZnSb_2S_5$	69 %	[22]	
$[Zn(tren)]_2Sb_2Se_5$	88.2 %	[23]	
$[Zn(tepa)H]_2Sb_2S_6$	82.4 %		
$Rb_4Zn_2Sb_2Se_7$	78.8%	This work	
$Cs_4Zn_2Sb_2Se_7$	76.4%		

3. References

- M. C. Payne, M. P. Teter, D. C. Allan, T. A. Arias and J. D. *Rev. Mod. Phys*, 1992, 64, 1045-1097.
- [2] S. J. Clark, M. D. Segall, C. J. Pickard, P. J. Hasnip, M. J. Probert, K. Refson and M. C. Payne, Z Krist-Cryst Mater. 2005, 220, 339-341.
- [3] J. P. Perdew, K. Burke and M. Ernzerhof, *Phys. Rev. Lett.* 1996, 77, 3865-3868.
- [4] J. P. Perdew and Y. Wang, *Phys. Rev. B*, 1992, **45**, 13244-13249.
- [5] K. Lejaeghere, V. V. Speybroeck, G. O. Van and S. Cottenier, *Crit. Rev. Solid State Mat. Sci.* 2014, **39**, 1-24.
- [6] D. Vanderbilt, Phys. Rev. B 1990, 41, 7892-7895.
- [7] H. J. Monkhorst, J. D. Pack, *Phys. Rev. B* 1976, **13**, 5188-5192.
- [8] H. Wang, J.-M. Yu, N. Wang, L.-L. Xiao, J.-P. Yu, Q. Xu, B. Zheng, F.-F. Cheng and W.-W. Xiong, *Journal of Solid State Chemistry*, 2021, 300.
- [9] R. Wang, X. Zhang, J. He, C. Zheng, J. Lin and F. Huang, *Dalton Transactions*, 2016, 45, 3473-3479.
- [10] C. Liu, P. Hou, W. Chai, J. Tian, X. Zheng, Y. Shen, M. Zhi, C. Zhou and Y. Liu, *Journal of Alloys and Compounds*, 2016, 679, 420-425.
- [11] K. Bu, M. Luo, R. Wang, X. Zhang, J. He, D. Wang, W. Zhao and F. Huang, *Inorganic Chemistry*, 2018, 58, 69-72.
- [12] C. Liu, Y. Xiao, H. Wang, W. Chai, X. Liu, D. Yan, H. Lin and Y. Liu, *Inorganic Chemistry*, 2020, **59**, 1577-1581.
- [13] Y. Xiao, S.-H. Zhou, R. Yu, Y. Shen, Z. Ma, H. Lin and Y. Liu, *Inorganic Chemistry*, 2021, 60, 9263-9267.
- [14] L. Zhang, X. Liu and M. Baiyin, Polyhedron, 2024, 260.
- [15] S. Al Bacha, S. Saitzek, E. E. McCabe and H. Kabbour, *Inorganic Chemistry*, 2022, 61, 18611-18621.
- [16] L. Zhang, F. Qi, M. Shele, E. Namila, L. Qi and M. Baiyin, Journal of Chemical Crystallography, 2022, 53, 145-151.
- [17] J. Li, C. Liu, X. Wang, Y. Ding, Z. Wu, P. Sun, J. Tang, J. Zhang, D.-S. Li, N. Chen and T. Wu, *Dalton Transactions*, 2022, **51**, 978-985.
- [18] N. Li, L. Zhang, J. Chen, G. Teri, M. Shele, E. Namila, S. Bai and M. Baiyin, *Inorganic Chemistry Communications*, 2022, 146.
- [19] H.-Y. Luo, J. Zhou and H.-H. Zou, Dalton Transactions, 2019, 48, 3090-3097.
- [20] L. Zhang, N. Li, G. Teri, M. Shele, E. Namila, S. Bai and M. Baiyin, Polyhedron, 2023, 241.
- [21] M. Shele, X. Tian and M. Baiyin, Journal of Solid State Chemistry, 2021, 302.
- [22] N. Li, G. Teri, M. Shele, Sagala, Namila and M. Baiyin, Journal of Cluster Science, 2022, 34,

1853-1860.

- [23] L. Zhang, H. Zhao, X. Liu, G. Teri and M. Baiyin, *Physical Chemistry Chemical Physics*, 2023, 25, 29709-29717.
- [24] H. Lühmann, Z. Rejai, K. Möller, P. Leisner, M. E. Ordolff, C. Näther and W. Bensch, Z. Anorg. Allg. Chem, 2008, 634, 1687-1695.
- [25] G. Q. Bian, J. Zhou, C. Y. Li, N. Cheng, X. M. Lin, Y. Zhang and J. Dai, *Chemical research and application*, 2008, 20, 53-57.
- [26] H. Jiang, X. Wang, T. L. Sheng, S. M. Hu, R. B. Fu, Y. H. Wen, C. J. Shen, N, Yuan and X. T. Wu, *Sci China Chem*, 2011, 41, 726-731.
- [27] B. Seidlhofer, E. Antonova, J. Wang, D. Schinkel and Wolfgang Bensch, Z. Anorg. Allg. Chem, 2012, 15, 2555-2564.
- [28] E. M. Heppke, S. Klenner, O. Janka, R. Pöttgen, T. Bredow and M. Lerch, *Inorg. Chem*, 2021, 60, 2730-2739.