Supporting Information

Four-Membered Heterocyclic Molecules Featuring Boron and Heavy Group 14 Elements That Exhibit Both σ-Aromatic and π-Aromatic Properties: A New Synthetic Target

Zheng-Feng Zhang,¹ Cheuk-Wai So,^{2*} and Ming-Der Su^{1,3*‡}

¹Department of Applied Chemistry, National Chiayi University, Chiayi 60004, Taiwan

²School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 637371 Singapore E-mail: CWSo@ntu.edu.sg

³Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung 80708, Taiwan E-mail: midesu@mail.ncyu.edu.tw

‡To whom correspondence should be addressed to.

Contents

1.	Computational Details
2.	References
3.	Global minimum structure of the $B_2G14G14'$ molecule. (a) Six significant occupied
	orbitals. (b) Chemical bonding according to the AdNDP analysis. (Figures S1–S10)S5
4.	ACID plots for the four-membered B ₂ G14G14' species. (Figures S11–S20)S15
5.	Calculated NICS values for $B_2G14G14'$ (Tables S1–S10)S20
6.	NBO analysis of $B_2G14G14'$ at the M06-2X/Def2-TZVP level of theory (Table S11-
	S20)S24
7.	The second order perturbation study for model systems $B_2G14G14'$ (Table S21–S56)
8.	Laplacian distribution of electron energy of the central four-membered ring plane in
	B ₂ G14G14' at the M06-2X/Def2-TZVP level of theory (Figures S21–S30)S70
9.	Color-filled map of ELF of B₂G14G14' (Figures S31–S40)S90
10.	Optimized Cartesian coordinates for the B ₂ G14G14' species (Table S57–S66)S100

Computational Details

Geometry optimizations were carried out using density functional theory at the M06- $2X^{(1)}$ level in conjunction with the def2-TZVP basis set.⁽²⁾ Stationary points were characterized as minima by calculating the Hessian matrix analytically. The calculations were carried out using the program package Gaussian 16, Revision C.01.⁽³⁾ The NBO analysis⁽⁴⁾ was done with the internal module of Gaussian 16 (NBO Version 5.0) at the M06-2X/def2-TZVP level of theory. The quantum theory of atoms in molecules (QTAIM) method⁽⁵⁾ was employed for the characterization of the Laplacian of electron density and electron localization function (ELF)⁽⁶⁾ using the Multiwfn 3.8 package.⁽⁷⁾ For predicting the aromaticity of these four-membered-ring heterocyclic **B**₂**G14G14'** molecules, Nucleus Independent Chemical Shift (NICS)⁽⁸⁾ calculations with the Gauge-Independent Atomic Orbital (GIAO)⁽⁹⁾ method, Anisotropy of the Current Induced Density (ACID),⁽¹⁰⁾ and adaptive natural density partitioning (AdNDP)⁽¹¹⁾ method were conducted at the M06-2X/def2-TZVP level of theory using the Gaussian 16 C.01 program.

References

- Zhao, Y.; Truhlar, D. G. Exploring the Limit of Accuracy of the Global Hybrid Meta Density Functional for Main-Group Thermochemistry, Kinetics, and Noncovalent Interactions. J. Chem. Theory Comput. 2008, 4, 1849-1868.
- Weigend, F. Accurate Coulomb-fitting basis sets for H to Rn. *Phys. Chem. Chem. Phys.* 2006, *8*, 1057-1065.
- (3) Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.; Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H. P.; Izmaylov, A. F.; Bloino, J.; Zheng, G.; Sonnenberg, J. L.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Montgomery, Jr., J. A.; Peralta, J. E.; Ogliaro, F.; Bearpark, M.; Heyd, J. J.; Brothers, E.; Kudin, K. N.; Staroverov, V. N.; Keith, T.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Rega, N.; Millam, J. M.; Klene, M.; Knox, J. E.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Zakrzewski, V. G.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Dapprich, S.; Daniels, A. D.; Farkas, O.; Foresman, J. B.; Ortiz, J. V.; Cioslowski, R. L. Martin, K. Morokuma, Ö. Farkas, J. B. Foresman, and D. J. Fox, Gaussian 16, revision

C.01; Gaussian, Inc., Wallingford CT, 2016.

- NBO 5.0: E. D. Glendening, Badenhoop, J. K.; Reed, A. E.; Carpenter, J. E.; Bohmann, J. A.; Morales, C. M.; Weinhold, F. Theoretical Chemistry Institute, Univ. of Wisconsin, Madison, WI, 2001; http://www.chem.wisc.edu/ nbo5.
- (5) Bader, F. W. Atoms in Molecules: A Quantum Theory; Oxford University Press: New York, 1994.
- (6) Becke, A. D.; Edgecombe, K. E. A simple measure of electron localization in atomic and molecular systems. J. Chem. Phys., **1990**, *92*, 5397-5403.
- (7) Lu, T.; Chen, F. Multiwfn: A Multifunctional Wavefunction Analyzer, J. Comput. Chem. 2012, 33, 580-592.
- (8) Chen, Z.; Wannere, C. S.; Corminboeuf, C.; Puchta, R.; Schleyer, P. v. R. Nucleus-Independent Chemical Shifts (NICS) as an Aromaticity Criterion. *Chem. Rev.* 2005, 105, 3842–3888.
- (9) Wolinski, K.; Hilton, J. F.; Pulay, P. Efficient Implementation of the Gauge-Independent Atomic Orbital Method for NMR Chemical Shift Calculations. J. Am. Chem. Soc, 1990, 112, 8251–8260.
- (10) Herges, R.; Geuenich, D. Delocalization of Electrons in Molecules. J. Phys. Chem. A 2001, 105, 3214-3220.
- (11) Zubareva, D. Y.; Boldyrev, A. I. Developing paradigms of chemical bonding: adaptive natural density partitioning. *Phys. Chem. Chem. Phys.*, **2008**, *10*, 5207-5217.

Figure S1. Global minimum structure of the B_2Si_2 molecule. (a) Six significant occupied orbitals. (b) Chemical bonding according to the AdNDP analysis.

(a)

Figure S2. Global minimum structure of the B_2Ge_2 molecule. (a) Six significant occupied orbitals. (b) Chemical bonding according to the AdNDP analysis.

Figure S3. Global minimum structure of the B_2Sn_2 molecule. (a) Six significant occupied orbitals. (b) Chemical bonding according to the AdNDP analysis.

Figure S4. Global minimum structure of the B_2Pb_2 molecule. (a) Six significant occupied orbitals. (b) Chemical bonding according to the AdNDP analysis.

Figure S5. Global minimum structure of the B_2SiGe molecule. (a) Six significant occupied orbitals. (b) Chemical bonding according to the AdNDP analysis.

Figure S6. Global minimum structure of the B_2SiSn molecule. (a) Six significant occupied orbitals. (b) Chemical bonding according to the AdNDP analysis.

Figure S7. Global minimum structure of the B_2SiPb molecule. (a) Six significant occupied orbitals. (b) Chemical bonding according to the AdNDP analysis.

Figure S8. Global minimum structure of the B_2GeSn molecule. (a) Six significant occupied orbitals. (b) Chemical bonding according to the AdNDP analysis.

Figure S9. Global minimum structure of the B_2GePb molecule. (a) Six significant occupied orbitals. (b) Chemical bonding according to the AdNDP analysis.

Figure S10. Global minimum structure of the B_2 SnPb molecule. (a) Six significant occupied orbitals. (b) Chemical bonding according to the AdNDP analysis.

Figure S11. ACID plots for the four-membered B_2Si_2 species. The current density vectors (green arrows with red tips) are plotted onto an iso-surface of contour value 0.05. See the text.

Figure S12. ACID plots for the four-membered B_2Ge_2 species. The current density vectors (green arrows with red tips) are plotted onto an iso-surface of contour value 0.05. See the text.

Figure S13. ACID plots for the four-membered B_2Sn_2 species. The current density vectors (green arrows with red tips) are plotted onto an iso-surface of contour value 0.05. See the text.

Figure S14. ACID plots for the four-membered B_2Pb_2 species. The current density vectors (green arrows with red tips) are plotted onto an iso-surface of contour value 0.05. See the text.

Figure S15. ACID plots for the four-membered B_2SiGe species. The current density vectors (green arrows with red tips) are plotted onto an iso-surface of contour value 0.05. See the text.

Figure S16. ACID plots for the four-membered B_2SiSn species. The current density vectors (green arrows with red tips) are plotted onto an iso-surface of contour value 0.05. See the text.

Figure S17. ACID plots for the four-membered B_2SiPb species. The current density vectors (green arrows with red tips) are plotted onto an iso-surface of contour value 0.05. See the text.

Figure S18. ACID plots for the four-membered B_2GeSn species. The current density vectors (green arrows with red tips) are plotted onto an iso-surface of contour value 0.05. See the text.

Figure S19. ACID plots for the four-membered B_2GePb species. The current density vectors (green arrows with red tips) are plotted onto an iso-surface of contour value 0.05. See the text.

Figure S20. ACID plots for the four-membered B_2 SnPb species. The current density vectors (green arrows with red tips) are plotted onto an iso-surface of contour value 0.05. See the text.

NICS(0)	-38.52 ppm
NICS(0) _{zz}	-45.50 ppm
NICS(1)	-22.12 ppm
NICS(1) _{zz}	-34.01 ppm

Table S1. Calculated NICS value under the M06-2X/Def2-TZVP of theory. NICS(0) and NICS(1) represents the chemical shift at the B_2Si_2 ring center and the chemical shift 1Å above the ring center. ZZ represents the chemical shift alone the Z-axis.

NICS(0)	-38.37 ppm
NICS(0) _{zz}	-33.32 ppm
NICS(1)	-21.92 ppm
NICS(1) _{zz}	-34.65 ppm

Table S2. Calculated NICS value under the M06-2X/Def2-TZVP of theory. NICS(0) and NICS(1) represents the chemical shift at the B_2Ge_2 ring center and the chemical shift 1Å above the ring center. ZZ represents the chemical shift alone the Z-axis.

NICS(0)	-29.41 ppm
NICS(0) _{zz}	-19.80 ppm
NICS(1)	-18.60 ppm
NICS(1) _{zz}	-29.06 ppm

Table S3. Calculated NICS value under the M06-2X/Def2-TZVP of theory. NICS(0) and NICS(1) represents the chemical shift at the B_2Sn_2 ring center and the chemical shift 1Å above the ring center. ZZ represents the chemical shift alone the Z-axis.

NICS(0)	-24.53 ppm
NICS(0) _{zz}	-15.87 ppm
NICS(1)	-15.42 ppm
NICS(1) _{zz}	-25.39 ppm

Table S4. Calculated NICS value under the M06-2X/Def2-TZVP of theory. NICS(0) and NICS(1) represents the chemical shift at the B_2Pb_2 ring center and the chemical shift 1Å above the ring center. ZZ represents the chemical shift alone the Z-axis.

NICS(0)	-38.61 ppm
NICS(0) _{zz}	-39.06 ppm
NICS(1)	-21.98 ppm
NICS(1) _{zz}	-34.56 ppm

Table S5. Calculated NICS value under the M06-2X/Def2-TZVP of theory. NICS(0) and NICS(1) represents the chemical shift at the B_2SiGe ring center and the chemical shift 1Å above the ring center. ZZ represents the chemical shift alone the Z-axis.

NICS(0)	-32.96 ppm
NICS(0) _{zz}	-28.61 ppm
NICS(1)	-19.87 ppm
NICS(1) _{zz}	-30.58 ppm

Table S6. Calculated NICS value under the M06-2X/Def2-TZVP of theory. NICS(0) and NICS(1) represents the chemical shift at the **B**₂SiSn ring center and the chemical shift 1Å above the ring center. ZZ represents the chemical shift alone the Z-axis.

NICS(0)	-30.35 ppm
NICS(0) _{zz}	-25.01 ppm
NICS(1)	-17.89 ppm
NICS(1) _{zz}	-27.66 ppm

Table S7. Calculated NICS value under the M06-2X/Def2-TZVP of theory. NICS(0) and NICS(1) represents the chemical shift at the B_2SiPb ring center and the chemical shift 1Å above the ring center. ZZ represents the chemical shift alone the Z-axis.

NICS(0)	-33.57 ppm
NICS(0) _{zz}	-25.32 ppm
NICS(1)	-20.15 ppm
NICS(1) _{zz}	-31.67 ppm

Table S8. Calculated NICS value under the M06-2X/Def2-TZVP of theory. NICS(0) and NICS(1) represents the chemical shift at the **B**₂GeSn ring center and the chemical shift 1Å above the ring center. ZZ represents the chemical shift alone the Z-axis.

NICS(0)	-30.43 ppm
NICS(0) _{zz}	-22.74 ppm
NICS(1)	-18.53 ppm
NICS(1) _{zz}	-29.64 ppm

Table S9. Calculated NICS value under the M06-2X/Def2-TZVP of theory. NICS(0) and NICS(1) represents the chemical shift at the **B**₂GePb ring center and the chemical shift 1Å above the ring center. ZZ represents the chemical shift alone the Z-axis.

NICS(0)	-25.76 ppm
NICS(0) _{zz}	-17.43 ppm
NICS(1)	-17.46 ppm
NICS(1) _{zz}	-27.21 ppm

Table S10. Calculated NICS value under the M06-2X/Def2-TZVP of theory. NICS(0) and NICS(1) represents the chemical shift at the B_2 SnPb ring center and the chemical shift 1Å above the ring center. ZZ represents the chemical shift alone the Z-axis.

Bond type	Occupancy	Polarization	Hybridization	Bond Length (Å)	WBI	NPA					
Si ₁ (Lone Pair)	1.60	100.00 % Si ₁	Si ₁ :SP ^{0.36}	- 2.293 1.012							
Si ₂ (Lone Pair)	1.60	100.00 % Si ₂	Si ₂ : SP ^{0.36}		1.012	Si ₁ : +0.35 Si ₂ : +0.35 B ₁ : -0.55 B ₂ : -0.55					
Si ₁ (Lone vacancy)	0.76	100.00 % Si ₁	Si ₁ :P ^{99.99}								
Si ₂ (Lone vacancy)	0.76	100.00 % Si ₂	Si ₂ : P ^{99.99}								
Si ₁ –B ₁ σ	1.59	36.56 % Si ₁ + 63.44 % B ₁	$Si_1: SP^{6.48}$ $B_1: SP^{3.23}$	2.026	0.968						
$Si_1 - B_2 \sigma$	1.60	35.81 % Si ₁ + 64.19 % B ₂	$Si_1: SP^{6.62}$ $B_1: SP^{2.52}$	2.019	0.985						
Si ₂ -B ₁ σ	1.60	35.80 % Si ₂ + 64.20 % B ₁	$Si_1: SP^{6.62}$ $B_1: SP^{2.52}$	2.026	0.985						
Si ₂ -B ₂ σ	1.59	36.56 % Si ₂ + 63.44 % B ₂	$Si_1: SP^{6.48}$ $B_1: SP^{3.23}$	2.019	0.968	-					

Table S11. NBO analysis of B_2Si_2 at the M06-2X/Def2-TZVP level of theory.

Bond type	Occupancy	Polarization	Hybridization	Bond Length (Å)	WBI	NPA
Ge ₁ (Lone Pair)	1.65	100.00 % Ge ₁	Ge ₁ :SP ^{0.31}	_		
Ge ₂ (Lone Pair)	1.65	100.00 % Ge ₂	Ge ₂ : SP ^{0.31}	- 2426	1.029	
Ge ₁ (Lone vacancy)	0.74	100.00 % Ge ₁	Ge ₁ :P ^{99.99}	- 2.436		
Ge ₂ (Lone vacancy)	0.74	100.00 % Ge ₂	Ge ₂ : P ^{99.99}			$Ge_1: +0.25$ $Ge_2: +0.25$
$Ge_1 - B_1 \sigma$	1.59	38.37 % Ge ₁ + 61.63 % B ₁	$Ge_1: SP^{7.79}$ $B_1: SP^{2.65}$	2.109	0.972	$B_1: -0.42$ $B_2: -0.42$
$Ge_1 - B_2 \sigma$	1.59	39.60 % Ge ₁ + 60.40 % B ₂	$Ge_1: SP^{7.51}$ $B_2: SP^{3.29}$	2.114	0.961	_
Ge ₂ -B ₁ σ	1.59	39.60 % Ge ₂ + 60.40 % B ₁	$Ge_1: SP^{7.51}$ $B_1: SP^{3.29}$	2.114	0.961	_
Ge ₂ -B ₂ σ	1.59	38.37 % Ge ₂ + 61.63 % B ₂	$Ge_1: SP^{7.79}$ $B_1: SP^{2.65}$	2.109	0.972	_

Table S12. NBO analysis of B_2Ge_2 at the M06-2X/Def2-TZVP level of theory.

Bond type	Occupancy	Polarization	Hybridization	Bond Length (Å)	WBI	NPA
Sn ₁ (Lone Pair)	1.78	100.00 % Sn ₁	Sn ₁ :SP ^{0.23}	_		
Sn ₂ (Lone Pair)	1.78	100.00 % Sn ₂	Sn ₂ : SP ^{0.23}	2.824	0.557	
Sn ₁ (Lone vacancy)	0.44	100.00 % Sn ₁	Sn ₁ :P ^{99.99}	- 2.834		
Sn ₂ (Lone vacancy)	0.45	100.00 % Sn ₂	Sn ₂ : P ^{99.99}			Sn ₁ : +0.69 Sn ₂ : +0.69
$Sn_1 - B_1 \sigma$	1.64	28.02 % Sn ₁ + 71.98 % B ₁	$Sn_1: SP^{10.12}$ $B_1: SP^{2.14}$	2.351	0.806	$B_1: -0.77$ $B_2: -0.77$
Sn ₁ -B ₂ σ	1.67	29.75 % Sn ₁ + 70.25 % B ₂	$Sn_1: SP^{8.85}$ $B_2: SP^{4.09}$	2.331	0.855	_
$Sn_2 - B_1 \sigma$	1.67	29.80 % Sn ₂ + 70.20 % B ₁	$Sn_1: SP^{8.86}$ $B_1: SP^{4.07}$	2.330	0.858	_
Sn ₂ -B ₂ σ	1.64	28.06 % Sn ₂ + 71.94 % B ₂	$Sn_1: SP^{10.13}$ $B_1: SP^{2.13}$	2.350	0.809	_

Table S13. NBO analysis of B_2Sn_2 at the M06-2X/Def2-TZVP level of theory.

Bond type	Occupancy	Polarization	Hybridization	Bond Length (Å)	WBI	NPA
Pb ₁ (Lone Pair)	1.86	100.00 % Pb ₁	Pb ₁ :SP ^{0.12}		0.422	
Pb ₂ (Lone Pair)	1.86	100.00 % Pb ₂	Pb ₂ : SP ^{0.12}	- 2006		
Pb ₁ (Lone vacancy)	0.38	100.00 % Pb ₁	Pb ₁ :P ^{99.99}	- 2.996		
Pb ₂ (Lone vacancy)	0.38	100.00 % Pb ₂	Pb ₂ : P ^{99.99}			Pb ₁ : +0.75 Pb ₂ : +0.75
$Pb_1 - B_1 \sigma$	1.63	25.82 % Pb ₁ + 74.18 % B ₁	$Pb_{1}: SP^{15.14}$ $B_{1}: SP^{2.10}$	2.444	0.722	$B_1: -0.78$ $B_2: -0.78$
Pb ₁ -B ₂ σ	1.66	27.88 % Pb ₁ + 72.12 % B ₂	$Pb_1: SP^{12.47}$ $B_2: SP^{4.33}$	2.403	0.804	_
Pb ₂ -B ₁ σ	1.66	27.87 % Pb ₂ + 72.13 % B ₁	$Pb_{1}: SP^{12.47}$ $B_{1}: SP^{4.31}$	2.404	0.803	_
Pb ₂ -B ₂ σ	1.63	25.83 % Pb ₂ + 74.17 % B ₂	$Pb_1: SP^{15.16}$ $B_1: SP^{2.09}$	2.446	0.722	_

Table S14. NBO analysis of B_2Pb_2 at the M06-2X/Def2-TZVP level of theory.

Bond type	Occupancy	Polarization	Hybridization	Bond Length (Å)	WBI	NPA
Si (Lone Pair)	0.82	100.00 % Si	Si:P ^{99.99}	_	1.021	
Ge (Lone Pair)	1.71	100.00 % Ge	Ge: SP ^{0.32}	- 2.250		
Si (Lone vacancy)	0.61	100.00 % Si	Si:SP ^{9.75}	- 2.359 -		
Ge (Lone vacancy)	0.72	100.00 % Ge	Ge: P ^{99.99}			Si: +0.36 Ge: +0.25
Si–B ₁ σ	1.87	52.00 % Si ₁ + 48.00 % B ₁	Si: SP ^{1.17} B ₁ : SP ^{5.73}	2.008	1.031	
Si–B ₂ σ	1.87	51.57 % Si + 48.43 % B ₂	Si: SP ^{1.23} B ₂ : SP ^{4.36}	2.002	1.045	_
Ge–B ₁ σ	1.62	37.35 % Ge + 62.65 % B ₁	Ge: $SP^{7.25}$ B ₁ : $SP^{1.77}$	2.124	0.913	_
Ge−B ₂ σ	1.61	38.05 % Ge + 61.95 % B ₂	Ge: $SP^{7.11}$ B ₁ : $SP^{2.19}$	2.129	0.898	

Table S15. NBO analysis of B_2SiGe at the M06-2X/Def2-TZVP level of theory.

Bond type	Occupancy	Polarization	Hybridization	Bond Length (Å)	WBI	NPA
Si (Lone Pair)	none	none	none	_		
Sn (Lone Pair)	1.87	100.00 % Sn	Sn: SP ^{0.18}	_		
Si (Lone vacancy)	0.70	100.00 % Si	Si:SP ^{12.83}	2.546	2.546 0.751	Si: +0.21 Sn: +0.72 B ₁ : -0.62 - B ₂ : -0.62
Sn (Lone vacancy)	none	none	none	-		
Si–Sn π	1.57	76.12 % Si + 23.88 % Sn	Si: SP ^{7.76} Sn: P ^{99.99}			
Si–B ₁ σ	1.87	45.70 % Si ₁ + 54.30 % B ₁	Si: $SP^{1.42}$ B ₁ : $SP^{3.23}$	1.986	1.222	2
Si-B $_2 \sigma$	1.86	45.66 % Si + 54.34 % B ₂	Si: SP ^{1.46} B ₂ : SP ^{3.81}	1.982	1.220	
$Sn-B_1\sigma$	1.55	26.92 % Sn + 73.08 % B ₁	Sn: SP ^{11.13} B ₁ : SP ^{2.69}	2.409	0.623	
Sn-B ₂ σ	1.54	27.61 % Sn + 72.39 % B ₂	Sn: $SP^{10.18}$ B ₂ : $SP^{2.99}$	2.397	0.631	

Table S16. NBO analysis of B_2 SiSn at the M06-2X/Def2-TZVP level of theory.

Bond type	Occupancy	Polarization	Hybridization	Bond Length (Å)	WBI	NPA
Si (Lone Pair)	none	none	none	_		
Pb (Lone Pair)	1.93	100.00 % Pb	Pb: SP ^{0.10}	_		
Si (Lone vacancy)	0.72	100.00 % Si	Si:SP ^{15.27}	2.608	0.702	
Pb (Lone vacancy)	none	none	none	_		S:. 10.17
Si–Pb π	1.59	78.68 % Si + 21.32 % Pb	Si: SP ^{6.18} Pb: P ^{99.99}	-		Pb: $+0.17$ Pb: $+0.75$ B ₁ : -0.60 - B ₂ : -0.60
Si–B ₁ σ	1.89	44.78 % Si ₁ + 55.22 % B ₁	Si: SP ^{1.48} B ₁ : SP ^{2.64}	1.976	1.262	2
Si $-B_2 \sigma$	1.88	44.97 % Si + 55.03 % B ₂	Si: SP ^{1.49} B ₂ : SP ^{3.17}	1.973	1.259	_
Pb–B ₁ σ	1.51	26.04 % Pb + 73.96 % B ₁	Pb: $SP^{16.24}$ B ₁ : $SP^{3.43}$	2.538	0.545	_
Pb-B ₂ σ	1.51	26.75 % Pb + 73.25 % B ₂	Pb: $SP^{14.38}$ B ₂ : $SP^{3.74}$	2.510	0.560	

Table S17. NBO analysis of B_2 SiPb at the M06-2X/Def2-TZVP level of theory.

Bond type	Occupancy	Polarization	Hybridization	Bond Length (Å)	WBI	NPA
Ge (Lone Pair)	1.57	100.00 % Ge	Ge:SP ^{0.43}	_	0.779	
Sn (Lone Pair)	1.83	100.00 % Sn	Sn: SP ^{0.18}			
Ge (Lone vacancy)	0.77	100.00 % Ge	Ge:SP ^{66.50}	- 2.623		Ge: +0.11 Sn: +0.72
Sn (Lone vacancy)	0.45	100.00 % Sn	Sn: P ^{99.99}			
Ge–B ₁ σ	1.74	42.47 % Ge + 57.53 % B ₁	Ge: $SP^{5.65}$ B ₁ : $SP^{2.52}$	2.079	1.179	B ₁ : -0.55 B ₂ : -0.54
Ge–B ₂ σ	1.72	40.83 % Ge + 59.17 % B ₂	Ge: $SP^{6.27}$ B ₂ : $SP^{1.90}$	2.077	1.159	-
Sn–B ₁ σ	1.53	27.56 % Sn + 72.44 % B ₁	Sn: $SP^{11.92}$ B ₁ : $SP^{3.74}$	2.401	0.667	_
Sn-B ₂ σ	1.54	28.99 % Sn + 71.01 % B ₂	Sn: SP ^{11.00} B ₂ : SP ^{5.01}	2.384	0.681	

Table S18. NBO analysis of B_2GeSn at the M06-2X/Def2-TZVP level of theory.

Bond type	Occupancy	Polarization	Hybridization	Bond Length (Å)	WBI	NPA
Ge (Lone Pair)	1.56	100.00 % Ge	Ge:SP ^{0.47}		2.690 0.699	
Pb (Lone Pair)	1.91	100.00 % Pb	Pb: SP ^{0.10}			
Ge (Lone vacancy)	0.78	100.00 % Ge	Ge:SP ^{54.22}	2.690		Ge: $+0.07$ Pb: $+0.77$ B ₁ : -0.52 B ₂ : -0.54
Pb (Lone vacancy)	0.42	100.00 % Pb	Pb: SP ^{17.78}	-		
Pb (Lone vacancy)	0.40	100.00 % Pb	Pb: P ^{99.99}			
Ge–B ₁ σ	1.79	42.82 % Ge + 57.18 % B ₁	Ge: $SP^{5.16}$ B ₁ : $SP^{2.25}$	2.068	1.231	_ D ₂ . 0.01
Ge-B ₂ σ	1.76	41.31 % Ge + 58.69 % B ₂	Ge: $SP^{5.92}$ B ₂ : $SP^{1.75}$	2.067	1.215	_
Pb- $B_1 \sigma$	none	none	none	2.529	0.568	
Pb- $B_2 \sigma$	1.51	27.27 % Pb + 72.73 % B ₂	Pb: $SP^{15.98}$ B ₂ : $SP^{5.68}$	2.493	0.592	

Bond type	Occupancy	Polarization	Hybridization	Bond Length (Å)	WBI	NPA
Sn (Lone Pair)	1.74	100.00 % Sn	Sn:SP ^{0.26}		2.902 0.518	
Pb (Lone Pair)	1.89	100.00 % Pb	Pb: SP ^{0.11}	2.002		
Sn (Lone vacancy)	0.52	100.00 % Sn	Sn:SP ^{80.73}	- 2.902		
Pb (Lone vacancy)	0.35	100.00 % Pb	Pb: P ^{99.99}			Sn: +0.57 Pb: +0.79
Sn–B ₁ σ	1.73	31.85 % Sn + 68.15 % B ₁	Sn: $SP^{8.04}$ B ₁ : $SP^{2.77}$	2.303	0.984	
Sn-B ₂ σ	1.70	29.65 % Sn + 70.35 % B ₂	Sn: $SP^{9.66}$ B ₂ : $SP^{2.20}$	2.317	0.930	_
Pb–B ₁ σ	1.59	25.52 % Pb + 74.48 % B ₁	Pb: $SP^{15.63}$ B ₁ : $SP^{3.23}$	2.507	0.632	_
Pb-B ₂ σ	1.61	27.10 % Pb + 72.90 % B ₂	Pb: $SP^{13.02}$ B ₂ : $SP^{4.15}$	2.455	0.696	_

Table S20. NBO analysis of B_2 SnPb at the M06-2X/Def2-TZVP level of theory.

Table S21. B_2Si_2 . All Si₁ lone pair orbital contribution in NBO analysis of second order perturbation theory.

Ar: 2,6-diisopropylphenyl

Donor orbital	Acceptor orbital	Energy (kcal/mol)
Si ₁ (Lone Pair)	BD*Si ₁ -B ₁	8.45
Si ₁ (Lone Pair)	BD*Si ₁ -B ₂	9.06
Si ₁ (Lone Pair)	BD*B ₁ -N ₁	3.03
Si ₁ (Lone Pair)	BD*B ₂ -P ₂	2.68
Si ₁ (Lone Pair)	BD*B ₁ -Si ₂	0.85
Si ₁ (Lone Pair)	BD*B ₂ -Si ₂	0.58
Si ₁ (Lone Pair)	BD*C ₂₄ - H ₅₂	0.76
Si ₁ (Lone Pair)	BD*C ₂₈ - H ₆₂	0.58
Si ₁ (Lone Pair)	BD*C ₁₀₃ - H ₁₃₅	1.22

Table S22. B_2Si_2 . All Si₁ lone vacancy orbital contribution in NBO analysis of second order perturbation theory.

Ar: 2,6-diisopropylphenyl

Donor orbital	Acceptor orbital	Energy (kcal/mol)
BD Si ₁ - B ₂	Si_1 (Lone vacancy)	0.59
BD B ₁ - P ₁	Si_1 (Lone vacancy)	1.03
BD B ₁ -Si ₂	Si_1 (Lone vacancy)	7.06
BD B ₂ -Si ₂	Si_1 (Lone vacancy)	7.62
BD B ₂ - P ₂	Si_1 (Lone vacancy)	0.63
BD B ₂ - N ₂	Si_1 (Lone vacancy)	1.05
BD C ₁₇ - C ₃₅	Si_1 (Lone vacancy)	1.51
BD C ₂₈ - H ₆₂	Si_1 (Lone vacancy)	0.53
BD C ₂₉ - H ₆₆	Si_1 (Lone vacancy)	1.69
BD C ₅₅ - H ₈₇	Si ₁ (Lone vacancy)	1.03
BD C ₈₅ - H ₁₁₁	Si_1 (Lone vacancy)	0.52
BD C ₁₀₃ - H ₁₃₅	Si ₁ (Lone vacancy)	1.14
Table S23. B_2Si_2 . All Si₂ lone pair orbital contribution in NBO analysis of second order perturbation theory.

Ar: 2,6-diisopropylphenyl

Donor orbital	Acceptor orbital	Energy (kcal/mol)
Si ₂ (Lone Pair)	BD*B ₁ -Si ₂	9.05
Si ₂ (Lone Pair)	BD*B ₂ -Si ₂	8.45
Si ₂ (Lone Pair)	BD*B ₂ -N ₂	3.04
Si ₂ (Lone Pair)	BD*B ₁ -P ₁	2.68
Si ₂ (Lone Pair)	BD*Si ₁ - B ₁	0.58
Si ₂ (Lone Pair)	BD*Si ₁ - B ₂	0.85
Si ₂ (Lone Pair)	BD*C ₁₉ - H ₃₇	0.58
Si ₂ (Lone Pair)	BD*C ₃₃ - H ₇₆	0.76
Si ₂ (Lone Pair)	BD*C ₉₀ - H ₁₁₉	1.22

Table S24. B_2Si_2 . All Si₂ lone vacancy orbital contribution in NBO analysis of second order perturbation theory.

Ar: 2,6-diisopropylphenyl

Donor orbital	Acceptor orbital	Energy (kcal/mol)
BD Si ₁ - B ₁	Si ₂ (Lone vacancy)	7.62
BD Si ₁ - B ₂	Si_2 (Lone vacancy)	7.07
BD B ₁ - P ₁	Si ₂ (Lone vacancy)	0.63
BD B ₁ - N ₁	Si_2 (Lone vacancy)	1.05
BD B ₁ -Si ₂	Si_2 (Lone vacancy)	0.59
BD B ₂ - P ₂	Si ₂ (Lone vacancy)	1.03
BD C ₁₂ - C ₂₆	Si ₂ (Lone vacancy)	1.51
BD C ₁₉ - H ₃₇	Si_2 (Lone vacancy)	0.53
BD C ₂₀ - H ₄₂	Si_2 (Lone vacancy)	1.69
BD C ₇₉ - H ₁₀₀	Si ₂ (Lone vacancy)	1.03
BD C ₉₀ - H ₁₁₉	Si_2 (Lone vacancy)	1.14
BD C ₉₈ - H ₁₂₇	Si_2 (Lone vacancy)	0.51

Table S25. B_2Ge_2 . All Ge_1 lone pair orbital contribution in NBO analysis of second order perturbation theory.

Ar: 2,6-diisopropylphenyl

Donor orbital	Acceptor orbital	Energy (kcal/mol)
Ge ₁ (Lone Pair)	LV B ₂	6.04
Ge ₁ (Lone Pair)	$BD*Ge_1-B_2$	9.17
Ge ₁ (Lone Pair)	$BD*Ge_1-B_1$	9.74
Ge ₁ (Lone Pair)	BD*B ₁ -Ge ₂	0.62
Ge ₁ (Lone Pair)	BD*B ₂ - P ₂	4.11
Ge ₁ (Lone Pair)	BD*C ₂₄ - H ₅₂	0.70
Ge ₁ (Lone Pair)	BD*C ₁₀₃ - H ₁₃₅	1.09

Table S26. B_2Ge_2 . All Ge_1 lone vacancy orbital contribution in NBO analysis of second order perturbation theory.

Donor orbital	Acceptor orbital	Energy (kcal/mol)
LP N ₂	Ge ₁ (Lone vacancy)	2.65
LP N ₁	Ge ₁ (Lone vacancy)	0.58
BD Ge_1 - B_1	Ge ₁ (Lone vacancy)	1.53
BD B ₂ -Ge ₂	Ge ₁ (Lone vacancy)	15.26
BD B ₂ - P ₂	Ge ₁ (Lone vacancy)	0.62
BD B ₁ -Ge ₂	Ge ₁ (Lone vacancy)	16.50
BD C ₁₇ - C ₃₅	Ge ₁ (Lone vacancy)	1.53
BD C ₂₈ - H ₆₂	Ge ₁ (Lone vacancy)	0.53
BD C ₂₉ - H ₆₆	Ge ₁ (Lone vacancy)	0.99
BD C ₅₅ - H ₈₇	Ge ₁ (Lone vacancy)	0.85
BD C ₁₀₃ - H ₁₃₅	Ge ₁ (Lone vacancy)	0.55

Table S27. B_2Ge_2 . All Ge_2 lone pair orbital contribution in NBO analysis of second order perturbation theory.

Donor orbital	Acceptor orbital	Energy (kcal/mol)
Ge ₂ (Lone Pair)	LV B ₁	6.04
Ge ₂ (Lone Pair)	$BD*Ge_1-B_1$	0.62
Ge ₂ (Lone Pair)	BD*B ₂ -Ge ₂	9.74
Ge ₂ (Lone Pair)	BD*B ₂ - P ₂	4.11
Ge ₂ (Lone Pair)	BD*B ₁ -Ge ₂	9.17
Ge ₂ (Lone Pair)	BD*C ₃₃ - H ₇₆	0.70
Ge ₂ (Lone Pair)	BD*C ₉₀ - H ₁₁₉	1.09

Table S28. B_2Ge_2 . All Ge_2 lone vacancy orbital contribution in NBO analysis of second order perturbation theory.

Ar: 2,6-diisopropylphenyl

Donor orbital	Acceptor orbital	Energy (kcal/mol)
LP N ₂	Ge ₂ (Lone vacancy)	0.58
LP N ₁	Ge ₂ (Lone vacancy)	2.65
BD Ge ₁ - B ₂	Ge ₂ (Lone vacancy)	16.50
BD Ge ₁ - B ₁	Ge ₂ (Lone vacancy)	15.26
BD B_1 -G e_2	Ge ₂ (Lone vacancy)	1.53
BD B ₁ - P ₁	Ge ₂ (Lone vacancy)	0.62
BD C ₁₂ - C ₂₆	Ge ₂ (Lone vacancy)	1.53
BD C ₁₉ - H ₃₇	Ge ₂ (Lone vacancy)	0.53
BD C ₂₀ - H ₄₂	Ge ₂ (Lone vacancy)	0.99
BD C ₇₉ - H ₁₀₀	Ge ₂ (Lone vacancy)	0.85
BD C ₉₀ - H ₁₁₉	Ge ₂ (Lone vacancy)	0.55

Table S29. B_2Sn_2 . All Sn_1 lone pair orbital contribution in NBO analysis of second order perturbation theory.

Ar: 2,6-diisopropylphenyl

Donor orbital	Acceptor orbital	Energy (kcal/mol)
Sn ₁ (Lone Pair)	LV Sn ₁	2.05
Sn ₁ (Lone Pair)	LV Sn ₂	0.91
Sn ₁ (Lone Pair)	$BD* Sn_1- B_1$	3.82
Sn ₁ (Lone Pair)	BD* Sn ₁ - B ₂	4.42
Sn ₁ (Lone Pair)	BD* B ₁ -Sn ₂	3.14
Sn ₁ (Lone Pair)	$BD^* B_1 - N_1$	10.88
Sn ₁ (Lone Pair)	BD* B ₂ -Sn ₂	2.38
Sn ₁ (Lone Pair)	BD* B ₂ - P ₂	5.17
Sn ₁ (Lone Pair)	BD* B ₂ - N ₂	3.44
Sn ₁ (Lone Pair)	BD* C ₂₂ - H ₄₆	0.56
Sn ₁ (Lone Pair)	BD* C ₂₄ - H ₅₂	0.84
Sn ₁ (Lone Pair)	BD* C ₁₀₃ - H ₁₃₅	1.61

Table S30. B_2Sn_2 . All Sn_1 lone vacancy orbital contribution in NBO analysis of second order perturbation theory.

Donor orbital	Acceptor orbital	Energy (kcal/mol)
LP Sn ₁	Sn ₁ (Lone vacancy)	2.05
LP Sn ₂	Sn ₁ (Lone vacancy)	0.89
LP N ₁	Sn ₁ (Lone vacancy)	0.53
BD B ₁ -Sn ₂	Sn ₁ (Lone vacancy)	21.79
BD B ₁ - P ₁	Sn ₁ (Lone vacancy)	0.99
BD B ₂ -Sn ₂	Sn ₁ (Lone vacancy)	24.68
BD B ₂ - N ₂	Sn ₁ (Lone vacancy)	0.92
BD C ₁₇ - C ₃₄	Sn ₁ (Lone vacancy)	0.60
BD C ₁₇ - C ₃₅	Sn ₁ (Lone vacancy)	1.40
BD C ₂₀ - H ₄₂	Sn ₁ (Lone vacancy)	0.97
BD C ₂₈ - H ₆₂	Sn ₁ (Lone vacancy)	1.53
BD C ₂₉ - H ₆₆	Sn ₁ (Lone vacancy)	0.89
BD C ₅₅ - H ₈₇	Sn ₁ (Lone vacancy)	1.20
BD C ₈₅ - H ₁₁₁	Sn ₁ (Lone vacancy)	2.65
BD C ₈₅ - H ₁₁₃	Sn ₁ (Lone vacancy)	0.71

Table S31. B_2Sn_2 . All Sn_2 lone pair orbital contribution in NBO analysis of second order perturbation theory.

Donor orbital	Acceptor orbital	Energy (kcal/mol)
Sn ₂ (Lone Pair)	LV Sn ₁	0.89
Sn ₂ (Lone Pair)	LV Sn ₂	2.04
Sn ₂ (Lone Pair)	$BD* Sn_1- B_1$	2.36
Sn ₂ (Lone Pair)	BD* Sn ₁ - B ₂	3.15
Sn ₂ (Lone Pair)	$BD* B_1-Sn_2$	4.49
Sn ₂ (Lone Pair)	BD* B ₁ - P ₁	5.26
Sn ₂ (Lone Pair)	$BD^* B_1 - N_1$	3.46
Sn ₂ (Lone Pair)	$BD^* B_2$ - Sn_2	3.89
Sn ₂ (Lone Pair)	BD* B ₂ - N ₂	11.05
Sn ₂ (Lone Pair)	BD* C ₃₁ - H ₇₀	0.57
Sn ₂ (Lone Pair)	BD* C ₃₃ - H ₇₆	0.83
Sn ₂ (Lone Pair)	BD* C ₉₀ - H ₁₁₉	1.61

Table S32. B_2Sn_2 . All Sn_2 lone vacancy orbital contribution in NBO analysis of second order perturbation theory.

Ar: 2,6-diisopropylphenyl

Donor orbital	Acceptor orbital	Energy (kcal/mol)
LP Sn ₁	Sn ₂ (Lone vacancy)	0.91
LP Sn ₂	Sn ₂ (Lone vacancy)	2.04
LP N ₂	Sn ₂ (Lone vacancy)	0.54
BD Sn ₁ - B ₁	Sn ₂ (Lone vacancy)	25.08
BD Sn ₁ - B ₂	Sn ₂ (Lone vacancy)	22.25
BD B ₁ - N ₁	Sn ₂ (Lone vacancy)	0.91
BD B ₂ - P ₂	Sn ₂ (Lone vacancy)	0.99
BD C ₁₂ - C ₂₅	Sn ₂ (Lone vacancy)	0.59
BD C ₁₂ - C ₂₆	Sn ₂ (Lone vacancy)	1.39
BD C ₁₉ - H ₃₇	Sn ₂ (Lone vacancy)	1.52
BD C ₂₀ - H ₄₂	Sn ₂ (Lone vacancy)	0.86
BD C ₂₉ - H ₆₆	Sn ₂ (Lone vacancy)	0.97
BD C ₇₉ - H ₁₀₀	Sn ₂ (Lone vacancy)	1.18
BD C ₉₈ - H ₁₂₇	Sn ₂ (Lone vacancy)	2.62
BD C ₉₈ - H ₁₂₉	Sn ₂ (Lone vacancy)	0.70

Table S33. B_2Pb_2 . All Pb_1 lone pair orbital contribution in NBO analysis of second order perturbation theory.

Ar: 2,6-diisopropylphenyl

Donor orbital	Acceptor orbital	Energy (kcal/mol)
Pb ₁ (Lone Pair)	LV Pb ₁	1.25
Pb ₁ (Lone Pair)	LV Pb ₂	0.93
Pb ₁ (Lone Pair)	$BD* Pb_1-B_1$	2.25
Pb ₁ (Lone Pair)	BD* Pb ₁ - B ₂	3.13
Pb ₁ (Lone Pair)	$BD^* B_1$ - Pb_2	1.84
Pb ₁ (Lone Pair)	BD* B ₁ - N ₁	11.03
Pb ₁ (Lone Pair)	BD* B ₂ -Pb ₂	1.47
Pb ₁ (Lone Pair)	BD* B ₂ - P ₂	5.77
Pb ₁ (Lone Pair)	BD* B ₂ - N ₂	2.83
Pb ₁ (Lone Pair)	BD* C ₂₄ - H ₅₂	0.54
Pb ₁ (Lone Pair)	BD* C ₁₀₃ - H ₁₃₅	1.18

Table S34. B_2Pb_2 . All Pb_1 lone vacancy orbital contribution in NBO analysis of second order perturbation theory.

Donor orbital	Acceptor orbital	Energy (kcal/mol)
LP Pb ₁	Pb ₁ (Lone vacancy)	1.25
LP Pb ₂	Pb ₁ (Lone vacancy)	0.94
BD B_1 -P b_2	Pb ₁ (Lone vacancy)	18.73
BD B ₁ - P ₁	Pb ₁ (Lone vacancy)	0.87
BD B_2 -Pb ₂	Pb ₁ (Lone vacancy)	21.99
BD B ₂ - N ₂	Pb ₁ (Lone vacancy)	0.62
BD N ₁ - C ₁₇	Pb ₁ (Lone vacancy)	0.58
BD C ₁₇ - C ₃₄	Pb ₁ (Lone vacancy)	0.74
BD C ₁₇ - C ₃₅	Pb ₁ (Lone vacancy)	1.41
BD C ₂₀ - H ₄₂	Pb ₁ (Lone vacancy)	1.36
BD C ₂₂ - H ₄₆	Pb ₁ (Lone vacancy)	0.51
BD C ₂₄ - H ₅₂	Pb ₁ (Lone vacancy)	0.61
BD C ₂₈ - H ₆₂	Pb ₁ (Lone vacancy)	1.76
BD C ₂₉ - H ₆₆	Pb ₁ (Lone vacancy)	0.82
BD C ₅₅ - H ₈₇	Pb ₁ (Lone vacancy)	1.13
BD C ₈₅ - H ₁₁₁	Pb ₁ (Lone vacancy)	3.00
BD C ₈₅ - H ₁₁₃	Pb ₁ (Lone vacancy)	0.94

Table S35. B_2Pb_2 . All Pb_2 lone pair orbital contribution in NBO analysis of second order perturbation theory.

Ar: 2,6-diisopropylphenyl

Donor orbital	Acceptor orbital	Energy (kcal/mol)
Pb ₂ (Lone Pair)	LV Pb ₁	0.94
Pb ₂ (Lone Pair)	LV Pb ₂	1.25
Pb ₂ (Lone Pair)	BD*Pb ₁ - B ₁	1.48
Pb ₂ (Lone Pair)	BD*Pb ₁ - B ₂	1.82
Pb ₂ (Lone Pair)	BD* B ₁ -Pb ₂	3.12
Pb ₂ (Lone Pair)	BD* B ₁ - P ₁	5.73
Pb ₂ (Lone Pair)	$BD^* B_1 - N_1$	2.78
Pb ₂ (Lone Pair)	BD* B ₂ -Pb ₂	2.22
Pb ₂ (Lone Pair)	BD* B ₂ - N ₂	11.09
Pb ₂ (Lone Pair)	BD* C ₃₃ - H ₇₆	0.54
Pb ₂ (Lone Pair)	BD* C ₉₀ - H ₁₁₉	1.23

Table S36. B_2Pb_2 . All Pb_2 lone vacancy orbital contribution in NBO analysis of second order perturbation theory.

Donor orbital	Acceptor orbital	Energy (kcal/mol)
LP Pb ₁	Pb ₂ (Lone vacancy)	0.93
LP Pb ₂	Pb ₂ (Lone vacancy)	1.25
LP N ₂	Pb ₂ (Lone vacancy)	0.51
BD Pb ₁ - B ₁	Pb ₂ (Lone vacancy)	21.82
BD Pb ₁ - B ₂	Pb ₂ (Lone vacancy)	18.78
BD B ₁ - N ₁	Pb ₂ (Lone vacancy)	0.62
BD B ₂ - P ₂	Pb ₂ (Lone vacancy)	0.87
BD N ₁ - C ₁₂	Pb ₂ (Lone vacancy)	0.58
BD C ₁₂ - C ₂₅	Pb ₂ (Lone vacancy)	0.74
BD C ₁₂ - C ₂₆	Pb ₂ (Lone vacancy)	0.50
BDC ₁₂ - C ₂₆	Pb ₂ (Lone vacancy)	1.41
BD C ₁₉ - H ₃₇	Pb ₂ (Lone vacancy)	1.77
BD C ₂₀ - H ₄₂	Pb ₂ (Lone vacancy)	0.82
BD C ₂₉ - H ₆₆	Pb ₂ (Lone vacancy)	1.36
BD C ₃₁ - H ₇₀	Pb ₂ (Lone vacancy)	0.51
BD C ₃₃ - H ₇₆	Pb ₂ (Lone vacancy)	0.61
BD C ₇₉ - H ₁₀₀	Pb ₂ (Lone vacancy)	1.13
BD C ₉₈ - H ₁₂₇	Pb ₂ (Lone vacancy)	2.97
BD C ₉₈ - H ₁₂₉	Pb ₂ (Lone vacancy)	0.93

Table S37. B_2SiGe . All Si lone pair orbital contribution in NBO analysis of second order perturbation theory.

Donor orbital	Acceptor orbital	Energy (kcal/mol)
Si (Lone Pair)	LV Si	2.64
Si (Lone Pair)	BD* Si- B ₂	12.35
Si (Lone Pair)	BD* Si- B ₁	2.16
Si (Lone Pair)	BD* B ₂ - P ₂	22.09
Si (Lone Pair)	BD* B ₂ - N ₂	23.53
Si (Lone Pair)	$BD* B_1 - P_1$	15.07
Si (Lone Pair)	BD* B ₁ - N ₁	28.99
Si (Lone Pair)	BD* P ₂ - N	0.74
Si (Lone Pair)	BD* C ₁₂ - C ₂₆	0.90
Si (Lone Pair)	BD* C ₂₂ - H ₄₆	1.11
Si (Lone Pair)	BD* C ₂₅ - C ₅₆	1.11
Si (Lone Pair)	BD* C ₂₉ - H ₆₆	2.74
Si (Lone Pair)	BD* C ₅₅ - C ₈₆	0.62
Si (Lone Pair)	BD* C ₈₁ - C ₁₀₄	0.56
Si (Lone Pair)	BD* C ₁₀₃ - H ₁₃₅	3.02

Table S38. B_2SiGe . All Si lone vacancy orbital contribution in NBO analysis of second order perturbation theory.

Donor orbital	Acceptor orbital	Energy (kcal/mol)
LP Si	Si (Lone vacancy)	2.64
LP Ge	Si (Lone vacancy)	0.88
BD Si-B ₂	Si (Lone vacancy)	15.82
BD Si-B ₁	Si (Lone vacancy)	16.40
BD B ₂ -Ge	Si (Lone vacancy)	113.41
BD B ₁ -Ge	Si (Lone vacancy)	109.43
BD B ₁ -N ₁	Si (Lone vacancy)	0.56
BD C ₂₄ -H ₅₂	Si (Lone vacancy)	0.67
BD C ₂₈ -H ₆₂	Si (Lone vacancy)	0.69
BD C ₁₀₃ -H ₁₃₅	Si (Lone vacancy)	0.88

Table S39. B_2SiGe . All Ge lone pair orbital contribution in NBO analysis of second order perturbation theory.

Ar: 2,6-diisopropylphenyl

Donor orbital	Acceptor orbital	Energy (kcal/mol)
Ge (Lone Pair)	LV Si	0.88
Ge (Lone Pair)	BD* Si- B ₂	1.88
Ge (Lone Pair)	BD* Si- B ₁	2.26
Ge (Lone Pair)	BD* B ₂ - P ₂	2.54
Ge (Lone Pair)	BD* B ₂ -Ge	5.80
Ge (Lone Pair)	BD* B ₁ -Ge	5.31
Ge (Lone Pair)	$BD* B_1- N_1$	3.05
Ge (Lone Pair)	BD* C ₁₉ - H ₃₇	0.53
Ge (Lone Pair)	BD* C ₃₃ - H ₇₆	0.83
Ge (Lone Pair)	BD* C ₉₀ - H ₁₁₉	1.01

Table S40. B_2SiGe . All Ge lone vacancy orbital contribution in NBO analysis of second order perturbation theory.

Donor orbital	Acceptor orbital	Energy (kcal/mol)
LP N ₂	Ge (Lone vacancy)	0.56
BD Si- B ₂	Ge (Lone vacancy)	1.17
BD Si- B ₁	Ge (Lone vacancy)	1.08
BD B ₂ - N ₂	Ge (Lone vacancy)	0.80
BD B ₂ -Ge	Ge (Lone vacancy)	1.26
BD B ₁ - P ₁	Ge (Lone vacancy)	0.68
BD C ₁₂ - C ₂₆	Ge (Lone vacancy)	1.26
BD C ₂₀ - H ₄₂	Ge (Lone vacancy)	1.19
BD C ₇₉ - H ₁₀₀	Ge (Lone vacancy)	0.91
BD C ₉₀ - H ₁₁₉	Ge (Lone vacancy)	1.04

Table S41. B_2SiSn . All Si lone vacancy orbital contribution in NBO analysis of second order perturbation theory.

Donor orbital	Acceptor orbital	Energy (kcal/mol)
LP N ₂	Si (Lone vacancy)	0.79
LP N ₂	Si (Lone vacancy)	3.60
LP Sn	Si (Lone vacancy)	3.00
LP N ₁	Si (Lone vacancy)	1.11
BD Si- B ₂	Si (Lone vacancy)	12.92
BD Si- B ₁	Si (Lone vacancy)	11.94
BD B ₂ -Sn	Si (Lone vacancy)	150.60
BD B ₁ -Sn	Si (Lone vacancy)	141.24
BD C ₂₄ - H ₅₂	Si (Lone vacancy)	1.10
BD C ₂₈ - H ₆₂	Si (Lone vacancy)	0.66
BD C ₁₀₃ - H ₁₃₅	Si (Lone vacancy)	1.63

Table S42. B_2SiSn . All Sn lone pair orbital contribution in NBO analysis of second order perturbation theory.

Ar: 2,6-diisopropylphenyl

Donor orbital	Acceptor orbital	Energy (kcal/mol)
Sn (Lone Pair)	LV Si	3.00
Sn (Lone Pair)	$LV B_1$	2.56
Sn (Lone Pair)	BD* Si- B ₂	0.76
Sn (Lone Pair)	BD* Si- B ₁	0.81
Sn (Lone Pair)	BD* Si-Sn	0.59
Sn (Lone Pair)	BD* B ₂ - P ₂	2.12
Sn (Lone Pair)	BD* B ₂ -Sn	2.32
Sn (Lone Pair)	BD* B ₁ -Sn	2.18
Sn (Lone Pair)	BD* C ₁₉ - H ₃₇	0.62
Sn (Lone Pair)	BD* C ₃₃ - H ₇₆	0.92
Sn (Lone Pair)	BD* C ₉₀ - H ₁₁₉	0.81

Table S43. B_2 SiPb. All Si lone vacancy orbital contribution in NBO analysis of second order perturbation theory.

Donor orbital	Acceptor orbital	Energy (kcal/mol)
LP N ₂	Si (Lone vacancy)	0.88
LP N ₂	Si (Lone vacancy)	3.26
LP Pb	Si (Lone vacancy)	6.54
LP N ₁	Si (Lone vacancy)	1.10
BD Si- B ₂	Si (Lone vacancy)	11.57
BD Si- B ₁	Si (Lone vacancy)	10.17
BD Si-Pb	Si (Lone vacancy)	0.83
BD B_2 -Pb	Si (Lone vacancy)	175.74
BD B ₁ -Pb	Si (Lone vacancy)	164.28
BD C 24- H 52	Si (Lone vacancy)	1.19
BD C ₁₀₃ - H ₁₃₅	Si (Lone vacancy)	2.14

Table S44. B₂SiPb. All Pb lone pair orbital contribution in NBO analysis of second order perturbation theory.

Ar: 2,6-diisopropylphenyl

Donor orbital	Acceptor orbital	Energy (kcal/mol)
Pb (Lone Pair)	LV Si	6.54
Pb (Lone Pair)	$LV B_1$	2.02
Pb (Lone Pair)	BD* B ₂ - P ₂	1.78
Pb (Lone Pair)	BD* B ₂ -Pb	1.17
Pb (Lone Pair)	BD* B ₁ -Pb	1.05
Pb (Lone Pair)	BD* C ₃₃ - H ₇₆	0.61

Table S45. B_2GeSn . All Ge lone pair orbital contribution in NBO analysis of second order perturbation theory.

Donor orbital	Acceptor orbital	Energy (kcal/mol)
Ge (Lone Pair)	LV Ge	0.86
Ge (Lone Pair)	$LV B_2$	19.27
Ge (Lone Pair)	$LV B_1$	5.85
Ge (Lone Pair)	BD* Ge-B ₂	6.98
Ge (Lone Pair)	BD* Ge-B ₁	7.00
Ge (Lone Pair)	BD* B ₂ -Sn	2.86
Ge (Lone Pair)	BD* B ₁ -Sn	1.56
Ge (Lone Pair)	$BD* B_1-P_1$	9.97
Ge (Lone Pair)	BD* C ₂₄ - H ₅₂	0.77
Ge (Lone Pair)	BD* C ₁₀₃ - H ₁₃₅	1.59

Table S46. B_2GeSn . All Ge lone vacancy orbital contribution in NBO analysis of second order perturbation theory.

Donor orbital	Acceptor orbital	Energy (kcal/mol)
LP Ge	Ge (Lone vacancy)	0.86
LP N ₂	Ge (Lone vacancy)	0.86
LP N ₂	Ge (Lone vacancy)	2.63
BD Ge- B ₂	Ge (Lone vacancy)	2.10
BD Ge- B ₁	Ge (Lone vacancy)	3.10
BD B ₂ -Sn	Ge (Lone vacancy)	62.26
BD B ₂ - P ₂	Ge (Lone vacancy)	0.61
BD B ₁ -Sn	Ge (Lone vacancy)	65.18
BD C ₁₇ - C ₃₅	Ge (Lone vacancy)	1.42
BD C ₂₈ - H ₆₂	Ge (Lone vacancy)	0.61
BD C ₅₅ - H ₈₇	Ge (Lone vacancy)	0.58

Table S47. B_2GeSn . All Sn lone pair orbital contribution in NBO analysis of second order perturbation theory.

Ar: 2,6-diisopropylphenyl

Donor orbital	Acceptor orbital	Energy (kcal/mol)
Sn (Lone Pair)	LV B ₁	4.94
Sn (Lone Pair)	BD* B ₂ -Sn	4.28
Sn (Lone Pair)	BD* B ₂ - P ₂	2.94
Sn (Lone Pair)	BD* B ₁ -Sn	4.06
Sn (Lone Pair)	BD* C ₃₃ - H ₇₆	0.83
Sn (Lone Pair)	BD* C ₉₀ - H ₁₁₉	0.88

Table S48. B_2GeSn . All Sn lone vacancy orbital contribution in NBO analysis of second order perturbation theory.

Donor orbital	Acceptor orbital	Energy (kcal/mol)
LP N ₁	Sn (Lone vacancy)	2.52
BD Ge- B ₂	Sn (Lone vacancy)	12.81
BD Ge- B ₁	Sn (Lone vacancy)	9.88
BD B ₂ -Sn	Sn (Lone vacancy)	0.63
$BD B_1 - P_1$	Sn (Lone vacancy)	0.64
BD C ₁₂ - C ₂₆	Sn (Lone vacancy)	1.21
BD C ₁₉ - H ₃₇	Sn (Lone vacancy)	0.60
BD C ₂₀ - H ₄₂	Sn (Lone vacancy)	1.92
BD C ₂₉ - H ₆₆	Sn (Lone vacancy)	0.51
BD C ₃₁ - H ₇₀	Sn (Lone vacancy)	0.97
BD C ₇₉ - H ₁₀₀	Sn (Lone vacancy)	1.41
BD C ₉₀ - H ₁₁₉	Sn (Lone vacancy)	1.30
BD C ₉₈ - H ₁₂₇	Sn (Lone vacancy)	1.70

Table S49. B_2 GePb. All Ge lone pair orbital contribution in NBO analysis of second order perturbation theory.

Donor orbital	Acceptor orbital	Energy (kcal/mol)
Ge (Lone Pair)	LV Ge	0.76
Ge (Lone Pair)	$LV B_2$	27.00
Ge (Lone Pair)	$LV B_1$	6.23
Ge (Lone Pair)	LV Pb	0.53
Ge (Lone Pair)	LV Pb	0.94
Ge (Lone Pair)	BD*Ge-B ₂	5.89
Ge (Lone Pair)	BD*Ge- B ₁	5.56
Ge (Lone Pair)	BD* B ₂ -Pb	1.88
Ge (Lone Pair)	BD* B ₂ - P ₂	0.62
Ge (Lone Pair)	BD* B ₁ - P ₁	13.04
Ge (Lone Pair)	BD* C ₂₂ - H ₄₆	0.54
Ge (Lone Pair)	BD* C ₂₄ - H ₅₂	0.58
Ge (Lone Pair)	BD* C ₁₀₃ - H ₁₃₅	1.59

Table S50. B_2GePb . All Ge lone vacancy orbital contribution in NBO analysis of second order perturbation theory.

Donor orbital	Acceptor orbital	Energy (kcal/mol)
LP Ge	Ge (Lone vacancy)	0.76
LP B ₁	Ge (Lone vacancy)	160.79
LP Pb	Ge (Lone vacancy)	1.94
LP N ₂	Ge (Lone vacancy)	1.14
LP N ₂	Ge (Lone vacancy)	2.33
BD Ge- B ₂	Ge (Lone vacancy)	2.84
BD Ge- B ₁	Ge (Lone vacancy)	3.72
BD B ₂ -Pb	Ge (Lone vacancy)	95.31
BD B ₂ - P ₂	Ge (Lone vacancy)	0.59
BD C ₁₇ - C ₃₅	Ge (Lone vacancy)	0.85
BD C ₂₄ - H ₅₂	Ge (Lone vacancy)	0.62

Table S51. B_2 GePb. All Pb lone pair orbital contribution in NBO analysis of second order perturbation theory.

Donor orbital	Acceptor orbital	Energy (kcal/mol)
Pb (Lone Pair)	LV Ge	1.94
Pb (Lone Pair)	$LV B_1$	3.42
Pb (Lone Pair)	LV Pb	1.27
Pb (Lone Pair)	BD* B ₂ -Pb	2.47
Pb (Lone Pair)	BD* B ₂ - P ₂	2.47
Pb (Lone Pair)	BD* C ₃₃ - H ₇₆	0.61
Pb (Lone Pair)	BD* C ₉₀ - H ₁₁₉	0.55

Table S52. B_2GePb . All Pb lone vacancy orbital contribution in NBO analysis of second order perturbation theory.

Ar: 2,6-diisopropylphenyl

Donor orbital	Acceptor orbital	Energy (kcal/mol)
LP Ge	Pb (Lone vacancy)	0.53
$LP B_1$	Pb (Lone vacancy)	206.63
LP Pb	Pb (Lone vacancy)	1.27
$LP N_1$	Pb (Lone vacancy)	3.13
BD Ge- B ₂	Pb (Lone vacancy)	3.84
BD Ge- B ₁	Pb (Lone vacancy)	19.32
$BD B_1 - P_1$	Pb (Lone vacancy)	5.13
BD N ₁ - C ₁₇	Pb (Lone vacancy)	0.94
BD N ₁ - C ₁₈	Pb (Lone vacancy)	0.72
BD C ₁₇ - C ₃₄	Pb (Lone vacancy)	0.59
BD C ₁₉ - H ₃₇	Pb (Lone vacancy)	2.02
BD C ₅₇ - H ₉₂	Pb (Lone vacancy)	1.66
BD C ₇₉ - H ₁₀₀	Pb (Lone vacancy)	1.10
BD C ₉₀ - H ₁₁₉	Pb (Lone vacancy)	1.20
BD C ₉₀ - H ₁₂₀	Pb (Lone vacancy)	0.56
LP Ge	Pb (Lone vacancy)	0.94
$LP B_1$	Pb (Lone vacancy)	9.77
LP N_1	Pb (Lone vacancy)	2.09
BD Ge- B ₂	Pb (Lone vacancy)	9.03
BD Ge- B ₁	Pb (Lone vacancy)	6.35
BD B ₂ -Pb	Pb (Lone vacancy)	0.71
BD C ₁₂ - C ₂₆	Pb (Lone vacancy)	1.14
BD C ₁₉ - H ₃₇	Pb (Lone vacancy)	0.62
BD C ₂₀ - H ₄₂	Pb (Lone vacancy)	2.31
BD C ₃₁ - H ₇₀	Pb (Lone vacancy)	1.39
BD C ₇₉ - H ₁₀₀	Pb (Lone vacancy)	1.53
BD C ₉₀ - H ₁₁₉	Pb (Lone vacancy)	2.19
BD C ₉₈ - H ₁₂₇	Pb (Lone vacancy)	2.95
BD C ₉₈ - H ₁₂₉	Pb (Lone vacancy)	0.75

Table S53. B_2 SnPb. All Sn lone pair orbital contribution in NBO analysis of second order perturbation theory.

Donor orbital	Acceptor orbital	Energy (kcal/mol)
Sn (Lone Pair)	LV Sn	2.56
Sn (Lone Pair)	$LV B_2$	20.75
Sn (Lone Pair)	$LV B_1$	4.73
Sn (Lone Pair)	BD*Sn-B ₂	6.13
Sn (Lone Pair)	$BD*Sn-B_1$	6.15
Sn (Lone Pair)	BD* B ₂ -Pb	2.41
Sn (Lone Pair)	BD* B ₁ -Pb	1.21
Sn (Lone Pair)	BD* B ₁ - P ₁	8.88
Sn (Lone Pair)	BD* C ₂₂ - H ₄₆	0.77
Sn (Lone Pair)	BD* C ₂₄ - H ₅₂	0.68
Sn (Lone Pair)	BD* C ₁₀₃ - H ₁₃₅	1.94

Table S54. B_2 SnPb. All Sn lone vacancy orbital contribution in NBO analysis of second order perturbation theory.

Donor orbital	Acceptor orbital	Energy (kcal/mol)
LP Sn	Sn (Lone vacancy)	2.56
LP Pb	Sn (Lone vacancy)	2.15
LP N ₂	Sn (Lone vacancy)	0.97
LP N ₂	Sn (Lone vacancy)	2.47
BD Sn- B ₂	Sn (Lone vacancy)	0.71
BD B ₂ -Pb	Sn (Lone vacancy)	38.47
BD B ₂ - P ₂	Sn (Lone vacancy)	0.88
BD B ₁ -Pb	Sn (Lone vacancy)	41.50
BD C ₁₇ - C ₃₅	Sn (Lone vacancy)	0.86
BD C ₂₀ - H ₄₂	Sn (Lone vacancy)	0.91
BD C ₂₄ - H ₅₂	Sn (Lone vacancy)	0.85
BD C ₂₈ - H ₆₂	Sn (Lone vacancy)	1.06
BD C ₅₅ - H ₈₇	Sn (Lone vacancy)	0.60
BD C ₈₅ - H ₁₁₁	Sn (Lone vacancy)	1.84

Table S55. B₂SnPb. All Pb lone pair orbital contribution in NBO analysis of second order perturbation theory.

Donor orbital	Acceptor orbital	Energy (kcal/mol)
Pb (Lone Pair)	LV Sn	2.15
Pb (Lone Pair)	$LV B_2$	1.44
Pb (Lone Pair)	$LV B_1$	5.83
Pb (Lone Pair)	LV Pb	0.96
Pb (Lone Pair)	BD*Sn-B ₂	2.14
Pb (Lone Pair)	BD*Sn-B ₁	2.24
Pb (Lone Pair)	BD* B ₂ -Pb	2.21
Pb (Lone Pair)	BD* B ₂ - P ₂	2.99
Pb (Lone Pair)	BD* B ₁ -Pb	1.70
Pb (Lone Pair)	BD* C ₃₃ - H ₇₆	0.69
Pb (Lone Pair)	BD* C ₉₀ - H ₁₁₉	0.95

Table S56. B_2 SnPb. All Pb lone vacancy orbital contribution in NBO analysis of second order perturbation theory.

Donor orbital	Acceptor orbital	Energy (kcal/mol)
LP Pb	Pb (Lone vacancy)	0.96
LP N ₁	Pb (Lone vacancy)	1.94
BD Sn- B ₂	Pb (Lone vacancy)	11.20
BD Sn- B ₁	Pb (Lone vacancy)	8.69
BD B ₁ - P ₁	Pb (Lone vacancy)	0.63
BD N ₂ - C ₁₂	Pb (Lone vacancy)	0.57
BD C ₁₂ - C ₂₅	Pb (Lone vacancy)	0.60
BD C ₁₂ - C ₂₆	Pb (Lone vacancy)	0.55
BD C ₁₂ - C ₂₆	Pb (Lone vacancy)	1.37
BD C ₁₉ - H ₃₇	Pb (Lone vacancy)	1.53
BD C ₂₀ - H ₄₂	Pb (Lone vacancy)	1.68
BD C ₂₉ - H ₆₆	Pb (Lone vacancy)	0.95
BD C ₃₁ - H ₇₀	Pb (Lone vacancy)	1.29
BD C ₇₉ - H ₁₀₀	Pb (Lone vacancy)	1.42
BD C ₉₀ - H ₁₁₉	Pb (Lone vacancy)	0.87
BD C ₉₈ - H ₁₂₇	Pb (Lone vacancy)	3.83
BD C ₉₈ - H ₁₂₉	Pb (Lone vacancy)	1.20

(A)

СР	CP type	Electron density $\rho(r_c)$	Laplacian electron density $\nabla^2 \rho(r_c)$	Total energy electron density H(r _c)
1	3, -1	0.095	0.013	-0.060
2	3, -1	0.094	0.004	-0.060
3	3, -1	0.094	0.004	-0.060
4	3, -1	0.095	0.013	-0.060
5	3, +1	0.071	0.008	-0.032

(B)

СР	CP type	Electron density $\rho(r_c)$	Laplacian electron density $\nabla^2 \rho(r_c)$	Total energy electron density H(r _c)
1	3, -1	0.091	-0.080	-0.057
2	3, -1	0.092	-0.064	-0.059
3	3, -1	0.092	-0.064	-0.059
4	3, -1	0.091	-0.080	-0.057
5	3, +1	0.049	0.063	-0.017

Figure S21: (A) Laplacian distribution of electron energy of the central four-membered ring plane in B_2Si_2 . Positive and negative area are represented by crimson and blue lines, representing electron depletion and accumulation, respectively. (B) By removing electrons from the σ -bonding HOMO-2, the electron density concentrations within the central four-membered plane of B_2Si_2 are altered.

СР	CP type	Electron density $\rho(r_c)$	Laplacian electron density $\nabla^2 \rho(r_c)$	Total energy electron density H(r _c)
1	3, -1	0.090	-0.031	-0.044
2	3, -1	0.091	-0.028	-0.044
3	3, -1	0.091	-0.028	-0.044
4	3, -1	0.090	-0.031	-0.044
5	3, +1	0.062	0.041	-0.025

СР	CP type	Electron density $\rho(r_c)$	Laplacian electron density $\nabla^2 \rho(r_c)$	Total energy electron density H(r _c)
1	3, -1	0.085	-0.063	-0.041
2	3, -1	0.086	-0.063	-0.042
3	3, -1	0.086	-0.063	-0.042
4	3, -1	0.085	-0.063	-0.041
5	3, +1	0.044	0.090	-0.012

Figure S22: (A) Laplacian distribution of electron energy of the central four-membered ring plane in B_2Ge_2 . Positive and negative area are represented by crimson and blue lines, representing electron depletion and accumulation, respectively. (B) By removing electrons from the σ -bonding HOMO-2, the electron density concentrations within the central four-membered plane of B_2Ge_2 are altered.

СР	CP type	Electron density $\rho(r_c)$	Laplacian electron density $\nabla^2 \rho(r_c)$	Total energy electron density H(r _c)
1	3, -1	0.069	0.029	-0.023
2	3, -1	0.072	0.024	-0.025
3	3, -1	0.072	0.024	-0.025
4	3, -1	0.069	0.029	-0.023
5	3, +1	0.040	0.051	-0.008

СР	CP type	Electron density $\rho(r_c)$	Laplacian electron density $\nabla^2 \rho(r_c)$	Total energy electron density H(r _c)
1	3, -1	0.067	-0.0007	-0.023
2	3, -1	0.066	0.004	-0.022
3	3, -1	0.066	0.004	-0.022
4	3, -1	0.067	-0.0007	-0.024
5	3, +1	0.029	0.073	-0.003

Figure S23: (A) Laplacian distribution of electron energy of the central four-membered ring plane in B_2Sn_2 . Positive and negative area are represented by crimson and blue lines, representing electron depletion and accumulation, respectively. (B) By removing electrons from the σ -bonding HOMO-2, the electron density concentrations within the central four-membered plane of B_2Sn_2 are altered.

СР	CP type	Electron density $\rho(r_c)$	Laplacian electron density $\nabla^2 \rho(r_c)$	Total energy electron density H(r _c)
1	3, -1	0.069	0.024	-0.023
2	3, -1	0.065	0.031	-0.019
3	3, -1	0.064	0.031	-0.019
4	3, -1	0.069	0.023	-0.023
5	3, +1	0.035	0.067	-0.005

СР	CP type	Electron density $\rho(r_c)$	Laplacian electron density $\nabla^2 \rho(r_c)$	Total energy electron density $H(r_c)$
1	3, -1	0.062	0.0006	-0.020
2	3, -1	0.059	0.007	-0.018
3	3, -1	0.059	0.007	-0.018
4	3, -1	0.062	0.0006	-0.020
5	3, +1	0.024	0.087	-0.0001

Figure S24: (A) Laplacian distribution of electron energy of the central four-membered ring plane in **B**₂**Pb**₂. Positive and negative area are represented by crimson and blue lines, representing electron depletion and accumulation, respectively. (B) By removing electrons from the σ -bonding HOMO-2, the electron density concentrations within the central four-membered plane of **B**₂**Pb**₂ are altered.

СР	CP type	Electron density $\rho(r_c)$	Laplacian electron density $\nabla^2 \rho(r_c)$	Total energy electron density H(r _c)
1	3, -1	0.088	-0.019	-0.042
2	3, -1	0.089	-0.016	-0.043
3	3, -1	0.096	0.0001	-0.062
4	3, -1	0.095	-0.010	-0.062
5	3, +1	0.066	0.022	-0.028

СР	CP type	Electron density $\rho(r_c)$	Laplacian electron density $\nabla^2 \rho(r_c)$	Total energy electron density H(r _c)
1	3, -1	0.084	-0.050	-0.040
2	3, -1	0.082	-0.050	-0.038
3	3, -1	0.094	-0.078	-0.061
4	3, -1	0.095	-0.066	-0.061
5	3, +1	0.046	0.074	-0.015

Figure S25: (A) Laplacian distribution of electron energy of the central four-membered ring plane in B_2SiGe . Positive and negative area are represented by crimson and blue lines, representing electron depletion and accumulation, respectively. (B) By removing electrons from the σ -bonding HOMO-2, the electron density concentrations within the central four-membered plane of B_2SiGe are altered.

СР	CP type	Electron density $\rho(r_c)$	Laplacian electron density $\nabla^2 \rho(r_c)$	Total energy electron density H(r _c)
1	3, -1	0.067	0.038	-0.021
2	3, -1	0.065	0.040	-0.020
3	3, -1	0.098	-0.006	-0.064
4	3, -1	0.097	0.0009	-0.063
5	3, +1	0.053	0.045	-0.017

СР	CP type	Electron density $\rho(r_c)$	Laplacian electron density $\nabla^2 \rho(r_c)$	Total energy electron density $H(r_c)$
1	3, -1	0.060	0.018	-0.018
2	3, -1	0.059	0.017	-0.018
3	3, -1	0.098	-0.050	-0.064
4	3, -1	0.097	-0.039	-0.063
5	3, +1	0.040	0.061	-0.010

Figure S26: (A) Laplacian distribution of electron energy of the central four-membered ring plane in **B**₂**SiSn**. Positive and negative area are represented by crimson and blue lines, representing electron depletion and accumulation, respectively. (B) By removing electrons from the σ -bonding HOMO-2, the electron density concentrations within the central four-membered plane of **B**₂**SiSn** are altered.

СР	CP type	Electron density $\rho(r_c)$	Laplacian electron density $\nabla^2 \rho(r_c)$	Total energy electron density H(r _c)
1	3, -1	0.061	0.044	-0.016
2	3, -1	0.059	0.046	-0.015
3	3, -1	0.099	0.005	-0.064
4	3, -1	0.099	-0.001	-0.066
5	3, +1	0.052	0.045	-0.016

СР	CP type	Electron density $\rho(r_c)$	Laplacian electron density $\nabla^2 \rho(r_c)$	Total energy electron density $H(r_c)$
1	3, -1	0.051	0.033	-0.012
2	3, -1	0.038	0.061	-0.009
3	3, -1	0.099	-0.035	-0.066
4	3, -1	0.099	-0.027	-0.064
5	3, +1	0.038	0.061	-0.009

Figure S27: (A) Laplacian distribution of electron energy of the central four-membered ring plane in **B**₂**SiPb**. Positive and negative area are represented by crimson and blue lines, representing electron depletion and accumulation, respectively. (B) By removing electrons from the σ -bonding HOMO-2, the electron density concentrations within the central four-membered plane of **B**₂**SiPb** are altered.

СР	CP type	Electron density $\rho(r_c)$	Laplacian electron density $\nabla^2 \rho(r_c)$	Total energy electron density H(r _c)
1	3, -1	0.067	0.031	-0.021
2	3, -1	0.065	0.034	-0.020
3	3, -1	0.093	-0.037	-0.047
4	3, -1	0.094	-0.042	-0.048
5	3, +1	0.050	0.055	-0.014

СР	CP type	Electron density $\rho(r_c)$	Laplacian electron density $\nabla^2 \rho(r_c)$	Total energy electron density H(r _c)
1	3, -1	0.060	0.010	-0.019
2	3, -1	0.060	0.007	-0.019
3	3, -1	0.091	-0.074	-0.046
4	3, -1	0.092	-0.071	-0.046
5	3, +1	0.037	0.080	-0.007

Figure S28: (A) Laplacian distribution of electron energy of the central four-membered ring plane in **B**₂**GeSn**. Positive and negative area are represented by crimson and blue lines, representing electron depletion and accumulation, respectively. (B) By removing electrons from the σ -bonding HOMO-2, the electron density concentrations within the central four-membered plane of **B**₂**GeSn** are altered.

СР	CP type	Electron density $\rho(r_c)$	Laplacian electron density $\nabla^2 \rho(r_c)$	Total energy electron density H(r _c)
1	3, -1	0.062	0.036	-0.017
2	3, -1	0.059	0.039	-0.015
3	3, -1	0.096	-0.045	-0.049
4	3, -1	0.095	-0.038	-0.048
5	3, +1	0.048	0.059	-0.013

СР	CP type	Electron density $\rho(r_c)$	Laplacian electron density $\nabla^2 \rho(r_c)$	Total energy electron density H(r _c)
1	3, -1	0.051	0.023	-0.013
2	3, -1	0.052	0.023	-0.014
3	3, -1	0.094	-0.078	-0.049
4	3, -1	0.094	-0.072	-0.048
5	3, +1	0.035	0.082	-0.006

Figure S29: (A) Laplacian distribution of electron energy of the central four-membered ring plane in **B**₂**GePb**. Positive and negative area are represented by crimson and blue lines, representing electron depletion and accumulation, respectively. (B) By removing electrons from the σ -bonding HOMO-2, the electron density concentrations within the central four-membered plane of **B**₂**GePb** are altered.

СР	CP type	Electron density $\rho(r_c)$	Laplacian electron density $\nabla^2 \rho(r_c)$	Total energy electron density H(r _c)
1	3, -1	0.065	0.025	-0.020
2	3, -1	0.060	0.030	-0.016
3	3, -1	0.075	0.025	-0.025
4	3, -1	0.072	0.033	-0.025
5	3, +1	0.038	0.059	-0.007

СР	CP type	Electron density $\rho(r_c)$	Laplacian electron density $\nabla^2 \rho(r_c)$	Total energy electron density $H(r_c)$
1	3, -1	0.053	0.013	-0.014
2	3, -1	0.056	0.011	-0.017
3	3, -1	0.071	-0.003	-0.026
4	3, -1	0.070	0.006	-0.025
5	3, +1	0.028	0.073	-0.002

Figure S30: (A) Laplacian distribution of electron energy of the central four-membered ring plane in **B**₂**SnPb**. Positive and negative area are represented by crimson and blue lines, representing electron depletion and accumulation, respectively. (B) By removing electrons from the σ -bonding HOMO-2, the electron density concentrations within the central four-membered plane of **B**₂**SnPb** are altered.

Figure S31. (A) Color-filled map of ELF of B_2Si_2 ; the color reflects the degree of electron localization of the core electrons; red and blue represent strong and weak localization. (B) After removing the σ -electrons from HOMO-2, the distribution of energy density is altered.

Figure S32. (A) Color-filled map of ELF of B_2Ge_2 ; the color reflects the degree of electron localization of the core electrons; red and blue represent strong and weak localization. (B). After removing the σ -electrons from HOMO-2, the distribution of energy density is altered.

Figure S33. (A) Color-filled map of ELF of B_2Sn_2 ; the color reflects the degree of electron localization of the core electrons; red and blue represent strong and weak localization. (B) After removing the σ -electrons from HOMO-2, the distribution of energy density is altered.

Figure S34. (A) Color-filled map of ELF of B_2Pb_2 ; the color reflects the degree of electron localization of the core electrons; red and blue represent strong and weak localization. (B) After removing the σ -electrons from HOMO-2, the distribution of energy density is altered.

Figure S35. (A) Color-filled map of ELF of B_2SiGe ; the color reflects the degree of electron localization of the core electrons; red and blue represent strong and weak localization. (B) After removing the σ -electrons from HOMO-2, the distribution of energy density is altered.

Figure S36. (A) Color-filled map of ELF of **B**₂**SiSn**; the color reflects the degree of electron localization of the core electrons; red and blue represent strong and weak localization. (B) After removing the σ -electrons from HOMO-2, the distribution of energy density is altered.

Figure S37. (A) Color-filled map of ELF of B_2SiPb ; the color reflects the degree of electron localization of the core electrons; red and blue represent strong and weak localization. (B) After removing the σ -electrons from HOMO-2, the distribution of energy density is altered.

Figure S38. (A) Color-filled map of ELF of B_2GeSn ; the color reflects the degree of electron localization of the core electrons; red and blue represent strong and weak

localization. (B) After removing the σ -electrons from HOMO-2, the distribution of energy density is altered.

Figure S39. (A) Color-filled map of ELF of **B**₂**GePb**; the color reflects the degree of electron localization of the core electrons; red and blue represent strong and weak localization. (B) After removing the σ -electrons from HOMO-2, the distribution of energy density is altered.

Figure S40. (A) Color-filled map of ELF of B_2SnPb ; the color reflects the degree of electron localization of the core electrons; red and blue represent strong and weak localization. (B) After removing the σ -electrons from HOMO-2, the distribution of energy density is altered.

Table S57 M06-2X/Def2-TZVP B2Si2 E= -3636.212786

Atomic Number	x	Coordinates Y	(Angstroms) Z
Si	-0.16260400	0.11649900	-1.12867300
В	1.51933200	0.66833200	-0.15577900
В	-1.51928400	-0.66833200	0.15626600
Р	2.19627400	2.52709100	-0.14733600
Ν	2.92745600	0.00623200	-0.25322800
Si	0.16272900	-0.11666600	1.12915900
Р	-2.19626200	-2.52708300	0.14794100
Ν	-2.92742100	-0.00617900	0.25340300
С	1.80824200	3.53786100	1.37829200
С	2.02747800	3.51070200	-1.73712000
Ν	3.83395700	2.13943500	-0.05368900
C	3.04861600	-1.41554600	-0.34428000
C	3.99905500	0.83921900	-0.11409300
С	-1.80784700	-3.53816600	-1.37737500
С	-2.02790500	-3.51045500	1.73792400
Ν	-3.83390600	-2.13938600	0.05381600
С	-3.04856200	1.41563200	0.34407600
C	-3.99899300	-0.83916200	0.11402200
С	2.31332700	2.71165700	2.57122000
C	0.29430600	3.74101500	1.49922500
C	2.53883200	4.88354800	1.36855600
C	0.65175300	4.17884500	-1.82419600
C	3.15913600	4.53899000	-1.86579400
C	2.18473400	2.49744600	-2.88055600
C	2.93214800	-2.00807000	-1.62219100
C	3.26419600	-2.19303000	0.810/2000
C	5.40385800	0.33882100	0.0/160200
C	-2.31247200	-2./1215900	-2.5/062900
C	-0.29388000	-3./4145800	-1.49//5/00
C C	-2.53855400	-4.883/8800	-1.36/62/00
	-0.65240900	-4.1/901500	1.82531400
	-3.15989500	-4.5383/600	1.80002100
C	-2.10490000	-2.49090500	2.0011/000
C	-2.95254000	2.00044200	0 01115600
C	-3.20381800	2.19200900	-0.81113000
L L	1 80/65500	1 73865000	-0.07214700
н	2 1032/500	3 27046600	2.03480500
н	3 39762900	2 53956100	2 50527200
н	-0 10/60700	A A2A7A200	0 73000000
н	0.10400700	4 17577100	2 48708400
н	-0 25257400	2 79014500	1 <u>41</u> 319900
н	2 <u>1</u> 297790	5 34368600	2 36459400
н	2.45557200	5.58073700	0.64107100
H	3,61019300	4,76034300	1.15121800

Н	-0.16421200	3.48136700	-1.57376100
Н	0.58120000	5.05149200	-1.15925600
Н	0.48891300	4.53191100	-2.85522000
Н	4.13798900	4.05841600	-1.73093400
Н	3.07226100	5.36109000	-1.14693600
Н	3.11838300	4.97512900	-2.87656100
Н	1.34236700	1.79326000	-2.91835800
Н	3,12137300	1,92698000	-2.78038000
н	2,22306400	3,04675900	-3.83424800
C	2 74019900	-1 15397400	-2 86846600
C	3 06449100	-3 39420800	-1 72528400
C	3 13619800	-1 59/35600	2 20108800
C	3 37977100	-3 58059800	0 65/83300
C	6 22036600	1 11/50600	0.0228800
C	5 04811300	0 91500500	0.50528800
	2 10222600	0.010100	2 40610400
	-2.10223000	-3.2/121000	-3.49010400
	-1.80364400	-1./3923/00	-2.03430900
н	-3.39676300	-2.53986600	-2.50501200
н	0.10460900	-4.42553500	-0./3//2400
н	-0.06/99/00	-4.1/584600	-2.48568900
Н	0.25309100	-2./9068900	-1.41115200
Н	-2.43910900	-5.34426600	-2.36342900
Н	-3.61002600	-4.76041700	-1.15099500
Н	-2.10169900	-5.58076600	-0.63964400
Н	0.16381300	-3.48181700	1.57497100
Н	-0.58199100	-5.05176300	1.16049500
Н	-0.48988700	-4.53201100	2.85640400
Н	-4.13859200	-4.05748700	1.73176900
Н	-3.07331600	-5.36050500	1.14775100
Н	-3.11926000	-4.97452200	2.87738800
Н	-1.34240100	-1.79303200	2.91897300
Н	-3.12141500	-1.92622000	2.78077900
Н	-2.22362100	-3.04610600	3.83495200
С	-2.74086600	1.15454900	2.86838500
С	-3.06447000	3.39463100	1.72461200
С	-3.43587700	1.59393300	-2.20144700
С	-3.37927600	3.58049400	-0.65561600
С	-6.22002800	-1.11460700	-0.90990800
С	-5.94813900	0.81616600	0.50898300
С	1.89261100	-1.83250900	-3.94428800
С	4.07973600	-0.69207600	-3.45597100
Н	2.19747100	-0.25502100	-2.55406500
С	3.28667900	-4.17909800	-0.59575200
Н	2.98740400	-3.87106400	-2.70373000
С	2.43543400	-2.17567800	3.20593700
С	4.86140400	-1.81039800	2,73239400
Н	3.24808500	-0.51174400	2.12825600
н	3.55810300	-4.20125600	1.53584900
С	7.52758500	0.73085700	1.19092000
H	5.80136600	2.02436000	1.33761000
C	7.26599000	-1.18510900	-0.24348700
- H	5,35886300	-1,44361400	-1.17269100
C	-1,89522800	1.83389600	3,94517700
-	1.07522000		2.2.217.00

С	-4.08054800	0.69139400	3.45453300
Н	-2.19692900	0.25611900	2.55456900
С	-3.28632000	4.17928100	0.59483600
Н	-2.98747400	3.87173200	2.70294100
С	-2.43466600	2.17508500	-3.20625600
С	-4.86068300	1.80989400	-2.73306300
Н	-3.24746900	0.51133300	-2.12838400
Н	-3.55735500	4.20096800	-1.53681500
С	-7.52716100	-0.73098900	-1.19198000
Н	-5.80092200	-2.02455100	-1.33793700
С	-7.26593300	1.18525400	0.24213000
Н	-5.35906400	1.44390400	1.17181700
Н	0.93599800	-2.18675600	-3.53426200
Н	2.41323600	-2.68615000	-4.40560900
Н	1.67075800	-1.11393100	-4.74691100
Н	4.71875500	-1.55375600	-3.70862500
Н	4.63598500	-0.04862000	-2.75884300
Н	3.90843300	-0.11463600	-4.37730600
Н	3.38746600	-5.26143700	-0.69324100
Н	2.59354600	-3.25703600	3.34309800
Н	1.39899900	-2.01204900	2.88204900
Н	2.56538800	-1.69434900	4.18681600
Н	5.62837000	-1.40740200	2.05928700
Н	5.06032400	-2.88519800	2.86818800
Н	4.97442200	-1.32486100	3.71330200
C	8.05617700	-0.42419200	0.61509200
Н	8.13744400	1.33899400	1.86052400
Н	7.67107400	-2.08452700	-0.70896100
Н	-0.93875000	2.18958900	3.53623000
Н	-2.41749400	2.68664800	4.40617900
Н	-1.67320300	1.11542900	4.74785200
Н	-4.72054800	1.55248900	3.70662900
Н	-4.63557700	0.04752000	2.75685400
н	-3.90962200	0.11405300	4.37600200
н	-3.38695700	5.26166300	0.69204300
н	-2.5928/800	3.25639000	-3.343/4800
Н	-1.39826800	2.01166700	-2.88213900
н	-2.56438700	1.6934/600	-4.18/03200
н	-5.627/9300	1.40699700	-2.06006/00
н	-5.0595/100	2.88467700	-2.86904/00
Н	-4.9/349800	1.32422300	-3./1392900
	-8.05589300	0.42418400	-0.01052400
п	-8.13684200	-1.33924600	0.7620100
п	-/.0/113100	2.084//300	0./0/31400
	A.00144000 A.00100100	-0.12/43500	0.0226260
n	-9.08144900	0./2/40000	00601660.0-
			= = =

Table S58 M06-2X/Def2-TZVP B2Ge2

E= -7211.308379

Atomic Number	x	Coordinates (A Y	Angstroms) Z
Ge	1.20967300	-0.00974900	0.05794300
В	-0.01762500	-1.72474100	-0.00718000
В	0.00300700	1.72561200	0.00719100
Ge	-1.22429300	0.01062200	-0.05797300
Р	0.08302800	-3.08481300	1.40610100
Ν	-0.21773100	-2.72942500	-1.16802800
Р	-0.09763600	3.08570800	-1.40606600
Ν	0.20313100	2.73027300	1.16805600
С	-1.22042500	-2.96715300	2.72692600
С	1.76888100	-3.48115400	2.09879900
Ν	-0.30838300	-4.39431900	0.44791200
С	-0.29716500	-2.27611100	-2.52543800
С	-0.42235800	-4.02485200	-0.80561800
С	1.20579500	2.96804500	-2.72690900
С	-1.78349100	3.48209900	-2.09873200
Ν	0.29380900	4.39518900	-0.44785900
С	0.28256100	2.27693400	2.52545800
С	0.40778000	4.02570200	0.80566500
С	-2.57149500	-2.98856600	1.99789100
С	-1.08048300	-1.65224900	3.49886500
С	-1.17406900	-4.15479000	3.69042200
С	2.15821600	-2.50663100	3.21266700
С	1.83599200	-4.93202400	2.59094800
C	2.75873800	-3.34766100	0.93345800
С	0.90956700	-2.03867900	-3.20875700
C	-1.54049900	-2.06653800	-3.13780800
С	-0.86028400	-5.08534300	-1.76819300
C	2.55687600	2.98944100	-1.99789800
С	1.06583000	1.65314800	-3.49885800
C	1.15943500	4.15568900	-3.69039700
C	-2.17287400	2.50759900	-3.21260200
C	-1.85057600	4.93297800	-2.59086100
C	-2.77332900	3.34861400	-0.93337500
C	-0.92417500	2.03951300	3.20877500
C	1.52589200	2.06732300	3.13782200
C	0.84572500	5.08617100	1.76825500
Н	-2.67209100	-2.15264900	1.30492100
Н	-3.36500000	-2.90938000	2.74515900
Н	-2.70708700	-3.91986700	1.44582200
Н	-0.20356200	-1.63514600	4.14349500
Н	-1.96068500	-1.52360700	4.13575000
Н	-1.01755700	-0.79302000	2.83044400
Н	-2.07784400	-4.13508900	4.30495900
Н	-0.32078800	-4.09547900	4.36498600
Н	-1.14494200	-5.10736900	3.15838300

Н	1.96359000	-1.46662900	2.93675400
Н	1.62879400	-2.72450000	4.14057000
Н	3.22877600	-2.60684900	3.41070400
Н	1.51526000	-5.62316000	1.81150100
Н	1.23584600	-5.10844200	3.47899100
Н	2.87526800	-5.15567700	2.84538900
Н	2.87449100	-2.31127100	0.61907200
Н	2.44591800	-3.94828600	0.07585600
Н	3.73221200	-3.71717900	1.26460300
С	2.25517200	-2.31348500	-2.55808100
С	0.84590100	-1.60196300	-4.52628400
С	-2.87133400	-2.34565200	-2.45859200
С	-1.54889800	-1.62230200	-4.46016100
С	-1.73616800	-6.04615300	-1.25709700
С	-0.47094600	-5.18239700	-3.10481300
Н	3.35036500	2.91024000	-2.74517700
Н	2.65747500	2.15352800	-1.30492400
Н	2.69248800	3.92074300	-1.44583900
Н	0.18888900	1.63605200	-4.14346200
Н	1.94601300	1.52451500	-4.13577100
н	1.00292400	0.79391200	-2.83044600
Н	2.06319800	4.13598100	-4.30494800
Н	1.13032900	5,10826400	-3.15835000
Н	0.30614200	4.09639600	-4.36494600
Н	-1.97829100	1.46759000	-2.93668800
н	-1.64344900	2.72544800	-4.14050500
н	-3, 24343000	2.60786300	-3.41063100
н	-1,52979800	5,62409600	-1.81141300
н	-1 25045200	5 10938800	-3 47892200
Н	-2 88985400	5 15666500	-2 84526700
н	-2 88909500	2 31222300	-0 61899700
н	-2 46048400	3 9/922600	-0 07577/00
Ц	-3 74680200	3 71815200	-1 261/19900
C	-2 26977500	2 31/35100	2 55810100
C C	-2.20977500	2.51455100	1 52620600
C C	-0.80031700	2 24642100	4.JZ0ZJ000
	2.83073400	2.34043100	4 46016700
	1,73428400	1.02303900	4.40010/00
	1.72101000	5.04097700 5.19330900	2 10499200
	0.45039900	5.18320800	3.10488200
	3.35008200	-1.34093100	-2.99188200
	2.71359200	-3./5058500	-2./931/800
H	2.12635300	-2.1865/500	-1.48685000
C	-0.3/40/200	-1.393/1200	-5.15189400
H	1.76176300	-1.41/29400	-5.0/288800
C	-3.79499300	-1.12353/00	-2.4/93/400
C	-3.60405400	-3.51/56500	-3.125/4800
Н	-2.6/398/00	-2.60184000	-1.414/2900
Н	-2.49845800	-1.46281900	-4.95650800
ι	-2.23577400	-/.05549900	-2.06260000
Н	-2.02062100	-5.98123200	-0.21633400
C	-0.95401700	-6.21014900	-3.90295900
Н	0.20245500	-4.46426300	-3.54418500
C	-3.36470700	1.34180500	2.99187700

С	-2.72816900	3.75745900	2.79322300
Н	-2.14095300	2.18745600	1.48686800
С	0.35945400	1.39448700	5.15190000
Н	-1.77638200	1.41811900	5.07289900
С	3.78037900	1.12430500	2.47937900
С	3.58946800	3.51832400	3.12579000
Н	2.65939400	2.60263900	1.41475400
Н	2.48384100	1.46354500	4.95650900
С	2.22123900	7.05630400	2.06268500
Н	2.00605900	5.98207100	0.21639900
С	0.93948800	6.21093900	3.90304300
Н	-0.21700800	4.46507500	3.54424700
Н	3.03495200	-0.30442400	-2.86586500
Н	3.64396600	-1.49153600	-4.03289000
Н	4.23795900	-1.49890200	-2.37731300
Н	2.76544000	-3.97999600	-3.86219000
Н	2.04237600	-4.47900200	-2.32658100
Н	3.70812800	-3.90490600	-2.36726800
Н	-0.40590700	-1.05293300	-6.17915400
Н	-4.08558700	-0.87205100	-3.50179000
Н	-3.32182500	-0.25309000	-2.02895100
Н	-4.70768600	-1.34140600	-1.92158300
Н	-3.01013000	-4.42874700	-3.14655500
Н	-3.86349000	-3.26091500	-4.15548400
Н	-4.53310300	-3.72535100	-2.59155200
C	-1.84492100	-7.14168800	-3.39198200
Н	-2.92879300	-7.77740200	-1.65049400
Н	-0.63610700	-6.27129900	-4.93554500
Н	-3.04960400	0.30529500	2.86580900
Н	-3.65857800	1.49237400	4.03289600
Н	-4.25258800	1.49982300	2.37732400
Н	-2.78002400	3.98084900	3.86223900
Н	-2.05693100	4.4/98/300	2.32664800
Н	-3./2269800	3.90581000	2.36/30/00
Н	0.39128400	1.05368900	6.17915300
н	4.0/09/600	0.8/280/00	3.501/9100
Н	3.30720000	0.25386/00	2.02895100
н	4.69307200	1.34216800	1.92158500
Н	2.99555900	4.42951600	3.14660500
н	3.84889100	3.26165/00	4.15552500
	4.51852500	5./2010200 7 14247500	2.29100400
L L	1.0342506 2.01426200	/.1424/500 7 77020500	3.3720/400 1 cereoerr
	2.91420200	1.1/020500	1 02562400
n u	0.0212000	0.2/20/400 7 02000000	4,3303400 1 0211200
n U	-2.2303/800	7 02165200	-4.02442200 1 02152600
n 	2.2100900	0.9202020	4.02432000
Table S59 M06-2X/Def2-TZVP B2Sn2

E=-3485.744971

· · ·			
Atomic	Coo	rdinates (Angstroms)
Number	Х	Y	Z
Sn 1.38	3023200 -0	.03134300	0.28999400
B -0.05	5892700 -1	.86075500	-0.04242500
B 0.04	4489100 1	.86329600	0.03781200
Sn -1.39	9061600 0	.03433200	-0.30384700
P 0.0	5220800 -3	.20351500	1.36966500
N -0.3	1224900 -2	.85625700	-1.20083800
P -0.06	5479400 3	.20990600	-1.37056600
N 0.29	9894700 2	.85499000	1.19917900
C -1.20	0167900 -3	.02195100	2.73895700
C 1.7	2657900 -3	.72329400	2.03970000
N -0.4	1231100 -4	.50079000	0.42967600
C -0.3	7463800 -2	41716100	-2.56620300
C -0.5	1437300 -4	14920700	-0 83062400
C 1 1	R989700 3	03250800	-2 73994200
C _1 7	3969700 3 3864400 3	73260400	-2 03000700
N 0.30	0088400 1	501200400	-2.03333700
C 0.3	5910900 4	11217800	2 56362000
	2125000 2	14006200	2.30302000 0.92391700
		.14900300	0.05201700
-2.50	5272500 -5	.00924100	2.0/0/2500
-0.98	520200 -1	.70714400	3.49300500
-1.10	-4	.20100/00	3./140/100
L 2.2.	1497600 -2	.82393600	3.1//14900
L 1.70	0051500 -5	.18959700	2.49355800
2.70	1643000 -3	.63555100	0.86169000
C 0.84	4079300 -2	.14071400	-3.22254000
C -1.60	0682300 -2	.26195600	-3.22035800
C -0.96	9472600 -5	.23280800	-1.78485200
C 2.5	7071500 3	.01772400	-2.07129200
C 0.9	7415400 1	.72034900	-3.49956600
C 1.1	5033100 4	.21495500	-3.71101300
C -2.22	2672400 2	.83772500	-3.18110400
C -1.7	1187100 5	.20063000	-2.48829200
C -2.7	1945900 3	.64079000	-0.86313300
C -0.8	5905100 2	.13738100	3.21731900
C 1.58	8878100 2	.25384200	3.21989600
C 0.89	9143500 5	.22980300	1.79041300
H -2.68	3919700 -2	.18113400	1.37039300
Н -3.34	4103800 -2	.89874100	2.85011800
Н -2.76	5818700 -3	.94124400	1.53416200
Н -0.07	7388700 -1	.71089400	4.09039900
Н -1.82	2691000 -1	.54863600	4.17433400
Н -0.93	3255900 -0	.85188900	2.81812900
Н -2.03	3254500 -4	.13376000	4.37129600
Н -0.2	7490100 -4	.17773400	4.34609300
H -1.20	9408300 -5	.15802000	3.19104300

н	2 15921000	-1 76/17700	2 919/8300
11 L	1 65129900	2 00052200	1 00101000
n u	2 26146600	2.95055500	2 20502000
	5.20140000	-3.00340700	1 70001000
	1.30841700	-2.8220//00	1.70901900
	1.11/10400	-5.54545700	2 71050700
н	2.72837300	-5.49164/00	2./1050/00
н	2.89056700	-2.60466/00	0.56360200
н	2.34034000	-4.19/93900	-0.00083600
Н	3.65778900	-4.0/603200	1.16969000
C	2.18254900	-2.38335200	-2.55293600
C	0.79828600	-1./0452900	-4.54056900
C	-2.95421300	-2.56702400	-2.58435000
C	-1.59177500	-1.82788500	-4.54610600
C	-1.75231900	-6.21998600	-1.27607500
C	-0.48380400	-5.33567300	-3.11151400
Н	3.32929800	2.91036500	-2.85086300
Н	2.67740100	2.18702800	-1.37409900
Н	2.75572300	3.94777100	-1.53121300
Н	0.06266500	1.72574200	-4.09603200
Н	1.81589100	1.56524700	-4.18096800
Н	0.92203000	0.86249100	-2.82727800
Н	2.02158400	4.14991100	-4.36801900
Н	1.19262100	5.17014700	-3.18464400
Н	0.26394900	4.19397600	-4.34356800
Н	-2.17278500	1.77705600	-2.92684200
Н	-1.66171500	3.00666800	-4.09760300
Н	-3.27262100	3.07944100	-3.39029200
Н	-1.31960700	5.84359900	-1.70128400
Н	-1.12830500	5.35963500	-3.39045500
Н	-2.73957800	5.50392000	-2.70422300
Н	-2.90366300	2.60888500	-0.56861900
Н	-2.35411900	4.20035300	0.00156400
Н	-3.67062400	4.08219700	-1.17043300
С	-2.19910200	2.38320100	2.54551000
С	-0.81991600	1.69960900	4.53491900
С	2.93795300	2.55804000	2.58724900
С	1.57035300	1.81766300	4.54493100
С	1.74110400	6.21719700	1.28545300
С	0.46839700	5.32991700	3.11666000
С	3.23443800	-1.33116500	-2.90465600
С	2.72147700	-3.78395800	-2.86287400
Н	2.02334000	-2.33184700	-1.47959200
С	-0.40927300	-1.54810300	-5.20346400
Н	1.72267800	-1.48944600	-5.06131800
С	-3.93169200	-1.39219600	-2.71994900
С	-3.61611900	-3.79832400	-3.21907000
Н	-2.79218900	-2.75882100	-1.52021100
н	-2.53175800	-1.70895700	-5.07058800
С	-2.19612100	-7.25960000	-2.07567500
н	-2.06018600	-6.15058700	-0.24232700
С	-0.91117000	-6.39242800	-3.90318500
н	0.16978300	-4.59830700	-3.54904700
С	-3.25267800	1.33103300	2.89199000

С	-2.73718100	3.78348300	2.85817000
Н	-2.03757600	2.33425400	1.47243300
С	0.38604100	1.53966600	5.19981700
Н	-1.74576100	1.48584500	5.05364800
С	3.91314700	1.38130000	2.72230500
С	3.60060000	3.78690000	3.22590300
Н	2.77839800	2.75236000	1.52321300
Н	2.50910100	1.69614100	5.07100800
С	2.18505400	7.25413200	2.08844600
Н	2.05048000	6.15008100	0.25196700
С	0.89597600	6.38401500	3.91174800
Н	-0.18708200	4.59246600	3.55127100
Н	2.85903800	-0.31799200	-2.74803600
Н	3.56543900	-1.41477900	-3.94203400
Н	4.11281000	-1.46831500	-2.27141300
Н	2.81148100	-3.93730500	-3.94159100
Н	2.07592500	-4.56515700	-2.45922900
Н	3.71118300	-3.90863000	-2.41821200
Н	-0.42520200	-1.21059800	-6.23199700
Н	-4.25823900	-1.28003600	-3.75594300
Н	-3.49189500	-0.45282400	-2.39226500
Н	-4.82114400	-1.58261400	-2.11669200
Н	-3.01370200	-4.69907700	-3.13688200
Н	-3.80327600	-3.61356000	-4.27926700
Н	-4.57934500	-3.98477900	-2.74019300
С	-1.77649200	-7.34973700	-3.39608800
Н	-2.86872700	-8.00191800	-1.66620200
Н	-0.57030500	-6.45650700	-4.92827700
Н	-2.87800000	0.31807000	2.73270000
Н	-3.58549300	1.41162200	3.92899800
Н	-4.12974500	1.47108800	2.25756300
Н	-2.82972700	3.93378100	3.93708800
Н	-2.08970600	4.56514700	2.45851800
Н	-3.72558300	3.91059500	2.41135400
Н	0.39934000	1.20082200	6.22794900
Н	4.23663500	1.26566100	3.75887100
Н	3.47282600	0.44357800	2.39056800
Н	4.80453500	1.57195400	2.12201300
Н	3.00001800	4.68887400	3.14398800
Н	3.78499100	3.59982800	4.28620500
Н	4.56525800	3.9/252700	2./4959200
C	1.76348200	7.34139/00	3.4084/800
Н	2.85929600	/.99661600	1.02042000
Н	0.55351200	6.44593200	4.9364/900
п	-2.1195/400	-0.101/2000	-4.02413000
П	2.100/0200	0.12120800	4.0391/400

Table S60 M06-2X/Def2-TZVP B2Pb2

E= -3442.759277

At		C	· · · · · · · · · · · · · · · · · · ·
Atomic		Coordinates (A	angstroms)
Number	Х	Y	Z
Pb	1.43181600	-0.03446200	0.41243800
В	-0.07540100	-1.90505500	-0.04261500
В	0.05954000	1.90435700	0.04428300
Pb	-1.44952100	0.03334200	-0.40895900
Р	0.03071400	-3.24082900	1.36269900
Ν	-0.33604200	-2.89468700	-1.20113300
Р	-0.04787800	3,23966500	-1.36166000
Ν	0.32169200	2.89472700	1,20174600
C	-1.22037800	-3.05470600	2,73867900
C	1 70180500	-3 77/0/900	2.75007500
N	-0 13102000	_1 53801500	0 12153600
N C	0.43102000	-4.55691500	2 56251200
	-0.55545500	-2.44404/00	-2.30231300
	-0.52901200	-4.18963/00	-0.83938500
	1.202/6100	3.05266800	-2./3/8/200
C .	-1./1940800	3.//12//00	-2.04515400
N	0.414/4200	4.53838400	-0.42460900
C	0.38531900	2.44663500	2.56362200
С	0.51553500	4.18934300	0.83912600
C	-2.60203400	-3.03621400	2.07290800
C	-0.99833500	-1.73763400	3.48655900
С	-1.18538200	-4.23143300	3.71601800
С	2.18884300	-2.89895000	3.20282200
С	1.67012700	-5.24749100	2.47564900
С	2.69035500	-3.67088500	0.87689500
С	0.81565400	-2.15293400	-3.21372200
С	-1.63186800	-2.29414500	-3.21785200
С	-0.90153500	-5,27490600	-1.79639000
C	2,58459500	3.03547500	-2.07237400
C	0.98087400	1.73468300	-3.48415300
C	1 16695500	4 22829700	-3 71649000
C	-2 20632600	2 8939/100	-3 20037700
C	-1 68828700	5 2/395700	-2 /77/5500
C	-2 70771000	3 66080200	-0 87567400
C C	-2.70771000	2 15740700	2 21677400
	-0.02950000	2.15/49/00	2.210//400
	1.61824300	2.29582400	3.21/68400
C	0.89216900	5.2/423600	1.79503300
H	-2./0261000	-2.20630/00	1.3/351100
Н	-3.36071100	-2.92410600	2.85172600
Н	-2.79062600	-3.96574400	1.53279300
Н	-0.08779400	-1.74068800	4.08451200
Н	-1.83978400	-1.56752400	4.16488600
Н	-0.94305700	-0.88722800	2.80369200
Н	-2.05331300	-4.15907800	4.37674400
Н	-0.29639400	-4.21536300	4.34497700
Н	-1.23609700	-5.18841000	3.19350600

н	2 14926600	-1 83411500	2 96390900
н Ц	1 61370100	-3 07130600	1 112/3/00
н Ц	3 23020300	-3 15/00200	3 /1086100
	1 28446400	- 3.13409000 E 97001900	1 67670700
11 L	1 07605700	- J. 87 991888	2 260/0500
п	2.60522400	-3.41/03900	2.50946500
	2.09552400	-3.33339000	2.09041400
	2.07439100	-2.03033000	0.00407000
	2.33049200	-4.22181300	1 10462200
П	3.64125400	-4.11305/00	1.18463200
	2.15656700	-2.39615000	-2.54252900
	0.77228900	-1.70389900	-4.52/30900
	-2.97809000	-2.6136/300	-2.58533200
C	-1.61/68500	-1.84605200	-4.53924100
C	-1./3401800	-6.2//9/800	-1.29239400
C	-0.47996700	-5.36661200	-3.12449000
H	3.34317200	2.92275400	-2.85119600
Н	2.68561600	2.20642100	-1.37199500
Н	2.77294000	3.96574800	-1.53341700
Н	0.07070600	1.73719600	-4.08268000
Н	1.82269900	1.56336000	-4.16172800
Н	0.92497100	0.88516000	-2.80025700
Н	2.03472100	4.15557600	-4.37740500
Н	1.21737500	5.18591900	-3.19508300
Н	0.27776100	4.21106000	-4.34514900
Н	-2.16575200	1.82943300	-2.95993100
Н	-1.63176000	3.06549600	-4.11049300
Н	-3.24805000	3.14786200	-3.41733700
Н	-1.30312200	5.87802200	-1.67960600
Н	-1.09494300	5.41276200	-3.37146000
Н	-2.71361100	5.55107600	-2.70104800
Н	-2.89130200	2.63605700	-0.58647800
Н	-2.34788700	4.22269700	-0.00422500
Н	-3.65887200	4.11104600	-1.18410300
С	-2.17107300	2.40030200	2.54672700
С	-0.78474900	1.71120600	4.53132100
С	2.96352100	2.61280200	2.58214500
С	1.60543300	1.85083700	4.54012800
С	1.71874500	6.28026500	1.28682500
С	0.47882200	5.36366200	3.12545200
С	3.20030600	-1.32831600	-2.86974800
С	2.70707200	-3.78701900	-2.87609100
Н	1.98964800	-2.36462000	-1.46937400
С	-0.43567000	-1.55036600	-5.19099200
Н	1.69626500	-1.47751300	-5.04429800
С	-3.96689700	-1.44713300	-2.71849700
С	-3.63162500	-3.84604700	-3.22694100
Н	-2.81564200	-2.81051600	-1.52192700
Н	-2.55758100	-1.72945900	-5.06465600
С	-2.16479100	-7.31866400	-2.09780000
Н	-2.04115800	-6.21791700	-0.25756800
С	-0.89528400	-6.42342000	-3.92255800
Н	0.16393000	-4.61879500	-3.55908300
С	-3.21503600	1.33449700	2.87871700

С	-2.72062300	3.79241600	2.87676200
Н	-2.00597300	2.36538400	1.47351400
С	0.42389000	1.55788700	5.19392000
Н	-1.70830900	1.48698700	5.04998600
С	3.95412200	1.44817100	2.72085100
С	3.61507100	3.85038600	3.21562300
Н	2.79947200	2.80368500	1.51788600
Н	2.54589700	1.73442500	5.06462500
С	2.15006900	7.32283400	2.08958100
Н	2.02027200	6.22157100	0.25052700
С	0.89424100	6.42250600	3.92085900
Н	-0.15951100	4.61313800	3.56362200
Н	2.81698100	-0.32174300	-2.68953600
Н	3.53175600	-1.38343300	-3.90904300
Н	4.08109700	-1.47440900	-2.24142700
Н	2.80494100	-3.92016900	-3.95694400
Н	2.06365400	-4.57953700	-2.49100500
Н	3.69464200	-3.91385400	-2.42727500
Н	-0.45218100	-1.20297600	-6.21623100
Н	-4.30934300	-1.34897700	-3.75053600
Н	-3.53313100	-0.49713300	-2.41290700
Н	-4.84660300	-1.63751000	-2.10104600
Н	-3.03002300	-4.74606800	-3.13815900
Н	-3.80703900	-3.66085500	-4.28928100
Н	-4.59989500	-4.03369100	-2.75874400
С	-1.74775200	-7.39507800	-3.42037200
Н	-2.82622200	-8.07270200	-1.69132800
Н	-0.55512900	-6.47663000	-4.94879500
Н	-2.83271500	0.32719000	2.70071500
н	-3.54454300	1.39283700	3.91835300
Н	-4.09682900	1.47966500	2.25160300
н	-2.81442500	3.92976400	3.95718600
н	-2.07921000	4.58340300	2.48600900
н	-3./1003000	3.91/54600	2.43130500
н	0.44133000	1.21281200	6.21994000
н	4.29889900	1.35/00100	3.75288800
н	3.520/9500	0.49561600	2.42245800
н	4.83240000	1.63522100	2.10010/00
н	3.01036800	4./486/300	3.12224600
н	3.79228500	3.6/1/9/00	4.2/8//100
	4.08242200	4.03/4//00	2./4400000 2 /1202200
с u	T./22/100	0 020E0000	3.41393200 1 67053700
n u	5.00030100	0.0/9099900	1 010E1700
n u	0.33722400	0.4/401100 0.0726600	4.94034/00
n L	-2.020100200	0,2075/02-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-	4.000000
	2.07504700	0.2122000	4.044333900

Table S61 M06-2X/Def2-TZVP B2SiGe

E= -5423.763376

			· · · · · · · · · · · · · · · · · · ·
Atomic	V	Coordinates ((Angstroms)
Number	X	Ŷ	Z
Si	-0.16689700	0.14017100	-1.00595600
B	1.54097700	0.67675300	-0.10917200
B	-1.54638700	-0.68571100	0.19786100
P	2,22138500	2,52419600	-0.12785700
N	2.93549100	0.00717400	-0.22025500
Ge	0.18271100	-0.14785900	1,30927500
P	-2.23047800	-2.52792600	0.16977000
N	-2.94739000	-0.01439700	0.26629100
C	1.85365300	3,54164700	1,38491700
C	2,01231300	3,49793000	-1.70518100
N	3,84400100	2.13804000	-0.06447300
C	3.06213600	-1.41540400	-0.33461300
C	4.00712100	0.83705200	-0.11209200
C	-1.77634500	-3.53154400	-1.32729800
C	-2.10826700	-3.50398400	1.75423100
N	-3.84720800	-2.14022800	0.02593900
C	-3.06664000	1.41030100	0.34392700
C	-4.01214800	-0.83986900	0.08861000
C	2.39530700	2,74363800	2.57963500
C	0.34318700	3.73566600	1.54696300
C	2.56134400	4.89748100	1.35026000
C	0.63232900	4.15651100	-1.77052700
C	3.12756500	4.53790900	-1.86603700
C	2.15368900	2.49431000	-2.85720400
С	2.92669100	-1.98339300	-1.61424400
С	3.31066500	-2.20554500	0.79621500
С	5.41271200	0.34269600	0.04654700
С	-2.24269500	-2.71976300	-2.54402100
С	-0.25898800	-3.72346400	-1.39626500
С	-2.48457600	-4.88718100	-1.35191100
С	-0.73900200	-4.17273500	1.89195200
С	-3.23683000	-4.53688900	1.85991100
С	-2.30169700	-2.49602600	2.89557200
С	-2.96157400	2.01034300	1.61189500
С	-3.26170000	2.17309000	-0.81566900
С	-5.40915400	-0.34200500	-0.12354600
Н	1.91655700	1.76796400	2.66726500
Н	2.18537100	3.30846700	3.49130400
Н	3.47392200	2.60033300	2.50194900
Н	-0.07578600	4.41189200	0.80392400
Н	0.14889900	4.16795400	2.53304900
Н	-0.19806300	2.79162100	1.47820400
Н	2.47863800	5.35522800	2.33950900
Н	2.09711800	5.57745300	0.63690900
Н	3.62108300	4.79447100	1.11007800

н	-0 16831800	3 16517300	-1 /9217000
	0 57402600	5.40347300	1 102/5100
п	0.37403000	1 10051000	-1.12343100
	0.44000500	4.40051000	-2.79556560
	4.1091/400	4.0/402000	-1./0000100
	3.0302/000	5.35181800	-1.15015400
Н	3.04/35/00	4.9/033800	-2.866/6000
н	1.31969100	1.79383200	-2.88/25800
Н	3.08802500	1.93263000	-2.78096300
Н	2.1/089300	3.04928500	-3./9839500
C	2.69770500	-1.11904900	-2.84290100
C	3.07120200	-3.35926600	-1.74385200
C	3.50648500	-1.63657900	2.19188900
С	3.43561300	-3.58290100	0.61376300
С	6.22977400	1.09813300	0.89126900
С	5.95304500	-0.78976200	-0.56439200
Н	-1.97935700	-3.27469100	-3.44797800
Н	-1.75839600	-1.74358800	-2.59015900
Н	-3.32381800	-2.57336000	-2.52925700
Н	0.11185500	-4.41091700	-0.63818100
Н	-0.00006700	-4.14038300	-2.37404000
Н	0.27570400	-2.78017400	-1.27923600
Н	-2.34123400	-5.33352400	-2.33960100
Н	-3.55707200	-4.78663700	-1.17518700
Н	-2.06408300	-5.57545400	-0.61966700
Н	0.07877200	-3.48663900	1.65429500
Н	-0.65376200	-5.04979400	1.24973700
н	-0,60966900	-4,50450200	2,92604900
Н	-4.20964000	-4.06762900	1.71349400
Н	-3.13560000	-5.35255200	1.14986400
Н	-3.20816600	-4.96819000	2.86405400
Н	-1.45736100	-1.81281800	2.97744100
Н	-3,21836300	-1.91594000	2.76289700
н	-2,38792000	-3.04986500	3,83349500
C	-2 79672300	1 17391100	2 87018600
C	-3 07182100	3 39291200	1 69663700
C C	-3 /23/1800	1 567/1000	-2 200/5/00
C	-3 3607//00	3 55760000	-0 6767//00
C	-6 19719300	-1 09358300	-0.07074400
C	-5 96845000	0 7807000	0.17156100
C	1 70511/00	-1 77/57000	-3 88652200
C	4 02022300	-1.77437300	-3.48614300
	4.02032300	-0.00922000	-3.40014300
	2.19100000	-0.21/80/00	-2.5098/000
	3.32400100	-4.15/85200	-0.038/1900
H	2.98054300	-3.816/3400	-2./20/5/00
	2.55294800	-2.2/035500	3.2095/800
C	4.9465/600	-1.840/9600	2.68122100
Н	3.29648500	-0.564/9000	2.15519000
Н	3.63730300	-4.21226300	1.47210400
C	7.53617000	0.71732400	1.14759900
Н	5.81664700	1.98693300	1.34684700
С	7.27057000	-1.15479900	-0.32476900
Н	5.36298700	-1.40367400	-1.22559900
С	-1.96461900	1.86079100	3.95124800

С	-4.14950400	0.74342200	3.44741600
Н	-2.26481800	0.26917500	2.58697600
С	-3.27001900	4.16532600	0.56166700
Н	-2.99687100	3.87725200	2.66167300
С	-2.41058900	2.13594400	-3.19946500
С	-4.83727000	1.80237800	-2.74927100
Н	-3.25126100	0.49096000	-2.12438900
Н	-3.52061000	4.16651800	-1.55855000
С	-7.49453400	-0.71189500	-1.29606800
Н	-5.76921100	-1.98120100	-1.44283100
С	-7.27758400	1.15570800	0.19042500
Н	-5.39933500	1.40150500	1.15269300
Н	0.85535600	-2.10905000	-3.44497700
Н	2.27621300	-2.62818000	-4.36887400
Н	1.56026900	-1.05004500	-4.66828000
Н	4.62622100	-1.55999600	-3.75062700
Н	4.60902000	-0.05461800	-2.82183900
Н	3.82429500	-0.12283800	-4.39896000
Н	3.43245900	-5.22875800	-0.75646600
Н	2.76642400	-3.33421100	3.33454400
Н	1.51238200	-2.15706100	2.91164300
Н	2.68001500	-1.79157800	4.18223200
Н	5.68443000	-1.40956900	2.00782200
Н	5.16298900	-2.90713800	2.78025700
Н	5.07120500	-1.38417200	3.66489400
C	8.06273000	-0.41377300	0.53889700
Н	8.14439300	1.30636300	1.82166700
Н	7.67210900	-2.03374400	-0.81181900
Н	-1.00958700	2.21053000	3.55712200
Н	-2.49025800	2.70883000	4.39568500
Н	-1.75672500	1.15064200	4.75323600
Н	-4.77612200	1.61321500	3.66295900
Н	-4.69573800	0.09052500	2.76516500
Н	-3.99771400	0.19595300	4.37998700
н	-3.35321700	5.24162700	0.64609600
н	-2.56/43600	3.206/5/00	-3.34821100
н	-1.38575400	1.98059900	-2.86549100
н	-2.53151400	1.64660900	-4.16//3000
н	-5.61268900	1.42916000	-2.08302/00
н	-5.00956200	2.8/014200	-2.902/5900
Н	-4.94/30900	1.30662800	-3./1552100
	-8.04130600	0.41005/00	-0./00104500
п	-8.08046100	-1.29883800	-1.99134500
п	-/.09512900	2.03301400	0.00/04800 0.72465000
n u	J.08403400	-U./1394900	0.13403000 0.03676000
п	00104050.6-	0./1020300	-0.920/0900

Table S62 M06-2X/Def2-TZVP B2SiSn

E= -3560.983256

Atomic Number	x	Coordinates (A Y	Angstroms) Z
Si	-0.24834900	0.39195300	-0.65669400
В	1.59968700	0.66970700	0.00613900
В	-1.61136100	-0.68556400	0.30551300
Р	2.26723000	2.50864000	-0.08150000
Ν	2.97691100	-0.01604900	-0.14461100
Sn	0.22869700	-0.18272800	1.77796000
Р	-2.28545800	-2.52085200	0.22919500
Ν	-3.02828500	-0.01793100	0.30162700
С	2.02445600	3.56402700	1.43991000
С	1.96028200	3.48546900	-1.64866800
Ν	3.89124200	2.11895500	-0.11974400
С	3.10742300	-1.43597600	-0.29532800
С	4.05348600	0.81769800	-0.14179000
C	-1.68215100	-3.50447000	-1.22540800
С	-2.32855500	-3.52313000	1.80609600
Ν	-3.88483100	-2.14319000	-0.04709700
С	-3.16030900	1.40788900	0.35065700
С	-4.06903100	-0.84531200	0.03561000
С	2.67366900	2.80057000	2.60236900
С	0.53728500	3.77989600	1.73513200
С	2.73038500	4.91650800	1.31529600
С	0.59862500	4.18433800	-1.62402300
С	3.08880100	4.49324400	-1.90353900
С	1.99143100	2.47652500	-2.80319300
С	2.90683300	-1.97896600	-1.57870100
C	3.45426800	-2.24733900	0.79436800
C	5.46899300	0.33027400	-0.07227200
C	-2.06385700	-2.69536800	-2.47266800
C	-0.16036600	-3.64380600	-1.16071000
C	-2.34134200	-4.88120000	-1.31977500
C	-0.98361200	-4.18781300	2.10139700
C	-3.44963700	-4.56923600	1.76468800
C	-2.67054900	-2.53293600	2.92856300
C	-3.08878000	2.03326600	1.60832700
C	-3.31022600	2.15133000	-0.82847200
C	-5.45780800	-0.35935700	-0.24138700
Н	2.22631900	1.81784400	2.74987500
Н	2.52900000	3.37930200	3.51791100
Н	3.74439300	2.6/29/900	2.43/8/200
Н	0.05388100	4.42451000	1.002/6500
н	0.44099200	4.25628800	2./1519100
Н	-0.01730200	2.84231400	1./5355400
н	2./3134600	5.39488800	2.29830300
Н	2.21147600	5.58462000	0.62942500
Н	3.76656500	4.80328600	0.99155000

Н	-0.20614600	3,50978600	-1.31925300
Н	0.59993900	5.04752500	-0.95838400
Н	0.37154100	4.54486500	-2.63129300
н	4,06409300	4,00903100	-1.85210600
н	3,07913800	5,32893000	-1.21029000
н	2 95806600	1 89987600	-2 9097/100
н	1 15382000	1 78183800	-2 75791600
н Ц	2 92477500	1 00026300	-2 80/77500
н Ц	1 939/8399	2 027/2200	-2.00477500
п С	2 57652400	1 00252700	2 76605700
C	2.37033400	2 2//96100	1 75/2000
	2 7104200	-3.34400100	2 10100100
	2 61024200	-1./1551500	2.19109100
	5.01024200	-3.01330000	0.30094300
	6.33494600	1.09880600	0./1050/00
C .	5.97694000	-0.80403700	-0.70747100
н	-1.68845500	-3.22186200	-3.35406100
н	-1.62320300	-1.69/12300	-2.45513900
н	-3.146/9200	-2.59628600	-2.56145500
Н	0.1/300900	-4.2/615/00	-0.33888900
Н	0.19343000	-4.10052400	-2.08948900
H	0.32655900	-2.67282800	-1.05746100
Н	-2.09624700	-5.31556400	-2.29264800
Н	-3.42798300	-4.81573400	-1.24048100
Н	-1.96774800	-5.56229100	-0.55579300
Н	-0.15103900	-3.48512600	2.01817000
Н	-0.79461300	-5.02967500	1.43499700
Н	-0.99574200	-4.57159300	3.12507500
Н	-4.40139700	-4.11090400	1.49669300
Н	-3.24698500	-5.38152800	1.07237100
Н	-3.54388600	-5.00399100	2.76329800
Н	-1.85282000	-1.84016000	3.12087900
Н	-3.57253900	-1.96285600	2.69388700
Н	-2.85896800	-3.09887600	3.84404400
С	-2.98151700	1.22201900	2.88863600
С	-3.16830900	3.41950900	1.66210200
С	-3.41867600	1.52574100	-2.20975100
С	-3.39421400	3.53910800	-0.71987500
С	-6.19647200	-1.10738300	-1.16113600
С	-6.05566000	0.75907400	0.34026000
С	1.64303200	-1.75285100	-3.77981000
С	3.84740900	-0.60415600	-3.47007000
Н	2.05569600	-0.22123500	-2.37889000
С	3.43772400	-4.16218900	-0.69048000
Н	2.94801800	-3.77964200	-2.73605900
С	2.87984100	-2.44377100	3.24565700
С	5.19827900	-1.84786800	2.57770900
Н	3.44863300	-0.65490700	2.20880600
Н	3.88773700	-4.25830600	1.39327000
С	7.65729000	0.72759300	0.88737300
Н	5.94706000	1.99026600	1.18282500
С	7.30905400	-1.16009100	-0.54736900
Н	5.35141700	-1.42531300	-1.32870000
С	-2.20560800	1.93527400	3.99487500

С	-4.35716700	0.79786600	3.41438100
Н	-2.44369200	0.30708600	2.64779100
С	-3.32060100	4.17189300	0.50667500
Н	-3.11111400	3.92224100	2.61885300
С	-2.35170500	2.06205200	-3.16993700
С	-4.79989200	1.77768100	-2.82929800
Н	-3.26821800	0.44787900	-2.11007800
Н	-3.51712500	4.13198300	-1.61832000
С	-7.48269700	-0.73472000	-1.51341500
Н	-5.73818900	-1.98412800	-1.59661600
С	-7.35430200	1.11574600	0.00398700
Н	-5.52257200	1.36928700	1.05111000
Н	0.74552000	-2.14227500	-3.29910800
Н	2.13064900	-2.56852100	-4.31831900
Н	1.33420200	-1.01420500	-4.52190500
Н	4.45645800	-1.45024000	-3.79972200
Н	4.46048500	0.02218300	-2.82018200
Н	3.58407700	-0.01376000	-4.35015400
Н	3.57435000	-5.22527200	-0.84412700
Н	3.22007000	-3.47439000	3.36553200
Н	1.82232200	-2.45984200	2.98863500
Н	2.98206600	-1.94698900	4.21189400
Н	5.86153200	-1.32305000	1.89418100
Н	5.48921400	-2.90065900	2.58833200
Н	5.35483900	-1.44961000	3.58207200
С	8.15039800	-0.40740600	0.25830900
Н	8.30357000	1.32724500	1.51551700
Н	7.68412700	-2.04088800	-1.05198600
Н	-1.25286100	2.32664300	3.63398300
Н	-2.77648900	2.76441900	4.41856200
Н	-1.99773800	1.23486500	4.80534900
Н	-4.99427200	1.67006100	3.58339400
Н	-4.86903900	0.12864900	2.72214700
н	-4.24483500	0.2/028600	4.36400800
Н	-3.38324600	5.25118500	0.56646500
н	-2.501/3300	3.12642900	-3.36414100
н	-1.34//0900	1.92536000	-2.//098800
н	-2.41830500	1.53980200	-4.12643500
н	-5.61425500	1.43681000	-2.19352/00
н	-4.93966800	2.84563900	-3.01212500
H	-4.8/598600	1.26421000	-3.78968400
	-8.06861/00	0.38036600	-0.92951500
п	-8.02961000	-1.31/84000	-2.242//900
п	- / . 80221000	1.98315500	0.4/084200
n L	2.103/3/00 2.103/3/00	-U./UUU/JUU A 67206EAA	U.JJZI4300 1 10036000
п	00002C10.6-	0.0/200000	-1.13320000

Table S63 M06-2X/Def2-TZVP B2SiPb E= -3539.492084

Atomic	·····	Coordinates	(Angstroms)
Number	Χ	Y	۷۲
Si	-0.26763400	0.48537000	-0.53700200
В	1.61604000	0.68652300	0.01678800
В	-1.63166300	-0.66569400	0.31282100
Р	2.29862700	2.51504500	-0.07338100
Ν	2.98022100	-0.01677800	-0.13959500
Pb	0.23428400	-0.12787500	1.94827900
Р	-2.27895300	-2.50454900	0.22840800
Ν	-3.05840300	-0.01856900	0.30990900
С	2.09908400	3.58709400	1.44668400
C	1.98838800	3.49926500	-1.63817100
N	3.91903800	2.10703300	-0.12529400
С	3.09797300	-1.43629900	-0.29886000
С	4.06747100	0.80427100	-0.14428400
С	-1.65742300	-3.47134300	-1.22906200
С	-2.31274500	-3.52021500	1.79887600
Ν	-3.88374800	-2.15336300	-0.04434200
С	-3.21292200	1.40496700	0.35216100
С	-4.08790300	-0.85761300	0.04157500
С	2.76211000	2.82538000	2.60219000
С	0.62334400	3.83192200	1.77388900
С	2.82511600	4.92653000	1.29640900
С	0.64424800	4.23031600	-1.59723500
С	3.13587000	4.47965400	-1.91450200
С	1.97688800	2.48677800	-2.78947000
С	2.89837200	-1.97225200	-1.58564800
С	3.44235500	-2.25463500	0.78587400
С	5.47716600	0.29994200	-0.07539500
С	-2.04615600	-2.65783700	-2.47125200
С	-0.13429500	-3.58106400	-1.16026100
С	-2.29163200	-4.85849200	-1.33610900
С	-0.95717500	-4.15924500	2.10034200
С	-3.41176900	-4.58886700	1.74421000
С	-2.68456800	-2.54468400	2.92471700
С	-3.16162500	2.03800500	1.60590900
С	-3.36965700	2.13855600	-0.83147400
С	-5.48255300	-0.39140800	-0.23920600
Н	2.31093100	1.84633500	2.76231500
Н	2.63919900	3.40961500	3.51733400
Н	3.82815600	2.68655600	2.41897600
Н	0.13630900	4.48052100	1.04767500
Н	0.55782200	4.31617500	2.75253700
Н	0.05164900	2.90505700	1.80785300
Н	2.85562800	5.41299400	2.27499700
Н	2.30352000	5.59808000	0.61611500
Н	3.85179200	4.79212900	0.95146800

Н	-0.17242700	3,57272000	-1.28731900
н	0,67216200	5,09124900	-0.92926300
н	0 41686300	4 59998500	-2 60125000
н	4 10111700	3 97506800	-1 86910300
н	3 15199800	5 32162200	-1 22896900
н	3 00317100	1 88039600	-2 92281/00
н	1 13025000	1 80/03800	_2 7211/1000
н Ц	2 90088400	1 00526400	-2 80002200
н	1 90328900	3 03508100	-3 73189600
П С	2 56936400	1 07760900	2 76776000
C	2.30830400	2 22602400	1 76920100
	2 702/1200	1 72629000	2 10505000
	2 50872200	-1./2030900	2.10000900
	5.59675500	-3.02102200	0.55252000
	6.35370300	1.00084800	0.70529700
	5.97143500	-0.84309/00	-0.70601400
H	-1.66293100	-3.1/303400	-3.35600/00
H	-1.61610000	-1.65490400	-2.44301100
H	-3.12994800	-2.5/014100	-2.561/5600
H	0.21176200	-4.200/1500	-0.33393000
н	0.230/1/00	-4.03/16200	-2.0846/100
н	0.33016400	-2.59816400	-1.06366200
н	-2.03/81300	-5.280/1/00	-2.31209500
н	-3.3/932200	-4.8129/000	-1.25/60300
н	-1.90702500	-5.53930600	-0.5//28000
н	-0.13//8800	-3.440//000	2.01953000
H	-0./4/40/00	-4.99525100	1.432//400
H	-0.96418100	-4.54504800	3.12337000
H	-4.36957600	-4.14839000	1.46795900
Н	-3.18592800	-5.39443400	1.05130300
Н	-3.50763900	-5.02916200	2.74026900
Н	-1.88502400	-1.83375000	3.12668800
Н	-3.59633400	-1.99194300	2.68640500
Н	-2.86649200	-3.11878500	3.83640900
С	-3.04248900	1.23564200	2.89025700
С	-3.27177500	3.42234200	1.65247700
C	-3.44804400	1.50125000	-2.20875100
C	-3.48444200	3.52447500	-0.73155600
C	-6.21035400	-1.15435800	-1.15545800
С	-6.09645200	0.72316200	0.33350200
С	1.65842100	-1.73851600	-3.80119100
С	3.84173500	-0.56872800	-3.45212700
Н	2.03054700	-0.21799300	-2.37481200
С	3.42939400	-4.16062500	-0.70879600
Н	2.94127200	-3.76650000	-2.75240400
С	2.85090300	-2.45559600	3.23003500
С	5.17833700	-1.86965200	2.58224600
Н	3.44101800	-0.66550700	2.20306200
Н	3.87530300	-4.26925400	1.37543000
С	7.67123000	0.67365600	0.88163900
Н	5.97782800	1.96006900	1.17040000
С	7.29855600	-1.21613800	-0.54336900
н	5.33909900	-1.45783000	-1.32681700
С	-2.26742400	1.96542700	3.98671200

H -2.50003000 0.32301400 2.65058500 C -3.43337900 4.16516000 0.49208700 H -3.23282100 3.93099300 2.60708300 C -2.36761600 2.04152300 -3.15130800 C -4.82127000 1.73161300 -2.85330000 H -3.61299100 4.10968300 -1.63422800 C -7.50026200 -0.7993600 -1.51328500 H -5.74019400 -2.02816100 -1.58394700 C -7.39811000 1.06234600 -0.09925800 H -5.57356900 1.34429200 1.04230100 H 2.16635000 -2.53850400 -4.3415500 H 2.16635000 -2.53850400 -4.3771400 H 3.58183400 0.05333400 -2.78973000 H 3.56704600 -5.2261200 -0.86893000 H 3.56704600 -5.2261200 -0.86893000 H 3.59179700 -3.48517100 3.5876800 H 2.93479900 -1.97873600 4.19729800 H 2.93479900 -1.97873600	С	-4.41148600	0.80240900	3.42538800
C -3.43337900 4.16516000 0.49208700 H -3.23282100 3.9309300 2.66708300 C -2.36761600 2.04152300 -3.15130800 C -4.82127000 1.73161300 -2.85330000 H -3.61299100 4.10968300 -1.63422800 C -7.50026200 -0.79993600 -1.51328500 H -5.74013400 -2.02816100 -1.58394700 C -7.39811000 1.06234600 -0.00925800 H -5.7756900 1.34429200 -0.4925800 H 0.76026900 -2.14793300 -3.33957500 H 1.34904200 -0.99430500 -4.53741400 H 4.45922800 -1.40659700 -3.78719400 H 4.45922800 -1.40659700 -3.78719400 H 3.56704600 -5.22261200 -0.8889300 H 3.5179700 -3.48517100 3.35676600 H 2.93479900 -1.95737600 4.19729800 H 2.9327900	Н	-2.50003000	0.32301400	2.65058500
H -3.23282100 3.93099300 2.60708300 C -2.36761600 2.04152300 -3.15130800 C -4.82127000 1.73161300 -2.85330000 H -3.28754800 0.42617500 -2.09780100 H -3.61299100 4.10968300 -1.63422800 C -7.50026200 -0.79993600 -1.51328500 H -5.74019400 -2.02816100 -1.58394700 C -7.39811000 1.06234600 -0.09025800 H -5.57356900 1.34429200 1.04230100 H 0.76026900 -2.14793300 -3.33957500 H 2.16635000 -2.53850400 -4.34715500 H 1.34904200 -0.99436500 -4.35714400 H 1.34904200 -0.9343500 -4.37719400 H 3.58183400 0.05333400 -2.78973000 H 3.56764600 -5.2261200 -0.86893000 H 3.58744500 -1.34265801 1.90613200 H 2.93479900 -1.95737600 4.19729800 H 5.3258600 1.2687	С	-3.43337900	4.16516000	0.49208700
C -2.36761600 2.04152300 -3.15130800 C -4.82127000 1.73161300 -2.85330000 H -3.61299100 4.10968300 -1.63422800 C -7.50026200 -0.79993600 -1.51328500 H -5.74019400 -2.02816100 -1.58394700 C -7.39811000 1.06234600 -0.09925800 H -5.57356900 1.34429200 1.04230100 H 2.16635000 -2.53850400 -4.33741400 H 1.34904200 -0.99430500 -4.53741400 H 1.34904200 -0.99430500 -4.53741400 H 1.34904200 -0.99430500 -4.53741400 H 3.58183400 0.03041500 -4.32735400 H 3.56764600 -5.22261200 -0.88893000 H 3.5975900 -1.47830400 3.59053400 H 2.93479900 -1.95737600 4.19729800 H 2.93479900 -1.34265800 1.90613200 H 2.827300 <t< td=""><td>Н</td><td>-3.23282100</td><td>3.93099300</td><td>2.60708300</td></t<>	Н	-3.23282100	3.93099300	2.60708300
C -4.82127000 1.73161300 -2.85330000 H -3.28754800 0.42617500 -2.09780100 H -3.61299100 4.10968300 -1.63422800 C -7.50026200 -0.79993600 -1.51328500 H -5.74019400 -2.02816100 -1.58394700 C -7.39811000 1.06234600 -0.00925800 H -5.57356900 1.34429200 1.04230100 H 0.76026900 -2.14793300 -3.3957500 H 2.16635000 -2.53850400 -4.53741400 H 1.34904200 -0.99430500 -4.53741400 H 1.34904200 -0.9343500 -2.78973000 H 3.58183400 0.6333400 -2.78973000 H 3.56704600 -5.22261200 -0.86893000 H 3.19179700 -3.48517100 3.35676600 H 1.79736900 -2.92348400 2.58776800 H 5.32987900 -1.3783200 2.9592400 H 5.32987900 -1.347830400 3.5905300 C 8.14962100 -0.878776	С	-2.36761600	2.04152300	-3.15130800
H -3.28754800 0.42617500 -2.09780100 H -3.61299100 4.10968300 -1.63422800 C -7.50026200 -0.79993600 -1.51328700 H -5.74019400 -2.02816100 -1.58394700 C -7.39811000 1.06234600 -0.09925800 H -5.57356900 1.34429200 1.04230100 H 0.76025900 -2.14793300 -3.3957500 H 2.16635000 -2.53850400 -4.34415900 H 1.34904200 -0.99430500 -4.37714400 H 4.45922500 -1.40659700 -3.78719400 H 4.45922800 -0.0533400 -2.78973000 H 3.56764600 -5.22261200 -0.86893000 H 3.56764600 -5.22261200 -0.86893000 H 3.56764600 -2.92348400 2.5877600 H 2.9347900 -1.95737600 4.19729800 H 5.32987900 -1.47830400 3.59005300 C 8.14962100 -0.47107200 0.25895700 H 5.32987900 -1.4783	С	-4.82127000	1.73161300	-2.85330000
H -3.61299100 4.10968300 -1.63422800 C -7.50026200 -0.79993600 -1.51328500 H -5.74019400 -2.02816100 -1.58394700 C -7.39811000 1.06234600 -0.00925800 H -5.57356900 1.34429200 1.04230100 H 0.76026900 -2.14793300 -3.33957500 H 2.16635000 -2.53850400 -4.34415500 H 1.34904200 -0.99430500 -4.53741400 H 4.45922500 -1.40659700 -3.78719400 H 3.56704600 -5.22261200 -0.86893000 H 3.56704600 -5.22261200 -0.86893000 H 3.56704600 -5.22261200 -0.86893000 H 3.56704600 -5.22261200 -0.86893000 H 3.597500 -1.95737600 4.19729800 H 2.93479900 -1.95737600 4.19729800 H 2.9347900 -1.95737600 4.19729800 H 5.84741500 -1.34265800 1.96613200 H 5.847741500 -2.93	Н	-3.28754800	0.42617500	-2.09780100
C -7.50026200 -0.79993600 -1.51328500 H -5.74019400 -2.02816100 -1.58394700 C -7.39811000 1.06234600 -0.0925800 H -5.57356900 1.34429200 1.04230100 H 0.76026900 -2.14793300 -3.33957500 H 2.16635000 -2.53850400 -4.34415500 H 1.34904200 -0.99430500 -4.53741400 H 4.45922500 -1.40659700 -3.78719400 H 3.56704600 -5.22261200 -0.86893000 H 3.56704600 -5.22261200 -0.86893000 H 3.19179700 -3.48517100 3.35676600 H 1.79736900 -2.48377200 2.95592400 H 2.93479900 -1.95737600 4.19729800 H 5.46512500 -2.92348400 2.58776806 H 5.32987900 -1.47830400 3.59065300 C 8.14962100 -0.47107200 0.2585700 H 5.3258600	Н	-3.61299100	4.10968300	-1.63422800
H-5.74019400-2.02816100-1.58394700C-7.398110001.06234600-0.00925800H-5.573569001.344292001.04230100H0.76026900-2.14793300-3.33957500H2.16635000-2.53850400-4.34415500H1.34964200-0.99430500-4.53741400H4.45922500-1.40659700-3.78719400H4.45922500-1.40659700-3.78719400H3.581834000.03041500-4.32735400H3.56704600-5.22261200-0.86893000H3.19179700-3.485171003.35676600H1.79736900-2.483772002.95592400H2.93479900-1.957376004.19729800H5.84741500-1.342658001.90613200H5.32987900-1.478304003.59065300C8.14962100-0.471672000.25885700H8.325386001.268703001.50590900H-2.037266001.272759004.148300H-2.849113002.377973003.61307800H-2.849113002.377973003.61307800H-2.849113002.37259004.37835600H-2.849113002.37259004.37835600H-2.849113002.27259004.37835600H-2.524516003.10297100-3.35590300H-2.524516003.10297100-3.35590300H-2.408305001.51163700-4.10506300H-2.40830500<	С	-7.50026200	-0.79993600	-1.51328500
C -7.39811000 1.06234600 -0.00925800 H -5.57356900 1.34429200 1.04230100 H 0.76026900 -2.14793300 -3.33957500 H 2.16635000 -2.53850400 -4.34415500 H 1.34904200 0.99430500 -4.53741400 H 4.45922500 -1.40659700 -3.78719400 H 4.45922800 0.03041500 -4.32735400 H 3.58183400 0.03041500 -4.32735400 H 3.56764600 -5.22261200 -0.86893000 H 3.56764600 -5.22261200 -0.86893000 H 3.59776600 -1.3775700 -3.48577100 3.35676600 H 2.93479900 -1.95737600 4.19729800 H 2.93479900 -1.95737600 4.19729800 H 5.32987900 -1.47830400 3.5977680 H 5.32987900 -1.47830400 3.5905300 C 8.14962100 -2.10384200 -1.04418800 H 2.2	Н	-5.74019400	-2.02816100	-1.58394700
H-5.573569001.344292001.04230100H0.76026900-2.14793300-3.33957500H2.16635000-2.53850400-4.34415500H1.34904200-0.99430500-4.53741400H4.45922500-1.40659700-3.78719400H4.45228000.65333400-2.78973000H3.581834000.03041500-4.32735400H3.56704600-5.22261200-0.86893000H3.19179700-3.485171003.35676600H2.93479900-1.957376004.19729800H5.84741500-1.342658001.90613200H5.32987900-1.478304003.59005300C8.14962100-0.471072000.25895700H8.325386001.268703001.50590909H7.66221700-2.10384200-1.04418800H-2.037266001.272759004.79818400H-2.037266001.272759004.79818400H-2.037266001.272759004.79818400H-2.037266001.272759004.7381600H-2.20340005.243043000.54568900H-2.408305001.51163700-2.12851600H-2.524516003.10297100-3.35590300H-2.6042001.38809900-2.2287000H-2.637266001.2026200-3.80896200C-8.101158000.12366700-2.72865100H-2.408305001.51163700-4.10506300H-2.63726600 <td>С</td> <td>-7.39811000</td> <td>1.06234600</td> <td>-0.00925800</td>	С	-7.39811000	1.06234600	-0.00925800
H0.76026900-2.14793300-3.33957500H2.16635000-2.53850400-4.34415500H1.34904200-0.99430500-4.53741400H4.45922500-1.40659700-3.78719400H4.445228000.05333400-2.78973000H3.581834000.03041500-4.32735400H3.56704600-5.22261200-0.86893000H3.56704600-5.22261200-0.86893000H3.19179700-3.485171003.35676600H1.79736900-2.483772002.95592400H5.84741500-1.342658001.90613200H5.46512500-2.923484002.58776800H5.32987900-1.478304003.59005300C8.14962100-0.471072000.25895700H8.325386001.268703001.50590900H7.66221700-2.10384200-1.04418800H-2.849113002.785030004.41403200H-2.849113002.785030004.41403200H-2.84913002.377973003.59021300H-2.524516003.10297100-3.35590300H-2.524516003.10297100-3.35590300H-2.524516003.10297100-3.35590300H-2.524516003.10297100-3.35590300H-2.524516003.10297100-3.35590300H-2.524516003.10297100-3.35590300H-2.524516003.10297100-3.35590300H-2.524	Н	-5,57356900	1.34429200	1.04230100
H 2.16635000 -2.53850400 -4.34415500 H 1.34904200 -0.99430500 -4.53741400 H 4.45922500 -1.40659700 -3.78719400 H 4.44522800 0.65333400 -2.78973000 H 3.58183400 0.03041500 -4.32735400 H 3.56704600 -5.22261200 -0.86893000 H 3.19179700 -3.48517100 3.35676600 H 1.79736900 -2.48377200 2.95592400 H 2.93479900 -1.95737600 4.19729800 H 5.84741500 -1.34265800 1.90613200 H 5.32987900 -1.47830400 3.59005300 C 8.14962100 -0.47107200 0.25895700 H 8.32538600 1.26870300 1.50590900 H 7.66221700 -2.10384200 -1.04418800 H -1.32810300 2.37797300 3.61307800 H -2.03726600 1.27275900 4.78818400 H -2.03726600 1.2366700 2.73911600 H -2.52451600 3.10297100 <td>Н</td> <td>0.76026900</td> <td>-2.14793300</td> <td>-3.33957500</td>	Н	0.76026900	-2.14793300	-3.33957500
H 1.34904200 -0.99430500 -4.53741400 H 4.45922500 -1.40659700 -3.78719400 H 4.44522800 0.05333400 -2.78973000 H 3.58183400 0.03041500 -4.32735400 H 3.56764600 -5.22261200 -0.86893000 H 3.19179700 -3.48517100 3.35676600 H 1.79736900 -2.48377200 2.95592400 H 2.93479900 -1.95737600 4.19729800 H 5.84741500 -1.34265800 1.96613200 H 5.46512500 -2.92348400 2.58776800 H 5.32987900 -1.47830400 3.59005300 C 8.14962100 -0.47107200 0.25895700 H 7.66221700 -2.10384200 -1.04418800 H -1.32810300 2.37797300 3.61307800 H -2.03726600 1.27275900 4.79818400 H -2.03726600 1.27275900 4.37835600 H -2.50530400 5.24304300 0.54568900 H -2.52451600 3.10297100 </td <td>Н</td> <td>2.16635000</td> <td>-2.53850400</td> <td>-4.34415500</td>	Н	2.16635000	-2.53850400	-4.34415500
H 4.45922500 -1.40659700 -3.78719400 H 4.44522800 0.05333400 -2.78973000 H 3.58183400 0.03041500 -4.32735400 H 3.56704600 -5.22261200 -0.86893000 H 3.19179700 -3.48517100 3.35676602 H 1.79736900 -2.48377200 2.95592400 H 2.93479900 -1.95737600 4.19729800 H 5.84741500 -1.34265800 1.90613200 H 5.46512500 -2.92348400 2.58776800 H 5.32987900 -1.47830400 3.59005300 C 8.14962100 -0.47107200 0.25895700 H 8.32538600 1.26870300 1.50590900 H 7.66221700 -2.10384200 -1.04418800 H -2.84911300 2.37797300 3.61307800 H -2.84911300 2.78503000 4.41403200 H -2.03726600 1.27275900 4.79818400 H -2.52451600 3.10297100 -3.35590300 H -4.91879300 0.12366700 <td>Н</td> <td>1.34904200</td> <td>-0.99430500</td> <td>-4.53741400</td>	Н	1.34904200	-0.99430500	-4.53741400
H 4.44522800 0.05333400 -2.78973000 H 3.58183400 0.03041500 -4.32735400 H 3.56704600 -5.22261200 -0.86893000 H 3.19179700 -3.48517100 3.35676600 H 1.79736900 -2.48377200 2.95592400 H 2.93479900 -1.95737600 4.19729800 H 5.84741500 -1.34265800 1.90613200 H 5.32987900 -1.47830400 3.59005300 C 8.14962100 -0.47107200 0.25895700 H 7.66221700 -2.10384200 -1.04418800 H 7.66221700 -2.10384200 -1.04418800 H -2.8391300 2.37797300 3.61307800 H -2.84911300 2.78503000 4.41403200 H -2.03726600 1.27275900 4.79818400 H -2.03726600 1.2366700 2.73911600 H -2.504530400 5.24304300 0.54568900 H -2.52451600 3.10297100 -3.35590300 H -2.40830500 1.51163700 <td>Н</td> <td>4,45922500</td> <td>-1.40659700</td> <td>-3.78719400</td>	Н	4,45922500	-1.40659700	-3.78719400
H 3.58183400 0.03041500 -4.32735400 H 3.56704600 -5.22261200 -0.86893000 H 3.19179700 -3.48517100 3.35676600 H 1.79736900 -2.48377200 2.95592400 H 2.93479900 -1.95737600 4.19729800 H 2.93479900 -1.95737600 4.19729800 H 5.84741500 -2.92348400 2.58776800 H 5.32987900 -1.47830400 3.59005300 C 8.14962100 -0.47107200 0.25895700 H 7.66221700 -2.10384200 -1.04418800 H 7.66221700 -2.10384200 -1.04418800 H -1.32810300 2.37797300 3.61307800 H -2.84911300 2.78503000 4.41403200 H -2.03726600 1.27275900 4.79818400 H -2.03726600 1.2366700 2.73911600 H -4.91879300 0.12366700 2.73911600 H -2.52451600 3.10297100 -3.35590300 H -2.52451600 3.10297100 <td>Н</td> <td>4,44522800</td> <td>0.05333400</td> <td>-2.78973000</td>	Н	4,44522800	0.05333400	-2.78973000
H 3.56704600 -5.22261200 -0.86893000 H 3.19179700 -3.48517100 3.35676600 H 1.79736900 -2.48377200 2.95592400 H 2.93479900 -1.95737600 4.19729800 H 2.93479900 -1.95737600 4.19729800 H 5.84741500 -1.34265800 1.90613200 H 5.46512500 -2.92348400 2.58776800 H 5.32987900 -1.47830400 3.59005300 C 8.14962100 -0.47107200 0.25895700 H 8.32538600 1.26870300 1.50590900 H 7.66221700 -2.10384200 -1.04418800 H -1.32810300 2.37797300 3.61307800 H -2.84911300 2.78503000 4.4403200 H -2.63726600 1.27275900 4.79818400 H -2.63726600 1.27275900 4.79818400 H -2.52451600 3.10297100 -3.35590300 H -4.91879300 0.12366700 2.7386100 H -2.52451600 3.10297100	н	3,58183400	0.03041500	-4.32735400
H 3.19179700 -3.48517100 3.35676600 H 1.79736900 -2.48377200 2.95592400 H 2.93479900 -1.95737600 4.19729800 H 5.84741500 -1.34265800 1.90613200 H 5.46512500 -2.92348400 2.58776800 H 5.32987900 -1.47830400 3.59005300 C 8.14962100 -0.47107200 0.25895700 H 8.32538600 1.26870300 1.50590900 H 7.66221700 -2.10384200 -1.04418800 H -1.32810300 2.37797300 3.61307800 H -2.84911300 2.78503000 4.41403200 H -2.03726600 1.27275900 4.79818400 H -2.03726600 1.27275900 4.37835600 H -2.52451600 3.10297100 -3.35590300 H -4.91879300 0.12366700 2.72865100 H -2.52451600 3.10297100 -3.35590300 H -2.40830500 1.51163700 -4.10506300 H -2.40830500 1.51163700 <td>н</td> <td>3,56704600</td> <td>-5.22261200</td> <td>-0.86893000</td>	н	3,56704600	-5.22261200	-0.86893000
H1.797369002.483772002.95592400H2.93479900-1.957376004.19729800H5.84741500-1.342658001.90613200H5.46512500-2.923484002.58776800H5.32987900-1.478304003.59005300C8.14962100-0.471072000.25895700H8.325386001.268703001.50590900H7.66221700-2.10384200-1.04418800H-1.328103002.377973003.61307800H-2.849113002.785030004.41403200H-2.037266001.272759004.79818400H-2.037266001.23667002.73911600H-2.524516003.10297100-3.35590300H-3.520340005.243043000.54568900H-2.524516003.10297100-3.35590300H-2.6641422001.38809900-2.22587000H-3.664142001.38809900-2.22587000H-4.970473002.79576100-3.05015400H-5.654142001.38809900-2.22587000H-7.857469001.20682200-3.80896200H-7.857469001.20682200-3.80896200H-7.857469001.927627000.45032500H-7.857469001.927627000.45032500H-9.110418000.59106600-1.21408600	н	3,19179700	-3.48517100	3,35676600
H2.93479900-1.957376004.19729800H5.84741500-1.342658001.90613200H5.46512500-2.923484002.58776800H5.32987900-1.478304003.59005300C8.14962100-0.471072000.25895700H8.325386001.268703001.50590900H7.66221700-2.10384200-1.04418800H-1.328103002.377973003.61307800H-2.849113002.785030004.41403200H-2.037266001.272759004.79818400H-2.037266001.23667002.73911600H-2.505304005.243043000.54568900H-2.524516003.10297100-3.35590300H-2.524516003.10297100-3.35590300H-2.408305001.51163700-4.10506300H-2.408305001.51163700-4.10506300H-2.54516003.10297100-3.35590300H-2.54516003.10297100-3.35590300H-2.54516003.10297100-3.35590300H-2.54516001.51163700-4.10506300H-2.524516001.51163700-4.10506300H-2.524516001.51163700-4.10506300H-2.54516001.51163700-2.22587000H-7.857469001.20682200-3.80896200C-8.03816900-1.39485700-2.23966000H-7.857469001.927627000.45032500H-9.1104180	н	1,79736900	-2.48377200	2,95592400
H5.84741500-1.342658001.90613200H5.46512500-2.923484002.58776800H5.32987900-1.478304003.59005300C8.14962100-0.471072000.25895700H8.325386001.268703001.50590900H7.66221700-2.10384200-1.04418800H-1.328103002.377973003.61307800H-2.849113002.785030004.41403200H-2.037266001.272759004.79818400H-5.056304001.669549003.59021300H-4.918793000.123667002.73911600H-4.90974000.282579004.37835600H-2.524516003.10297100-3.35590300H-2.408305001.51163700-4.10506300H-2.408305001.51163700-4.10506300H-2.408305001.51163700-4.10506300H-5.641422001.38809900-2.22587000H-5.641422001.38809900-2.22587000H-7.85766001.20682200-3.80896200C-8.101158000.31230600-0.93943900H-7.857469001.927627000.45032500H-7.857469001.927627000.45032500H-9.110418000.59106600-1.21408600	н	2,93479900	-1.95737600	4.19729800
H5.46512500-2.923484002.58776800H5.32987900-1.478304003.59005300C8.14962100-0.471072000.25895700H8.325386001.268703001.50590900H7.66221700-2.10384200-1.04418800H-1.328103002.377973003.61307800H-2.849113002.785030004.41403200H-2.037266001.272759004.79818400H-5.056304001.669549003.59021300H-4.918793000.123667002.73911600H-4.290974000.282579004.37835600H-2.524516003.10297100-3.35590300H-2.524516003.10297100-3.35590300H-2.408305001.51163700-4.10506300H-2.408305001.51163700-2.22587000H-2.408305001.51163700-2.22587000H-5.641422001.38809900-2.22587000H-4.970473002.79576100-3.05015400H-4.876868001.20682200-3.80896200C-8.03816900-1.39485700-2.23966000H-7.857469001.927627000.45032500H-9.110418000.59106600-1.21408600	н	5,84741500	-1.34265800	1,90613200
H5.32987900-1.478304003.59005300C8.14962100-0.471072000.25895700H8.325386001.268703001.50590900H7.66221700-2.10384200-1.04418800H-1.328103002.377973003.61307800H-2.849113002.785030004.41403200H-2.037266001.272759004.79818400H-5.056304001.669549003.59021300H-4.918793000.123667002.73911600H-4.920974000.282579004.37835600H-3.520340005.243043000.54568900H-2.524516003.10297100-3.35590300H-2.408305001.51163700-4.10506300H-2.408305001.51163700-4.10506300H-5.641422001.38809900-2.22587000H-4.970473002.79576100-3.05015400H-7.857469001.20682200-3.80896200C-8.101158000.31230600-0.93943900H-7.857469001.927627000.45032500H-9.110418000.59106600-1.21408600	н	5,46512500	-2.92348400	2.58776800
C8.14962100-0.471072000.25895700H8.325386001.268703001.50590900H7.66221700-2.10384200-1.04418800H-1.328103002.377973003.61307800H-2.849113002.785030004.41403200H-2.037266001.272759004.79818400H-5.056304001.669549003.59021300H-4.918793000.123667002.73911600H-4.290974000.282579004.37835600H-3.520340005.243043000.54568900H-2.524516003.10297100-3.35590300H-1.371227001.91894500-2.72865100H-2.408305001.51163700-4.10506300H-4.970473002.79576100-3.05015400H-4.876868001.20682200-3.80896200C-8.03816900-1.39485700-2.23966000H-7.857469001.927627000.45032500H-9.110418000.59106600-1.21408600	н	5,32987900	-1.47830400	3,59005300
H8.325386001.268703001.50590900H7.66221700-2.10384200-1.04418800H-1.328103002.377973003.61307800H-2.849113002.785030004.41403200H-2.037266001.272759004.79818400H-5.056304001.669549003.59021300H-4.918793000.123667002.73911600H-4.920974000.282579004.37835600H-3.520340005.243043000.54568900H-2.524516003.10297100-3.35590300H-2.408305001.51163700-4.10506300H-2.408305001.51163700-4.10506300H-2.408305001.51163700-2.22587000H-7.857469001.20682200-3.80896200C-8.03816900-1.39485700-2.23966000H-7.857469001.927627000.45032500H-9.110418000.59106600-1.21408600	C	8,14962100	-0.47107200	0.25895700
H7.66221700-2.10384200-1.04418800H-1.328103002.377973003.61307800H-2.849113002.785030004.41403200H-2.037266001.272759004.79818400H-5.056304001.669549003.59021300H-4.918793000.123667002.73911600H-4.290974000.282579004.37835600H-3.520340005.243043000.54568900H-2.524516003.10297100-3.35590300H-2.408305001.51163700-4.10506300H-2.641422001.38809900-2.22587000H-4.970473002.79576100-3.05015400H-4.876868001.20682200-3.80896200C-8.03816900-1.39485700-2.23966000H-7.857469001.927627000.45032500H9.17903600-0.777114000.39425900H-9.110418000.59106600-1.21408600	н	8 32538600	1 26870300	1 50590900
H-1.328103002.377973003.61307800H-2.849113002.785030004.41403200H-2.037266001.272759004.79818400H-5.056304001.669549003.59021300H-4.918793000.123667002.73911600H-4.290974000.282579004.37835600H-3.520340005.243043000.54568900H-2.524516003.10297100-3.35590300H-1.371227001.91894500-2.72865100H-2.408305001.51163700-4.10506300H-4.970473002.79576100-3.05015400H-4.876868001.20682200-3.80896200C-8.03816900-1.39485700-2.23966000H-7.857469001.927627000.45032500H9.17903600-0.777114000.39425900H-9.110418000.59106600-1.21408600	н	7,66221700	-2.10384200	-1.04418800
H-2.849113002.785030004.41403200H-2.037266001.272759004.79818400H-5.056304001.669549003.59021300H-4.918793000.123667002.73911600H-4.290974000.282579004.37835600H-3.520340005.243043000.54568900H-2.524516003.10297100-3.35590300H-2.408305001.51163700-4.10506300H-5.641422001.38809900-2.22587000H-4.970473002.79576100-3.05015400H-4.876868001.20682200-3.80896200C-8.03816900-1.39485700-2.23966000H-7.857469001.927627000.45032500H9.17903600-0.777114000.39425900H-9.110418000.59106600-1.21408600	н	-1 32810300	2 37797300	3 61307800
H-2.037266001.272759004.79818400H-5.056304001.669549003.59021300H-4.918793000.123667002.73911600H-4.290974000.282579004.37835600H-3.520340005.243043000.54568900H-2.524516003.10297100-3.35590300H-1.371227001.91894500-2.72865100H-2.408305001.51163700-4.10506300H-5.641422001.38809900-2.22587000H-4.970473002.79576100-3.05015400H-4.876868001.20682200-3.80896200C-8.03816900-1.39485700-2.23966000H-7.857469001.927627000.45032500H9.17903600-0.777114000.39425900H-9.110418000.59106600-1.21408600	н	-2,84911300	2.78503000	4,41403200
H-5.056304001.669549003.59021300H-4.918793000.123667002.73911600H-4.290974000.282579004.37835600H-3.520340005.243043000.54568900H-2.524516003.10297100-3.35590300H-1.371227001.91894500-2.72865100H-2.408305001.51163700-4.10506300H-5.641422001.38809900-2.22587000H-4.970473002.79576100-3.05015400H-4.876868001.20682200-3.80896200C-8.03816900-1.39485700-2.23966000H-7.857469001.927627000.45032500H9.17903600-0.777114000.39425900H-9.110418000.59106600-1.21408600	н	-2,03726600	1,27275900	4,79818400
H-4.918793000.123667002.73911600H-4.290974000.282579004.37835600H-3.520340005.243043000.54568900H-2.524516003.10297100-3.35590300H-1.371227001.91894500-2.72865100H-2.408305001.51163700-4.10506300H-5.641422001.38809900-2.22587000H-4.970473002.79576100-3.05015400H-4.876868001.20682200-3.80896200C-8.101158000.31230600-0.93943900H-7.857469001.927627000.45032500H9.17903600-0.777114000.39425900H-9.110418000.59106600-1.21408600	н	-5,05630400	1.66954900	3,59021300
H-4.290974000.282579004.37835600H-3.520340005.243043000.54568900H-2.524516003.10297100-3.35590300H-1.371227001.91894500-2.72865100H-2.408305001.51163700-4.10506300H-5.641422001.38809900-2.22587000H-4.970473002.79576100-3.05015400H-4.876868001.20682200-3.80896200C-8.03816900-1.39485700-2.23966000H-7.857469001.927627000.45032500H9.17903600-0.777114000.39425900H-9.110418000.59106600-1.21408600	н	-4,91879300	0.12366700	2,73911600
H-3.520340005.243043000.54568900H-2.524516003.10297100-3.35590300H-1.371227001.91894500-2.72865100H-2.408305001.51163700-4.10506300H-5.641422001.38809900-2.22587000H-4.970473002.79576100-3.05015400H-4.876868001.20682200-3.80896200C-8.03816900-1.39485700-2.23966000H-7.857469001.927627000.45032500H9.17903600-0.777114000.39425900H-9.110418000.59106600-1.21408600	н	-4,29097400	0.28257900	4,37835600
H-2.524516003.10297100-3.35590300H-1.371227001.91894500-2.72865100H-2.408305001.51163700-4.10506300H-5.641422001.38809900-2.22587000H-4.970473002.79576100-3.05015400H-4.876868001.20682200-3.80896200C-8.101158000.31230600-0.93943900H-7.857469001.927627000.45032500H9.17903600-0.777114000.39425900H-9.110418000.59106600-1.21408600	н	-3 52034000	5 24304300	0 54568900
H-1.371227001.91894500-2.72865100H-2.408305001.51163700-4.10506300H-5.641422001.38809900-2.22587000H-4.970473002.79576100-3.05015400H-4.876868001.20682200-3.80896200C-8.101158000.31230600-0.93943900H-7.857469001.927627000.45032500H9.17903600-0.777114000.39425900H-9.110418000.59106600-1.21408600	н	-2,52451600	3,10297100	-3.35590300
H-2.408305001.51163700-4.10506300H-5.641422001.38809900-2.22587000H-4.970473002.79576100-3.05015400H-4.876868001.20682200-3.80896200C-8.101158000.31230600-0.93943900H-7.857469001.927627000.45032500H9.17903600-0.777114000.39425900H-9.110418000.59106600-1.21408600	н	-1 37122700	1 91894500	-2 72865100
H-5.641422001.38809900-2.22587000H-4.970473002.79576100-3.05015400H-4.876868001.20682200-3.80896200C-8.101158000.31230600-0.93943900H-8.03816900-1.39485700-2.23966000H-7.857469001.927627000.45032500H9.17903600-0.777114000.39425900H-9.110418000.59106600-1.21408600	н	-2 40830500	1 51163700	-4 10506300
H-4.970473002.79576100-3.05015400H-4.876868001.20682200-3.80896200C-8.101158000.31230600-0.93943900H-8.03816900-1.39485700-2.23966000H-7.857469001.927627000.45032500H9.17903600-0.777114000.39425900H-9.110418000.59106600-1.21408600	н	-5 64142200	1 38809900	-2 22587000
H-4.876868001.20682200-3.80896200C-8.101158000.31230600-0.93943900H-8.03816900-1.39485700-2.23966000H-7.857469001.927627000.45032500H9.17903600-0.777114000.39425900H-9.110418000.59106600-1.21408600	н	-4 97047300	2 79576100	-3 05015400
C-8.101158000.31230600-0.93943900H-8.03816900-1.39485700-2.23966000H-7.857469001.927627000.45032500H9.17903600-0.777114000.39425900H-9.110418000.59106600-1.21408600	н	-4 87686800	1,20682200	-3.80896200
H-8.03816900-1.39485700-2.23966000H-7.857469001.927627000.45032500H9.17903600-0.777114000.39425900H-9.110418000.59106600-1.21408600	C	-8 10115800	0 31230600	-0 93943900
H-7.857469001.927627000.45032500H9.17903600-0.777114000.39425900H-9.110418000.59106600-1.21408600	н	-8 03816900	-1 39485700	-2 23966000
H 9.17903600 -0.77711400 0.39425900 H -9.11041800 0.59106600 -1.21408600	н	-7 85746900	1 92762700	0 15032500
H -9.11041800 0.59106600 -1.21408600	н	9 17903600	-0 77711400	0 39425900
	н	-9 11041800	0 59106600	-1 21408600

- - -

Table S64 M06-2X/Def2-TZVP B2GeSn

E = -5348.52812

A.L		(/	· + · · - · · · · · · · · · · · ·
Atomic	N/	Coordinates (A	angstroms)
Number	X	Y	Z
·····			0.04771000
Ge	0.84233400	-0.01244000	0.34//1900
В	-0.19984900	-1.77734700	0.00623600
В	-0.13583400	1.80009400	0.06386200
Sn	-1.75593800	0.02932600	-0.01356200
Р	-0.04428400	-3.14402100	1.39845100
Ν	-0.32651400	-2.75783400	-1.17716700
Р	-0.20116900	3.13927200	-1.36232900
N	0.18045200	2.81612500	1.20160800
С	-1.42400000	-3.18906100	2.65475900
С	1.62522600	-3.43061900	2.19138500
Ν	-0.28170200	-4.46144900	0.39962300
С	-0.32306900	-2.30606400	-2.53800100
С	-0.40129600	-4.07797400	-0.84853700
С	1.00535300	2.85928400	-2.74668300
С	-1.87180900	3.71498200	-1.97206700
Ν	0.35658300	4.42441000	-0.45990700
С	0.33700500	2.37469100	2.55706000
С	0.47974200	4.07925500	0.80050700
С	-2.72638500	-3.34027900	1.85632400
С	-1.46726700	-1.89426500	3.47113200
С	-1.30612300	-4.39230200	3,59336900
C	1.87071800	-2.46845600	3,35642800
C	1.77668300	-4.88844800	2.64561500
C	2.67470200	-3,18910800	1,09841300
C	0 92133200	-2 02081000	-3 13047600
C	-1 51995200	-2 18478200	-3 25776100
C	-0 70166900	-5 15695600	-1 8/3/9700
C	2 39277500	2 79860400	-2 09263600
C	0 70850100	1 52558000	-2.05205000
C	1 00169/00	2 00800700	-3 76668300
C	2 44960900	2.2200	
C	1 705/9200	E 15200200	2 50065100
	2 70256000	2.13300500	-2.30003100
	-2.79550900	2.17202/000	-0.74445000
	-0.82/2/400	2.1/280300	3.31943100
	1.6110/400	2.122/4300	3.08562000
	1.016/2/00	5.13282100	1.71849500
н	-2.8/8/5500	-2.51/13900	1.15842200
Н	-3.56224100	-3.34/81300	2.55991100
Н	-2./3630800	-4.2/62/200	1.29625000
Н	-0.63606400	-1.81478800	4.16998700
Н	-2.39445300	-1.87676700	4.05095600
Н	-1.44216100	-1.00822600	2.83627500
Н	-2.23856200	-4.48175200	4.15668400
Н	-0.50096200	-4.26622200	4.31562800
Н	-1.15193400	-5.32121000	3.04169800

	4 64256400	4 43347500	2 2227622
Н	1.64356400	-1.43247500	3.09076800
Н	1.28297700	-2.74067800	4.23359600
Н	2.92632800	-2.52095600	3.63772800
Н	1.53371400	-5.57763200	1.83675000
Н	1.16197100	-5.13255000	3.50689700
Н	2.81983100	-5.04591300	2.93175100
Н	2.71628400	-2.14259000	0.79990600
Н	2.47613200	-3.80442900	0.21747800
Н	3.65349500	-3.47261800	1.49273900
С	2.22371500	-2.19721000	-2.36964800
С	0.94503000	-1.63895600	-4.46563900
С	-2.88604300	-2.51327000	-2.67959300
С	-1.44188100	-1.78566300	-4.59255700
С	-1.50620500	-6.20099400	-1.37929900
С	-0.25433000	-5.19992400	-3.16506700
Н	3.13130400	2.58545600	-2.86967900
Н	2.45030300	2.01141400	-1.33925700
Н	2.64676300	3.74947200	-1.62170400
Н	-0.22116700	1.54199800	-4.00336000
Н	1.51817600	1.30245900	-4.13667500
н	0.65136800	0.70466700	-2.71926600
Н	1.85790800	3.86747700	-4.43341100
Н	1.09326100	4,97358400	-3.28418700
Н	0.10383600	3,98841600	-4.38371500
Н	-2.41237500	1.73510800	-2.72884700
н	-1,92534800	2.88304900	-3.98821600
н	-3 49651500	3 04466700	-3 20583500
н	-1 33970000	5 81555700	-1 76539800
н	-1 24249700	5 23388600	-3 43223100
Н	-2 81518500	5 49710800	-2 69183700
н	-3 01510700	2 72207900	-0 39275700
н	-2 35578300	1 30373100	0.33273700
Ц	-3 73555800	4.20599600	-1 02/23900
C	-2 20139100	2 506/3200	2 76372200
C	-0 60156700	1 71256000	4 62351500
C C	2 00202700	2 22671500	2 21/77700
C C	1 60250200	1 67202200	2.31477700
	1 01212100	6 0/105600	4.40330200
	1,91213100	5 27505000	2 06975000
	2 24602200	1 10251600	2 6702000
	2 82662000	-1.10551000	-2.07030000
	2.83003000	-3.5/959000	-2.01035200
П	1.99028900	-2.12011900	-1.311/2300
	-0.22/11400	-1.52186400	-5.19696600
H	1.89402100	-1.42943600	-4.94310600
	-3.8/188100	-1.3538/200	-2.85965100
C	-3.48923600	-3./6442800	-3.3318/900
н	-2.76602300	-2.6982/000	-1.6090/800
п	-2.35400300	-1.09623/00	-2.109/2800
L L	-1.88540800	-/.23644600	-2.21663500
Н	-1.83314900	-6.1/954200	-0.34934800
C	-0.61696300	-6.25159600	-3.99486600
Н	0.37432200	-4.42292800	-3.56930300
L	-3.31474800	1.62314500	3.32417600

H -2.16406400 2.34264900 1.68842000 C 0.55062700 1.46559700 5.16688300 H -1.57422300 1.5693500 5.22748400 C 3.76976200 1.07165900 2.28352700 C 3.73853400 3.47316700 2.92108400 H 2.66871500 1.48121500 4.8347400 C 2.49313900 7.04194600 1.90783500 H 2.16603500 6.29400800 3.82218600 C 1.26003500 6.29400800 3.82218600 H 0.01031500 4.59707800 3.55355100 H 2.81682400 -0.11135700 -2.52914100 H 3.63554100 -1.20259700 -1.8966200 H 3.06595600 -3.74604500 -3.68388400 H 2.19594100 -4.38076700 -2.24470200 H 3.09595600 -3.74604500 -3.68358400 H 2.19594100 -1.22385300 -6.33724400 H 2.19594100 -1.22385300 -2.3124470200 H -2.8025700 -2.48765400	С	-2.55700600	3.98200600	2.97576800
C 0.56062700 1.46559700 5.16688300 H -1.57422300 1.54693500 5.22748400 C 3.73853400 3.47316700 2.92108400 H 2.64769100 2.59554300 1.28414800 H 2.66871500 1.48121500 4.83407400 C 2.43313900 7.04194600 1.90783500 H 2.14631500 5.94113300 0.09740300 C 1.26003500 6.29400800 3.82218600 H 0.6103500 4.5970780 3.5535100 H 2.81682400 -0.11135700 -2.52914100 H 3.63552600 -3.74604500 -3.68889600 H 3.0955600 -3.74604500 -3.68358400 H 2.19594100 -4.38076700 -2.24470200 H 3.79809090 -3.65760600 -2.10427400 H -0.1908600 -1.2255300 -3.91261900 H -3.46944300 -0.4135700 -2.48765400 H -3.63471800 -3.59610100 -4.4045400 H -2.86349600 -4.64596700	Н	-2.16406400	2.34264900	1.68842000
H -1.57422300 1.54693500 5.22748400 C 3.76976200 1.07165900 2.28352700 C 3.7385400 3.47316700 2.92108400 H 2.64769100 2.59554300 1.28414800 H 2.66871500 1.48121500 4.83407400 C 2.49313900 7.04194600 1.90783500 H 2.16631500 5.94113300 0.09740300 C 1.26003500 6.29400800 3.82218600 H 0.01031500 4.59707800 3.5535100 H 2.81682400 -0.11135700 -2.52914100 H 3.63552600 -1.7159500 -3.68889600 H 3.0595600 -3.74604500 -3.68358400 H 2.19594100 -4.38076700 -2.24470200 H 3.79806900 -3.65766060 -2.10427400 H -0.19086000 -1.2235300 -6.23724400 H -4.79438800 -1.5633000 -2.31549400 H -4.79438800 -1.5633000 -2.31549400 H -2.86340600 -4.64596700	С	0.56062700	1.46559700	5.16688300
C 3.76976200 1.07165900 2.28352700 C 3.73853400 3.47316706 2.92108400 H 2.64769100 2.59554300 1.28414800 H 2.66871500 1.48121500 4.83407400 C 2.49313900 7.04194600 1.90783500 H 2.16631500 5.94113300 0.09740300 C 1.26003500 6.29400800 3.82218600 H 2.81682400 -0.11135700 -2.52914100 H 3.63552600 -1.7159500 -3.68389600 H 3.06595600 -3.74604500 -3.68389400 H 2.19594100 -4.38076700 -2.24470200 H 3.08595600 -3.74604500 -3.618388400 H 2.19594100 -4.38076700 -2.24470200 H -0.19086000 -1.2235300 -6.23724400 H -0.4694300 -0.41335700 -2.48765400 H -2.86340600 -4.64596700 -3.21295700 H -2.526008800 -3.	Н	-1.57422300	1.54693500	5.22748400
C 3.73853400 3.47316700 2.92108400 H 2.64769100 2.59554300 1.28414800 H 2.66871500 1.48121500 4.83407400 C 2.49313900 7.04194600 1.90783500 H 2.14631500 5.94113300 0.09740300 C 1.26093500 6.29400800 3.82218600 H 2.81682400 -0.11135700 -2.52914100 H 3.63552600 -1.17159500 -3.68889600 H 3.06595600 -3.74604500 -3.68358400 H 2.19594100 -4.38076700 -2.24470200 H 3.06595600 -3.65760600 -2.10427400 H -9.19986000 -1.2253000 -3.61261900 H -4.13124000 -1.2253300 -2.31261900 H -3.46944300 -0.41335700 -2.48765400 H -2.86340600 -4.64596700 -3.512129700 H -2.52600800 -8.0234800 -1.8475400 H -2.52600800 -	С	3.76976200	1.07165900	2.28352700
H 2.64769100 2.59554300 1.28414800 H 2.66871500 1.48121500 4.83407400 C 2.49313900 7.04194600 1.90783500 H 2.14631500 5.94113300 0.09740300 C 1.26003500 6.29400800 3.82218600 H 0.01031500 4.59707800 3.5535100 H 2.81682400 -0.11135700 -2.52914100 H 3.63552600 -1.7159500 -3.68889600 H 4.09554100 -1.20259700 -1.99066200 H 3.00595600 -3.74604500 -3.68358400 H 2.19594100 -4.38076700 -2.24470200 H 2.19594100 -1.22385300 -6.23724400 H -0.19086000 -1.22385300 -2.31549400 H -4.463124000 -1.22553000 -3.91261900 H -3.663471800 -3.59610100 -4.40145400 H -2.86346600 -4.645967700 -3.21295700 C -1.44215500 -7.26503500 -3.5187400 H -2.526008800 -8.02	С	3.73853400	3.47316700	2.92108400
H2.668715001.481215004.83407400C2.493139007.041946001.90783500H2.146315005.941133000.09740300C1.260035006.294008003.82218600H0.010315004.597078003.55355100H2.81682400-0.11135700-2.52914100H3.63552600-1.17159500-3.6889600H3.06595600-1.20259700-1.99066200H3.06595600-3.74604500-3.68358400H2.19594100-4.38076700-2.24470200H3.79800900-3.65760600-2.10427400H-0.19086000-1.22385300-6.23724400H-0.19086000-1.22385300-3.91261990H-3.66944300-0.41335700-2.48765400H-3.63471800-3.59610100-4.40145400H-2.86340600-4.64596700-3.21295700H-3.63471800-3.59510100-4.40145400H-2.52600800-8.02334800-1.84033700H-2.5260800-8.02334800-1.84037700H-3.65497001.784394002.75361200H-3.534681001.861629004.03712400H-3.568507004.21006004.03712400H-3.568507004.21006004.03742900H-3.568507004.21006004.03722900H-3.568507001.784394002.75361200H-3.568507001.784394002.61822600H-4.6338	Н	2.64769100	2.59554300	1.28414800
C 2.49313900 7.04194600 1.90783500 H 2.14631500 5.94113300 0.09740300 C 1.26003500 6.29400800 3.82218600 H 0.01031500 4.59707800 3.55355100 H 2.81682400 -0.11135700 -2.52914100 H 3.63552600 -1.17159500 -3.68889600 H 3.00595600 -3.74604500 -3.68358400 H 2.19594100 -4.38076700 -2.24470200 H 3.00595600 -3.68358400 -2.10427400 H -0.19086000 -1.22385300 -6.23724400 H -0.19086000 -1.22385300 -2.31549400 H -4.013124000 -1.22553000 -3.91261900 H -3.63471800 -3.59610100 -4.48754400 H -2.86340600 -4.64596700 -3.21295700 C -1.44215500 -7.26503500 -3.5187400 H -2.52600800 -8.02334800 -1.84033700 H -2.52600800 -8.02334800 -1.84033700 H -2.52090500 <td< th=""><th>Н</th><td>2.66871500</td><td>1.48121500</td><td>4.83407400</td></td<>	Н	2.66871500	1.48121500	4.83407400
H2.146315005.941133000.09740300C1.260035006.29408003.82218600H0.010315004.597078003.5535100H2.81682400-0.11135700-2.52914100H3.63552600-1.17159500-3.68889600H4.09554100-1.20259700-1.99066200H3.00595600-3.74604500-3.6838400H2.19594100-4.38076700-2.24470200H3.79800900-3.65760600-2.10427400H-0.19086000-1.22385300-6.23724400H-0.19086000-1.22553000-3.91261900H-3.46944300-0.41335700-2.48765400H-3.46944300-0.45396700-3.21295700H-3.63471800-3.59610100-4.40145400H-2.86340600-4.64596700-3.21295700H-3.63471800-3.59610100-4.40145400H-2.52600800-8.02334800-1.8403700H-2.52600800-8.02334800-1.8403700H-2.520905004.241006004.03717500H-3.534681001.861629004.36717500H-3.534681001.861629002.43902700H-3.568507004.176330002.61282600H-3.568507004.176330002.61282600H-3.568507004.176330002.61282600H-3.568507004.176330002.61282600H-3.568507004.176330002.61282600H-3	С	2.49313900	7.04194600	1.90783500
C 1.26003500 6.29400800 3.82218600 H 0.01031500 4.59707800 3.5535100 H 2.81682400 -0.11135700 -2.52914100 H 3.63552600 -1.17159500 -3.68889600 H 4.09554100 -1.20259700 -1.99066200 H 3.00595600 -3.74604500 -3.68358400 H 2.19594100 -4.38076700 -2.24470200 H 3.79800900 -3.65760600 -2.10427400 H -0.19886000 -1.22553000 -3.91261900 H -4.13124000 -1.22553000 -3.91261900 H -4.79438800 -1.56330000 -2.48765400 H -2.86340600 -4.6456700 -3.21295700 H -2.86340600 -4.64596700 -3.5189400 H -2.52600800 -8.02334800 -1.8403700 H -2.52600800 -8.02334800 -1.8403700 H -2.52609800 -5.01472400 -3.53468100 1.86162900 4.36717500 H -2.52090500 4.24100600 4.36717500 -1.442307510	Н	2.14631500	5.94113300	0.09740300
H0.010315004.597078003.55355100H2.81682400-0.11135700-2.52914100H3.63552600-1.17159500-3.68889600H4.09554100-1.20259700-1.99066200H3.00595600-3.74604500-3.68358400H2.19594100-4.38076700-2.24470200H3.79800900-3.65760600-2.10427400H-0.19086000-1.22353000-3.91261900H-4.13124000-1.22553000-3.91261900H-4.6944300-0.41335700-2.48765400H-3.66944300-4.64596700-3.21295700H-3.63471800-3.59610100-4.40145400H-2.86340600-4.64596700-3.21295700H-3.63471800-3.97492000-2.89255700C-1.44215500-7.26503500-5.01472400H-2.52600800-8.02334800-1.84033700H-0.25541900-6.26786300-5.01472400H-3.65947001.784394002.75361200H-3.534681001.861629004.36742900H-3.526905004.2410066004.03742900H-3.568507004.176330002.61282600H0.649607001.111856006.18632000H3.192429004.411491002.98599100H4.633876003.202120003.28255700H4.633876003.637574002.38255700H4.633876003.637574002.38018400H <td< th=""><th>С</th><td>1.26003500</td><td>6.29400800</td><td>3.82218600</td></td<>	С	1.26003500	6.29400800	3.82218600
H2.81682400-0.11135700-2.52914100H3.63552600-1.17159500-3.68889600H4.09554100-1.20259700-1.99066200H3.00595600-3.74604500-3.68358400H2.19594100-4.38076700-2.24470200H3.79800900-3.65760600-2.10427400H-0.19086000-1.22385300-6.23724400H-4.13124000-1.22553000-3.91261900H-4.386944300-0.41335700-2.48765400H-3.46944300-0.41335700-2.48765400H-3.63471800-1.56330000-2.31549400H-2.86340600-4.64596700-3.21295700H-3.63471800-3.59610100-4.40145400H-4.46621600-3.97492000-2.89255700C-1.44215500-7.26503500-3.53187400H-0.25541900-6.26786300-5.01472400H-3.059497000.564128003.26283600H-3.534681001.881629004.36717500H-3.5520905004.241006004.03742900H-3.568507004.176330002.61822600H-1.878645004.646105002.43902700H-1.878645004.646105002.43902700H4.631512001.229927001.63193300H3.192429004.411491002.98559100H4.633876003.637574002.31832500C2.168166007.722242001.44936900H <th>Н</th> <td>0.01031500</td> <td>4.59707800</td> <td>3.55355100</td>	Н	0.01031500	4.59707800	3.55355100
H3.63552600-1.17159500-3.68889600H4.09554100-1.20259700-1.99066200H3.00595600-3.74604500-3.68358400H2.19594100-4.38076700-2.24470200H3.79809900-3.65760600-2.10427400H-0.19086000-1.22385300-6.23724400H-4.13124000-1.22553000-3.91261900H-4.479438800-1.66330000-2.48765400H-3.46944300-0.41335700-2.48765400H-3.63471800-3.59610100-4.40145400H-2.86340600-4.64596700-3.21295700H-3.63471800-3.59610100-4.40145400H-2.52600800-8.02334800-1.84033700H-2.52600800-8.02334800-1.84033700H-3.059497000.564128003.26283600H-3.534681001.861629004.36717500H-3.534681001.861629004.36717500H-2.520905004.241006004.03742900H-2.520905004.241006004.03742900H-3.568507004.176330002.6186200H-3.568507004.11856006.18632000H-3.633512001.229927001.63193300H3.192429004.411491002.98599100H4.633876003.202120003.25143200H3.199033007.72242001.44936909H4.633876003.637574002.31832500C2	Н	2.81682400	-0.11135700	-2.52914100
H 4.09554100 -1.20259700 -1.99066200 H 3.06595600 -3.74604500 -3.68358400 H 2.19594100 -4.38076700 -2.24470200 H 3.79800900 -3.65760600 -2.10427400 H -0.19086000 -1.22385300 -6.23724400 H -4.13124000 -1.22553000 -3.91261900 H -3.46944300 -0.41335700 -2.48765400 H -3.46944300 -0.41335700 -2.48765400 H -3.46944300 -0.41335700 -2.48765400 H -3.46944300 -3.59610100 -4.40145400 H -2.86340600 -4.64596700 -3.21295700 C -1.44215500 -7.26503500 -3.53187400 H -2.5260800 -8.02334800 -1.84033700 H -2.52608000 -8.02334800 -1.84033700 H -2.52608000 -8.02334800 -1.84033700 H -2.52090500 4.24100600 4.06717500 H -3.53468100 1.86162900 4.36717500 H -2.52090500	Н	3.63552600	-1.17159500	-3.68889600
H3.00595600-3.74604500-3.68358400H2.19594100-4.38076700-2.24470200H3.79800900-3.65760600-2.10427400H-0.19086000-1.2255300-6.23724400H-4.13124000-1.22553000-3.91261900H-4.79438800-0.41335700-2.48765400H-4.79438800-1.56330000-2.31549400H-2.86340600-4.64596700-3.21295700H-3.63471800-3.59610100-4.40145400H-2.86340600-8.02334800-1.84033700C-1.44215500-7.26503500-3.53187400H-2.52600800-8.02334800-1.84033700H-2.5260800-6.26786300-5.01472400H-3.059497000.564128003.26283600H-3.534681001.861629004.36717500H-4.230751001.784394002.75361200H-2.520905004.241006004.03742900H-3.568507004.176330002.61282600H0.649607001.111856006.18632000H4.150454000.837600003.28018400H3.192429004.411491002.98599100H4.633512001.229927001.63193300H3.192429004.411491002.98599100H4.633876003.202120003.92855700H4.633876003.63754002.31832500C2.168166007.172828003.25143200H3.1990	Н	4.09554100	-1.20259700	-1.99066200
H2.19594100-4.38076700-2.24470200H3.79809900-3.65760600-2.10427400H-0.19086000-1.22385300-6.23724400H-4.13124000-1.22553000-3.91261900H-3.46944300-0.41335700-2.48765400H-4.79438800-1.56330000-2.31549400H-2.86340600-4.64596700-3.21295700H-3.63471800-3.59610100-4.40145400H-4.46621600-3.97492000-2.89255700C-1.44215500-7.26503500-3.53187400H-2.52600800-8.02334800-1.8403700H-2.52609800-8.02334800-1.8403700H-0.25541900-6.26786300-5.01472400H-3.059497000.564128003.26283600H-3.534681001.861629004.36717500H-2.520905004.241006004.03742900H-3.568507004.176330002.61282600H-3.568507004.176330002.61282600H-3.568507004.176330002.61282600H4.631512001.229927001.63193300H4.633876003.637574002.31832500C2.168166007.172828003.25143200H4.633876003.637574002.31832500C2.168166007.172828003.25143200H4.633876003.637574002.31832500C2.168166007.172828003.25143200H4.6	Н	3.00595600	-3.74604500	-3.68358400
H3.79800900-3.65760600-2.10427400H-0.19086000-1.22385300-6.23724400H-4.13124000-1.22553000-3.91261900H-3.46944300-0.41335700-2.48765400H-4.79438800-1.56330000-2.31549400H-2.86340600-4.64596700-3.21295700H-3.63471800-3.59610100-4.40145400H-4.46621600-3.97492000-2.89255700C-1.44215500-7.26503500-3.53187400H-2.52600800-8.02334800-1.84033700H-0.25541900-6.26786300-5.01472400H-3.059497000.564128003.26283600H-3.534681001.861629004.3677500H-3.534681001.861629004.03742900H-3.568507004.176330002.61282600H-3.568507004.176330002.61282600H-3.568507004.176330002.61282600H-3.192429004.411491002.98599100H4.631512001.229927001.63193300H3.192429004.411491002.98599100H4.633876003.637574002.31832500C2.168166007.172828003.25143200H4.633876003.637574002.31832500C2.168166007.172828003.25143200H4.633876003.637574002.31832500H4.633876003.637574002.31832500H4.6338	Н	2.19594100	-4.38076700	-2.24470200
H-0.19086000-1.22385300-6.23724400H-4.13124000-1.22553000-3.91261900H-3.46944300-0.41335700-2.48765400H-4.79438800-1.56330000-2.31549400H-2.86340600-4.64596700-3.21295700H-3.63471800-3.59610100-4.40145400H-4.46621600-3.97492000-2.89255700C-1.44215500-7.26503500-3.5187400H-2.52600800-8.02334800-1.84033700H-0.25541900-6.26786300-5.01472400H-3.059497000.564128003.26283600H-3.534681001.861629004.36717500H-4.230751001.784394002.75361200H-3.55697004.176330002.61282600H-3.568507004.176330002.61282600H-3.568507004.176330002.61282600H4.150454000.837600003.28018400H3.192429004.411491002.98599100H4.633876003.637574002.31832500C2.168166007.172828003.25143200H4.633876003.637574002.31832500C2.168166007.172828003.25143200H4.633876003.637574002.31832500C2.168166007.172828003.25143200H4.632876003.839906004.86666000H4.73451300-8.07338900-4.18956500H0.261822	Н	3.79800900	-3.65760600	-2.10427400
H-4.13124000-1.22553000-3.91261900H-3.46944300-0.41335700-2.48765400H-4.79438800-1.56330000-2.31549400H-2.86340600-4.64596700-3.21295700H-3.63471800-3.59610100-4.40145400H-4.46621600-3.97492000-2.89255700C-1.44215500-7.26503500-3.53187400H-2.52600800-8.0234800-1.84033700H-0.25541900-6.26786300-5.01472400H-3.059497000.564128003.26283600H-3.534681001.861629004.36717500H-4.230751001.784394002.75361200H-3.568507004.176330002.61282600H-3.568507004.176330002.61282600H0.649607001.111856006.18632000H4.150454000.837600003.28018400H3.192429004.411491002.98599100H4.633876003.637574002.31832500C2.168166007.172828003.25143200H0.993330006.389906004.86666000H-1.73451300-8.07338900-4.18956500	Н	-0.19086000	-1.22385300	-6.23724400
H-3.46944300-0.41335700-2.48765400H-4.79438800-1.56330000-2.31549400H-2.86340600-4.64596700-3.21295700H-3.63471800-3.59610100-4.40145400H-4.46621600-3.97492000-2.89255700C-1.44215500-7.26503500-3.53187400H-2.52600800-8.02334800-1.84033700H-0.25541900-6.26786300-5.01472400H-3.059497000.564128003.26283600H-3.534681001.861629004.36717500H-4.230751001.784394002.75361200H-3.568507004.241006004.03742900H-3.568507004.176330002.61282600H-3.568507004.176330002.61282600H-3.568507004.176330002.61282600H4.631512001.229927001.63193300H3.192429004.411491002.98599100H4.633876003.202120003.92855700H4.633876003.202120003.92855700H4.633876003.637574002.31832500C2.168166007.722242001.44936900H0.99330006.389906004.86666000H-1.73451300-8.07338900-4.18956500H0.618228007.955440003.84851000	Н	-4.13124000	-1.22553000	-3.91261900
H-4.79438800-1.56330000-2.31549400H-2.86340600-4.64596700-3.21295700H-3.63471800-3.59610100-4.40145400H-4.46621600-3.97492000-2.89255700C-1.44215500-7.26503500-3.53187400H-2.52600800-8.02334800-1.84033700H-0.25541900-6.26786300-5.01472400H-3.059497000.564128003.26283600H-3.534681001.861629004.36717500H-4.230751001.784394002.75361200H-2.520905004.241006004.03742900H-3.568507004.176330002.61282600H0.649607001.111856006.18632000H3.213148000.210932001.91663200H3.192429004.411491002.98599100H4.631512001.229927001.63193300H3.192429004.411491002.98599100H4.633876003.637574002.31832500C2.168166007.172828003.25143200H0.99330006.389906004.86666000H0.99330006.389906004.8865000H0.618228007.955440003.84851000	Н	-3.46944300	-0.41335700	-2.48765400
H-2.86340600-4.64596700-3.21295700H-3.63471800-3.59610100-4.40145400H-4.46621600-3.97492000-2.89255700C-1.44215500-7.26503500-3.53187400H-2.52600800-8.02334800-1.84033700H-0.25541900-6.26786300-5.01472400H-3.059497000.564128003.26283600H-3.534681001.861629004.36717500H-4.230751001.784394002.75361200H-2.520905004.241006004.03742900H-3.568507004.176330002.61282600H-3.568507004.176330002.61282600H0.649607001.111856006.18632000H3.213148000.210932001.91663200H4.631512001.229927001.63193300H3.192429004.411491002.98599100H4.633876003.202120003.92855700H4.633876003.637574002.31832500C2.168166007.172828003.25143200H0.993330006.389906004.86666000H0.993330006.389906004.86666000H-1.73451300-8.07338900-4.18956500H2.618228007.955440003.84851000	Н	-4.79438800	-1.56330000	-2.31549400
H-3.63471800-3.59610100-4.40145400H-4.46621600-3.97492000-2.89255700C-1.44215500-7.26503500-3.53187400H-2.52600800-8.02334800-1.84033700H-0.25541900-6.26786300-5.01472400H-3.059497000.564128003.26283600H-3.534681001.861629004.36717500H-4.230751001.784394002.75361200H-2.520905004.241006004.03742900H-2.520905004.241006004.03742900H-3.568507004.176330002.61282600H0.649607001.111856006.18632000H3.213148000.210932001.91663200H3.192429004.411491002.98599100H4.633876003.202120003.92855700H4.6633876003.637574002.31832500C2.168166007.172828003.25143200H0.993330006.389906004.86666000H0.993330006.389906004.86666000H-1.73451300-8.07338900-4.18956500H0.618228007.955440003.84851000	Н	-2.86340600	-4.64596700	-3.21295700
H-4.46621600-3.97492000-2.89255700C-1.44215500-7.26503500-3.53187400H-2.52600800-8.02334800-1.84033700H-0.25541900-6.26786300-5.01472400H-3.059497000.564128003.26283600H-3.534681001.861629004.36717500H-4.230751001.784394002.75361200H-2.520905004.241006004.03742900H-1.878645004.646105002.43902700H-3.568507004.176330002.61282600H0.649607001.111856006.18632000H4.150454000.837600003.28018400H3.192429004.411491002.98599100H4.633876003.637574002.31832500C2.168166007.172828003.25143200H0.99330006.389906004.86666000H0.993330006.389906004.8865600H2.618228007.955440003.84851000	Н	-3.63471800	-3.59610100	-4.40145400
C-1.44215500-7.26503500-3.53187400H-2.52600800-8.02334800-1.84033700H-0.25541900-6.26786300-5.01472400H-3.059497000.564128003.26283600H-3.534681001.861629004.36717500H-4.230751001.784394002.75361200H-2.520905004.241006004.03742900H-2.520905004.241006004.03742900H-3.568507004.176330002.61282600H0.649607001.111856006.18632000H4.150454000.837600003.28018400H3.213148000.210932001.91663200H4.631512001.229927001.63193300H3.192429004.411491002.98599100H4.633876003.637574002.31832500C2.168166007.172828003.25143200H0.99330006.389906004.86666000H-1.73451300-8.07338900-4.18956500H2.618228007.955440003.84851000	Н	-4.46621600	-3.97492000	-2.89255700
H-2.52600800-8.02334800-1.84033700H-0.25541900-6.26786300-5.01472400H-3.059497000.564128003.26283600H-3.534681001.861629004.36717500H-4.230751001.784394002.75361200H-2.520905004.241006004.03742900H-1.878645004.646105002.43902700H-3.568507004.176330002.61282600H0.649607001.111856006.18632000H4.150454000.837600003.28018400H3.213148000.210932001.91663200H4.631512001.229927001.63193300H3.192429004.411491002.98599100H4.633876003.637574002.31832500C2.168166007.172828003.25143200H0.993330006.389906004.86666000H0.2163228007.955440003.84851000	C	-1.44215500	-7.26503500	-3.53187400
H-0.25541900-6.26786300-5.01472400H-3.059497000.564128003.26283600H-3.534681001.861629004.36717500H-4.230751001.784394002.75361200H-2.520905004.241006004.03742900H-1.878645004.646105002.43902700H-3.568507004.176330002.61282600H0.649607001.111856006.18632000H3.213148000.210932001.91663200H4.631512001.229927001.63193300H3.192429004.411491002.98599100H4.633876003.202120003.92855700H4.633876003.637574002.31832500C2.168166007.172828003.25143200H0.993330006.389906004.86666000H0.993330006.389906004.88566000H2.618228007.955440003.84851000	Н	-2.52600800	-8.02334800	-1.84033700
H-3.059497000.564128003.26283600H-3.534681001.861629004.36717500H-4.230751001.784394002.75361200H-2.520905004.241006004.03742900H-1.878645004.646105002.43902700H-3.568507004.176330002.61282600H0.649607001.111856006.18632000H3.213148000.210932001.91663200H4.631512001.229927001.63193300H3.192429004.411491002.98599100H4.662530003.202120003.92855700H4.633876003.637574002.31832500C2.168166007.172828003.25143200H0.99333006.389906004.86666000H0.173451300-8.07338900-4.18956500H2.618228007.955440003.84851000	Н	-0.25541900	-6.26786300	-5.01472400
H-3.534681001.861629004.36717500H-4.230751001.784394002.75361200H-2.520905004.241006004.03742900H-1.878645004.646105002.43902700H-3.568507004.176330002.61282600H0.649607001.111856006.18632000H3.213148000.210932001.91663200H4.631512001.229927001.63193300H3.192429004.411491002.98599100H4.633876003.202120003.92855700H4.633876003.637574002.31832500C2.168166007.172828003.25143200H0.99333006.389906004.86666000H-1.73451300-8.07338900-4.18956500H2.618228007.955440003.84851000	н	-3.05949700	0.56412800	3.26283600
H-4.230751001.784394002.75361200H-2.520905004.241006004.03742900H-1.878645004.646105002.43902700H-3.568507004.176330002.61282600H0.649607001.111856006.18632000H4.150454000.837600003.28018400H3.213148000.210932001.91663200H4.631512001.229927001.63193300H3.192429004.411491002.98599100H4.633876003.202120003.92855700H4.633876003.637574002.31832500C2.168166007.172828003.25143200H0.99333006.389906004.86666000H-1.73451300-8.07338900-4.18956500H2.618228007.955440003.84851000	н	-3.53468100	1.86162900	4.36/1/500
H-2.520905004.241006004.03742900H-1.878645004.646105002.43902700H-3.568507004.176330002.61282600H0.649607001.111856006.18632000H4.150454000.837600003.28018400H3.213148000.210932001.91663200H4.631512001.229927001.63193300H3.192429004.411491002.98599100H4.662530003.202120003.92855700H4.633876003.637574002.31832500C2.168166007.172828003.25143200H0.9933006.389906004.86666000H-1.73451300-8.07338900-4.18956500H2.618228007.955440003.84851000	н	-4.230/5100	1.78439400	2.75361200
H-1.878645004.646105002.43902700H-3.568507004.176330002.61282600H0.649607001.111856006.18632000H4.150454000.837600003.28018400H3.213148000.210932001.91663200H4.631512001.229927001.63193300H3.192429004.411491002.98599100H4.662530003.202120003.92855700H4.633876003.637574002.31832500C2.168166007.172828003.25143200H0.99333006.389906004.86666000H-1.73451300-8.07338900-4.18956500H2.618228007.955440003.84851000	н	-2.52090500	4.24100600	4.03/42900
H-3.568507004.176330002.61282600H0.649607001.111856006.18632000H4.150454000.837600003.28018400H3.213148000.210932001.91663200H4.631512001.229927001.63193300H3.192429004.411491002.98599100H4.662530003.202120003.92855700H4.633876003.637574002.31832500C2.168166007.172828003.25143200H3.199033007.722242001.44936900H0.993330006.389906004.86666000H-1.73451300-8.07338900-4.18956500H2.618228007.955440003.84851000	Н	-1.8/864500	4.64610500	2.43902700
H0.649607001.111856006.18632000H4.150454000.837600003.28018400H3.213148000.210932001.91663200H4.631512001.229927001.63193300H3.192429004.411491002.98599100H4.062530003.202120003.92855700H4.633876003.637574002.31832500C2.168166007.172828003.25143200H0.99333006.389906004.86666000H0.99333006.389906004.86666000H2.618228007.955440003.84851000	н	-3.56850700	4.1/633000	2.61282600
H4.150454000.837600003.28018400H3.213148000.210932001.91663200H4.631512001.229927001.63193300H3.192429004.411491002.98599100H4.062530003.202120003.92855700H4.633876003.637574002.31832500C2.168166007.172828003.25143200H3.199033007.722242001.44936900H0.993330006.389906004.86666000H-1.73451300-8.07338900-4.18956500H2.618228007.955440003.84851000	н	0.64960700	1.11185600	6.18632000 2.28018400
H3.213148000.210932001.91663200H4.631512001.229927001.63193300H3.192429004.411491002.98599100H4.062530003.202120003.92855700H4.633876003.637574002.31832500C2.168166007.172828003.25143200H3.199033007.722242001.44936900H0.993330006.389906004.86666000H-1.73451300-8.07338900-4.18956500H2.618228007.955440003.84851000	н	4.15045400	0.83/60000	3.28018400
H4.631512001.229927001.63193300H3.192429004.411491002.98599100H4.062530003.202120003.92855700H4.633876003.637574002.31832500C2.168166007.172828003.25143200H3.199033007.722242001.44936900H0.993330006.389906004.86666000H-1.73451300-8.07338900-4.18956500H2.618228007.955440003.84851000	н	3.21314800	0.21093200	1.91663200
H3.192429004.411491002.98599100H4.062530003.202120003.92855700H4.633876003.637574002.31832500C2.168166007.172828003.25143200H3.199033007.722242001.44936900H0.993330006.389906004.86666000H-1.73451300-8.07338900-4.18956500H2.618228007.955440003.84851000	н	4.63151200	1.22992700	1.63193300
H4.002530005.202120005.92835700H4.633876003.637574002.31832500C2.168166007.172828003.25143200H3.199033007.722242001.44936900H0.993330006.389906004.86666000H-1.73451300-8.07338900-4.18956500H2.618228007.955440003.84851000	н	3.19242900	4.41149100	2.98599100
H 4.63387600 3.63737400 2.31832300 C 2.16816600 7.17282800 3.25143200 H 3.19903300 7.72224200 1.44936900 H 0.99333000 6.38990600 4.866666000 H -1.73451300 -8.07338900 -4.18956500 H 2.61822800 7.95544000 3.84851000		4.00253000	3.20212000	2.92822/00 2.21022500
C2.100100007.172020005.25143200H3.199033007.722242001.44936900H0.993330006.389906004.86666000H-1.73451300-8.07338900-4.18956500H2.618228007.955440003.84851000		4.0320/000 2 16016600	3.03/3/400 AADOODOT 7	2 JE11JJDD
H0.99333006.389906004.86666000H-1.73451300-8.07338900-4.18956500H2.618228007.955440003.84851000	L L	2 10002200	1.1/202000 7.1/202000	2.22143200 1 11036000
H -1.73451300 -8.07338900 -4.18956500 H 2.61822800 7.95544000 3.84851000	n L	000000000000000000000000000000000000000	6 38000600	T.44320300
H 2.61822800 7.95544000 3.84851000	п	000000000 _1 73451300	0.0000000 _ 0.000000	4.00000000 -1 18056500
	н Ц	2 2127200 2 2127200	7 95511000	3 8/821000
		2.01022000	00044000	0401C040.

Table S65 M06-2X/Def2-TZVP B2GePb

E= -5327.036812

Atomic Number	X	Coordinates (Y	Angstroms) Z
Ge	0.76863400	-0.02684700	0.49007600
В	-0.17650500	-1.80589600	0.02497900
В	-0.11414400	1.80277500	0.10193400
Pb	-1.89166900	0.00341800	0.08697200
Р	-0.00170300	-3.19800000	1.38350300
Ν	-0.33028300	-2.75548800	-1.17779600
Р	-0.17037800	3.11074300	-1.35034000
Ν	0.17553200	2.84803100	1.22025900
C	-1.35440800	-3.28611100	2.67166700
C	1.68320500	-3.51301600	2.14041200
Ν	-0.26337500	-4.49321100	0.35990100
C	-0.33835900	-2.28044700	-2.53018600
С	-0.40614300	-4.08324400	-0.87705200
С	1.06604100	2.81511300	-2.70416700
C	-1.83225800	3.65906400	-2.01129100
Ν	0.35317600	4.42317400	-0.46953100
С	0.32056400	2.44278500	2.58790000
С	0.46283600	4.10642800	0.80063200
С	-2.67275000	-3.44431300	1.90235100
С	-1.40175700	-2.01016600	3.51638900
С	-1.19788700	-4.50617000	3.58242800
С	1.94976300	-2.60591100	3.34379400
С	1.84990000	-4.99015000	2.52297900
C	2.71243300	-3.21443400	1.04311100
С	0.90289500	-2.00753800	-3.13579600
C	-1.54206400	-2.13804200	-3.23501600
C	-0.74155700	-5.13851300	-1.88662100
С	2.43634000	2.74763100	-2.01550600
С	0.77567800	1.47752300	-3.38441100
С	1.09546000	3.94418900	-3.73465100
С	-2.37736700	2.69364300	-3.06432100
С	-1.76008300	5.08395600	-2.57529300
C	-2.77841200	3.69842100	-0.80286600
C	-0.84744200	2.25035200	3.34550500
C	1.59181300	2.22517200	3.13551900
C	0.97252100	5.18598500	1.70394800
Н	-2.84829200	-2.61802700	1.21357500
Н	-3.49327600	-3.46656100	2.62355700
Н	-2.68503000	-4.37471300	1.33344100
Н	-0.54855700	-1.92386500	4.18724800
Н	-2.30850000	-2.02810300	4.12775800
Н	-1.41758300	-1.11111600	2.90010600
Н	-2.11367500	-4.61806900	4.16883600
Н	-0.37469100	-4.38579500	4.28484900
Н	-1.04853000	-5.42155300	3.00740000

Н	1,73577300	-1.55724600	3,12143700
н	1,36625600	-2.90670900	4,21418700
н	3 00667500	-2 68584200	3 61325100
н	1 58744400	-5 64271700	1 69015700
н	1 25916200	-5 27629900	3 38816900
Ц	2 90058200	-5 15701/00	2 77/13600
Ц	2,30030200	-2 15601600	0 78567700
н Ц	2.75441100	2 70724000	0.70507700
n u	2.30091900	- 5. 7 57 24000	1 11055000
	2 200000	-3.30002300	1.41033000
	2.20000900	-2.21055500	-2.30/11400
	0.91346400	-1.02022300	-4.40931100
	-2.90503600	-2.45//8500	-2.64392800
	-1.4/540/00	-1./298/500	-4.56/90500
C	-1.55505100	-6.1//62200	-1.42626000
C	-0.31972700	-5.16583500	-3.21/13200
Н	3.19364200	2.53144600	-2.77360600
Н	2.46834100	1.95912500	-1.26177900
Н	2.68328300	3.69682400	-1.53737600
Н	-0.14282700	1.49040300	-3.96988000
Н	1.59613700	1.24115200	-4.06780300
Н	0.70207100	0.66735600	-2.65697400
Н	1.97125400	3.80584800	-4.37413500
Н	1.17274100	4.92345800	-3.25925100
Н	0.21684300	3.92751700	-4.37851300
Н	-2.31425200	1.65198100	-2.74059000
Н	-1.84608500	2.78943300	-4.01147600
Н	-3.43022900	2.92374400	-3.24881600
Н	-1.31974400	5.76787100	-1.85010400
Н	-1.19421900	5.14603200	-3.50036700
Н	-2.77941400	5.41577600	-2.79008300
Н	-2.99923500	2.70135800	-0.42555500
Н	-2.36016900	4.29812900	0.00905700
Н	-3.71884500	4.16033700	-1.11293300
С	-2.22054300	2.54524200	2.76773200
С	-0.71867100	1.83823800	4.66617800
С	2.88517500	2.42737800	2.36418200
С	1.66870700	1.82419300	4.46862700
С	1.86468100	6.09392500	1.12717100
С	0.62864500	5.35370200	3.04625200
С	3.26951100	-1.16123000	-2.71634700
С	2.77064100	-3.61699100	-2.61902600
Н	1,98833200	-2.10996400	-1.32818900
С	-0.26408100	-1.48183200	-5.18567800
H	1.86111200	-1.42171200	-4.95779700
C	-3.87752200	-1.28248900	-2.79313100
C	-3,53665200	-3.68939400	-3.30652100
H	-2.77309200	-2.66414400	-1.57851700
н	-2.39310400	-1.62472600	-5,13382700
C	-1.96983600	-7.19022800	-2.27493300
- H	-1,86015200	-6.17074400	-0.38946900
 C	-0.71925600	-6.19429000	-4.05936100
- H	0.31758600	-4.39436900	-3,61881900
 C	-3 31045000	1.61642800	3,30141300
-	2.21042000	1.010+2000	2.20141200

С	-2.62861600	4.00607800	2.98562800
Н	-2.15666500	2.39597800	1.69181000
С	0.53149600	1.62860000	5.22945200
Н	-1.60499100	1.68417800	5.26815500
С	3.75119600	1.16210800	2.36005300
С	3.71198100	3.58114300	2.94780300
Н	2.63115700	2.66371600	1.32767900
Н	2.64235900	1.65939800	4.91414000
С	2.42176200	7.11851600	1.87329500
Н	2.11527700	5.97485500	0.08249300
С	1.17126000	6.39555900	3.78549100
Н	-0.05395900	4.67834700	3.53622600
Н	2.88823300	-0.15107600	-2.56606000
Н	3.63205200	-1.24783500	-3.74295100
Н	4.12860000	-1.29695700	-2.05643900
Н	2.92501900	-3.80242900	-3.68539600
Н	2.10583200	-4.39134800	-2.23272900
Н	3.73329200	-3.72232500	-2.11430800
Н	-0.23607800	-1.17921500	-6.22489400
Н	-4.15179800	-1.13722100	-3.84010900
Н	-3.45772000	-0.34833100	-2.42325800
Н	-4.79413000	-1.48341700	-2.23609500
Н	-2.92245100	-4.58157300	-3.20867900
Н	-3.69426100	-3.50309000	-4.37141800
Н	-4.51051500	-3.89178600	-2.85665800
С	-1.55445000	-7.20117000	-3.59941100
Н	-2.61657100	-7.97301100	-1.90024400
Н	-0.37839700	-6.19758400	-5.08640900
Н	-3.00857200	0.56855400	3.24888600
Н	-3.56251000	1.84301200	4.33952600
Н	-4.22069800	1.73989500	2.71196500
Н	-2.61899900	4.25763200	4.04948900
Н	-1.96156300	4.69456100	2.46559500
Н	-3.63922200	4.1/150500	2.60628/00
н	0.61540900	1.31322500	6.26184400
н	4.11416/00	0.93/36500	3.36565800
Н	3.19774000	0.29882000	1.99342400
н	4.62369600	1.31282300	1.72120900
Н	3.15644900	4.51585300	2.99448900
Н	4.03948400	3.33323900	3.96024000
Н	4.60522900	3.74211700	2.34114900
	2.0/631000	7.2/390/00	3.20905400
н	3.12506300	/./9828600	1.40996400
п	0.00/99600	7 00100000	4.82300400
		-/.77707700	-4.20031100
п 	2.00/000	0.0720200	0./90000

Table S66 M06-2X/Def2-TZVP B2SnPb

E= -3464.25345

Atomic Number	x	Coordinates (Y	Angstroms) Z
Sn	1.19628500	-0.08105300	0.63314900
В	-0.08406900	-1.91906500	0.03784900
В	0.04007300	1.85037100	0.14322200
Pb	-1.63030100	-0.01195600	-0.02318900
Р	-0.00024700	-3.33861300	1.37250600
Ν	-0.34818900	-2.83319400	-1.17412700
Р	-0.09538900	3.11761300	-1.33620700
Ν	0.28458300	2.92019300	1.23914800
C	-1.30427700	-3.29867300	2.71404400
C	1.66392300	-3.87479000	2.06349200
Ν	-0.41962500	-4.58435100	0.34185700
С	-0.35696900	-2.32971000	-2.51793600
C	-0.52248900	-4.15468100	-0.89214500
С	1.13094500	2.84610800	-2.71027200
С	-1.77959900	3.60771200	-2.00561200
Ν	0.38088000	4.46566400	-0.48359300
С	0.40632900	2.56303900	2.62433400
С	0.49147800	4.18721100	0.79553300
C	-2.66347100	-3.28621600	2.00305500
С	-1.16547900	-2.04303700	3.57717800
С	-1.25337400	-4.54889700	3.59567600
C	2.08908500	-3.05888900	3.28589500
С	1.66266200	-5.37363800	2.39598400
С	2.68248600	-3.66854400	0.93501700
С	0.88492400	-2.06827100	-3.12993900
С	-1.56405800	-2.14052800	-3.21016500
С	-0.89024300	-5.17994500	-1.91749000
С	2.51902900	2.85173500	-2.05648500
С	0.87996100	1.48693100	-3.36425200
C	1.09303000	3.95788700	-3.75987200
С	-2.29827100	2.63411900	-3.06513500
C	-1.75307800	5.03718500	-2.56324700
C	-2.73104800	3.61534700	-0.80093300
C	-0.77649200	2.31624200	3.34465600
C	1.66581900	2.46032600	3.23384300
C	0.89830700	5.32232200	1.67933800
Н	-2.78146600	-2.41449600	1.35992700
Н	-3.44980900	-3.25934200	2.76127200
Н	-2.79700200	-4.18195100	1.39448700
Н	-0.27554300	-2.06505600	4.20452500
Н	-2.03682800	-1.96938600	4.23419800
Н	-1.11383000	-1.13695000	2.97201100
Н	-2.14834000	-4.56426700	4.22327200
Н	-0.39101200	-4.54495500	4.26040900
Н	-1.24175400	-5.46219100	2.99822800

	2 02250100	1 00070000	2 10621000
Н	2.02350100	-1.983/3900	3.10631800
Н	1.49285600	-3.30514000	4.16445400
Н	3.13027500	-3.29894800	3.51894400
Н	1.30019900	-5.96297600	1.55418300
Н	1.06771900	-5.61570500	3.27164600
Н	2.69317300	-5.67050000	2.60836200
Н	2.83199000	-2.61322400	0.71118100
Н	2.37257000	-4.18619400	0.02381200
Н	3.63937800	-4.09051800	1.25161500
C	2.20081200	-2.33374000	-2.41805400
С	0.89415500	-1.63158000	-4.44815500
С	-2.93446500	-2.45761100	-2.63103800
С	-1.49742700	-1.68529800	-4.52783400
С	-1.74509500	-6.19687000	-1.48435100
С	-0.44159300	-5.20652300	-3.23878100
Н	3.26661700	2.66195900	-2.83102300
Н	2.60878000	2.07849600	-1.29289700
Н	2.73137800	3.81791000	-1.59549800
Н	-0.03288600	1.46564400	-3.95839300
Н	1.71312800	1.25143500	-4.03263200
Н	0.81554200	0.68812300	-2.62299100
Н	1.95481800	3.83750400	-4.42155200
Н	1.15237100	4.94660400	-3.30164400
Н	0.19829900	3.90373200	-4.37862600
Н	-2.21381500	1.59226200	-2.74896700
Н	-1.77014200	2.74797900	-4.01185000
Н	-3.35600500	2.84161600	-3.24970600
Н	-1.34390600	5,73344200	-1.83194200
Н	-1.18274900	5.12468500	-3.48337200
Н	-2.78221200	5.33205400	-2.78496700
Н	-2.92529900	2.61105600	-0.42828100
Н	-2.33418800	4.22527700	0.01429500
н	-3,68344900	4.05075400	-1.11285600
C	-2,14602800	2,50146900	2.71518600
C	-0 67627400	1 96473900	4 68481400
C C	2 98036000	2 72981500	2 51895200
C C	1 71082500	2 11289900	1 583/9700
C	1 74682700	6 27222300	1 10425600
C	0 19136100	5 50720000	3 001/6600
C C	3 23829000	-1 23328300	-2 6/005000
C C	2 78394000	-3 69581800	-2 80958500
L L	1 00253500	-2.36003000	-2.0000000
п С	-0.28707100	-2.30003000	-1.33277400
L L	1 94094200	1 443797000	1 02002000
п С	2 90456900	1 26720200	2 7/097/00
	-3.63430800	-1.20/29300	2.74007400
	-3.30000700	-3.05110200	1 57210100
н Ц	-2.0000//00	- 2. 7 0411900 1 EA1A1ADD	E 00105E00
н С	-2.41033200	-1.J4141400 7 10020000	0 051001000 C-
	-2.10320/00	-/.10070400	-2.33140300
	-2.0/308900	-0.100/2400	4 0022200
	-0.049/2000	-0.2100000	-4.098/3300
п	0.22125/00	-4.44621500	-3.013/0300
L	-3.12/08/00	1.44503000	3.10045000

С	-2.70386000	3.90395500	2.97867900
Н	-2.02405800	2.40534100	1.63948700
С	0.55935100	1.86402400	5.30560500
Н	-1.57635500	1.77671400	5.25639300
С	3.95845900	1.55572500	2.65484900
С	3.67526600	3.98387000	3.06775400
Н	2.76658000	2.87666100	1.45660600
Н	2.67310700	2.03498900	5.07431000
С	2.20501400	7.35452100	1.83590300
Н	2.04488700	6.13830900	0.07387400
С	0.93370400	6.60590400	3.72485700
Н	-0.16148600	4.80051400	3.48867200
Н	2.84523700	-0.25285700	-2.36644200
Н	3.57771600	-1.18939200	-3.67720300
Н	4.11445600	-1.42885900	-2.01875100
Н	2.92974900	-3.76300800	-3.89102800
Н	2.13594600	-4.51803200	-2.50151900
Н	3.75333200	-3.83807600	-2.32716300
Н	-0.26154700	-1.09699700	-6.17471800
Н	-4.15895000	-1.07851100	-3.78315100
Н	-3.47301200	-0.35375800	-2.32706900
Н	-4.81844000	-1.48672200	-2.20295200
Н	-2.98601800	-4.55531500	-3.29607100
Н	-3.75278100	-3.41124400	-4.39612900
Н	-4.55919200	-3.86124100	-2.89358200
С	-1.72281800	-7.20292500	-3.66592900
Н	-2.84758200	-7.95561000	-1.99893000
Н	-0.48580100	-6.22154300	-5.11784900
Н	-2.75269600	0.43510900	3.06670100
Н	-3.46324000	1.58716300	4.19927400
Н	-4.05732500	1.51293400	2.54564500
Н	-2.76029100	4.10557700	4.05160300
Н	-2.08698800	4.67672900	2.51790100
Н	-3.71008000	3.98989500	2.56279500
Н	0.62145000	1.59380500	6.35208000
Н	4.32341400	1.47598500	3.68118000
Н	3.50069000	0.60750800	2.38023600
Н	4.82504100	1.72210300	2.01208700
Н	3.05535400	4.87477500	3.01203200
Н	3.94784200	3.82887600	4.11421400
Н	4.59540900	4.16959400	2.51029100
C	1.79980600	7.52588300	3.15290100
Н	2.87875300	8.06616400	1.37622900
Н	0.60403000	6.73240700	4.74785800
Н	-2.04957800	-7.97882000	-4.34613000
Н	2.15485100	8.37118400	3.72807000