A Bioinspired Model for Copper Monooxygenase: A Direct Aromatic Hydroxylation Using O₂

Ramamoorthy Ramasubramanian,^{a,b} Karunanithi Anandababu,^{a,b} Mukesh Kumar^c and Ramasamy Mayilmurugan^{*a,d}

^aDepartment of Chemistry, Indian Institute of Technology Bhilai, Bhilai, Durg 491002, Chattisgarh India. E-mail: <u>murugan@iitbhilai.ac.in</u>

^bDepartment of Chemistry, National Sun Yat-sen University, Kaohsiung, 80424, Taiwan. ^c Radiation Biology and Health Sciences Division, Bhabha Atomic Research Centre, Mumbai, Maharashtra 400 085, India.

^dDepartment of Bioscience and Biomedical Engineering, Indian Institute of Technology Bhilai, Bhilai, Durg 491002, Chattisgarh India.

Figure S1. ¹H-NMR of 1,1,2-tri(pyridin-2-yl)propan-1-ol (L1) in CDCl₃.

Figure S2. ¹³C-NMR of 1,1,2-tri(pyridin-2-yl)propan-1-ol (L1) in CDCl₃.

Figure S3. ESI- MS of L in CH₃OH. (290.14 corresponds to M-1 peak of ligand)

Figure S4. HRESI- MS of [Cu^I(L)(CH₃CN)]CF₃SO₃ (1) in CH₃CN.

Figure S6. HRESI- MS of [(Cu^{II}L)(Cu^{II}L H)(SO₃CF₃)₂]·CF₃SO₃ (**2**) in CH₃CN.

Figure S7. ESI- MS of $[(LCu^{II})_2(SO_3CF_3)_2]$ 3 in CH₃CN.

Figure S8. Electronic spectra of **1** (6×10^{-3} M) (blue), **2** (red), and **3** (black) (1×10^{-3} M) in acetonitrile at 25 °C.

Figure S9. EPR spectra for 2 and 3 in DMF/CH₃CN mixture at 70 K.

Figure S10. Cyclic voltammogram of **3** $(1 \times 10^{-3} \text{ M})$ in acetonitrile at 25 °C under N₂. Supporting electrolyte: 0.5 M TBAP; Reference: Ag/Ag⁺; working electrode: Pt-sphere; Counter electrode: Pt wire.

Figure S11. GC-MS chromatogram of the phenol in the presence of nitrobenzene as an internal standard.

Figure S12. Isotopic studies for the benzene hydroxylation of **1** using $H_2^{18}O_2$ (a); benzene hydroxylation in presences of $H_2^{18}O/H_2O_2$ (b); representative figure of KIE studies with C_6H_6/C_6D_6 (1:1) in H_2O_2 at 60 °C (c).

Figure S13. Electronic spectral changes for the reaction of **1** (7×10^{-3} M) with 2 equivalents Et₃N and O₂ purged at -20 °C in acetonitrile.

Figure S14. Electronic spectral changes for the reaction of complex 1 (5 \times 10⁻³ M) with 2 equivalent Et₃N and 10 equivalent of H₂O₂ (30%) at 25 °C in dry acetonitrile.

Figure S15. Plot of time vs. absorbance (370 nm) for the reaction of complex 1 with 2 equivalent Et₃N and 10 equivalent of H_2O_2 (30%) at 25 °C in dry acetonitrile

Figure S16. ¹H-NMR of **1** with H₂O₂; broadness and shift in NMR due to Cu-peroxo species (CD₃CN).

Figure S17. ESI-MS of complex 1 with 2 equivalents of Et_3N and 10 equivalent of $H_2^{16}O_2$.

Figure S18. ESI-MS of complex 1 with 2 equivalents of Et_3N and 10 equivalent of $H_2^{18}O_2$.

Figure S19. (a) Calculated electronic spectra of $[(L)Cu^{II}-OOH]^+$ by using TDDFT; (b) the molecular orbitals showing the transition involved in the electronic spectra of $[(L)Cu^{II}-OOH]^+$ for a peak at 429 nm by time-dependent DFT of $[(L)Cu^{II}-OOH]^+$ showed 429 nm which was responsible for five molecular orbital transitions such as HOMO+1 \rightarrow HOMO, HOMO+2 \rightarrow HOMO, HOMO+3 \rightarrow HOMO and HOMO+5 \rightarrow HOMO.

Figure S20. Electronic spectral changes for the reaction of $\mathbf{1}$ (5 × 10⁻³ M) in N₂ (black); spectral trace of $\mathbf{1}$ with 2 equivalents Et₃N and saturated O₂ (red) and spectral trace of $\mathbf{1}$ with 2 equivalents Et₃N and 10 equivalent of H₂O₂ (blue) at -20 °C in acetonitrile.

Figure S21. Molecular structures of **2** (left), and **3** (right). (Pov-ray figures drawn from 50% probability factor of thermal ellipsoids). For clarity, the hydrogen atoms and other counter ions are omitted.

Scheme S1. Benzene and toluene hydroxylation using Copper(I) complex 1.

Scheme S2. Anisole hydroxylation using Copper(I) complex 1.

	2	3
Formula	$C_{39}H_{33}Cu_2F_9N_6O_{11}S_3$	$C_{38}H_{34}Cu_2F_6N_6O_8S_2$
Fw	1156.00	1007.94
Cryst system	Orthorhombic	Orthorhombic
Space group	Pca2 ₁	C222 ₁
Temperature	293(2) K	293(2)
a/Å	27.7616(6)	16.3112(4)
b/Å	10.1552(2)	17.5527(5)
c/A^0	16.5696(3)	14.4401(3)
$\alpha/0$	90	90
β^{0}	90	90
$\gamma^{\prime 0}$	90	90
Volume/Å ³	4671.38(16)	4134.28(18)
Z	4	4
$\rho_{calc} (mg/mm^3)$	1.644	1.619
μ/mm^{-1}	3.275	2.978
F(000)	2333.2	2042.3
Reflection collected	12880	5526
Goodness-of-fit on F ²	1.087	1.148
R1 ^a	0.0751	0.0826
wR2 ^b	0.1902	0.2584

 Table S1. Crystal Data and Structure Refinement for complexes 2 and 3

 $\frac{^{a}R1=\Sigma | Fo| - Fc| /\Sigma Fo|, ^{b}WR_{2}=\Sigma w[(Fo-Fc)_{2}/\Sigma w[(Fo^{2})^{2}]^{1/2} }{^{1/2}}$

Γ		g	g_\perp	\mathbf{A}_{\parallel}	α^2	β^2	γ^2	K∥	K_{\perp}	K	f
				(10 ⁻⁴ cm ⁻¹)							(cm ⁻¹)
	2	2.260±0.001	2.060±0.004	180.26±0.03	0.833	1.080	1.256	0.757	0.651	0.323	165
Ī	3	2.371±0.002	2.055±0.006	143.76±0.06	0.818	0.928	1.124	0.898	0.741	0.363	125

Table S2. EPR parameters of complex 2 and complex 3

 $\begin{array}{l} A_{\parallel} \text{ in } 10^{-4} \text{ cm}^{-1}.f \text{ in } \text{ cm}^{-1}\alpha^{2} = A_{\parallel}/0.036 + (g_{\parallel} - 2.0023) + 3/7 (g_{\perp} - 2.0023) + 0.04. \quad K_{\parallel} = \alpha^{2}\beta^{2} \text{ and } K_{\perp} = \alpha^{2}\gamma^{2}, \quad K_{\parallel}/2 = (g_{\parallel} - 2.0023) \Delta E (d_{xy} - d_{x}^{2} - y^{2}) / 8\lambda_{0}), \quad K_{\perp}^{2} = (g_{\perp} - 2.0023) \Delta E (d_{xz,yz} - d_{x}^{2} - y^{2}) / 2\lambda_{0}), \quad K = A_{\text{iso}}/P\beta^{2} + (g_{av} - 2.0023)/\beta^{2}. \end{array}$

Table S3. Calculated bond distance and bond angle for $[Cu^{II}L(OOH)]^+$ by TDDFT calculation

[(LCu ^{II} OOH] ⁺							
Cu(1)-N(1)	2.031(6)	N(1)-Cu(1)-N(2)	90.3				
Cu(1)-N(2)	2.062(8)	N(1)-Cu(1)-O(1)	73.6				
Cu(1)-O(1)	2.286(5)	N(1)-Cu(1)-O(2)	135.4				
Cu(1)-O(2)	1.833(4)	N(2)-Cu(1)-O(1)	74.9				
O(2)-O(3)	1.380(1)	N(2)-Cu(1)-O(2)	133.1				
		O(1)-Cu(1)-O(2)	121.0				