Supporting Information

A new red phosphor for high time-resolved thermal sensitivity and

plant growth

Yu-Xi Bi, ^a Dan Zhao, ^{a, b*} Rui-Juan Zhang, ^a Qing-Xia Yao, ^{c,*}

^a College of Chemistry and Chemical Engineering, Henan Polytechnic University, Jiaozuo, Henan 454000, China

^b State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, PR China

^c School of Chemistry and Chemical Engineering, Shandong Provincial Key Laboratory/Collaborative Innovation Center of Chemical Energy Storage and Novel Cell Technology, Liaocheng University, Liaocheng, Shandong 252000, China

Corresponding authors' E-mails: iamzd1996@163.com (D. Zhao); yaoqxlcu@126.com (Q. X. Yao)

Experimental Section

Table S1 shows the amount of raw material added without doping concentration. The change of Mn valence state is due to oxidation by oxygen in the air, and the specific reaction equation is shown as follows:

 $2\operatorname{SrCO}_3 + (1-x)\operatorname{TiO}_2 + x\operatorname{MnCO}_3 + x/2\operatorname{O}_2 \rightarrow \operatorname{Sr}_2\operatorname{Ti}_{1-x}\operatorname{Mn}_x\operatorname{O}_4 + (2+x)\operatorname{CO}_2$

Critical distance (R_c) calculations

Generally, the non-radiative energy transfer among activators triggers concentration quenching, which is determined by the distance among the dopant Mn^{4+} . The critical distance (R_c) at which the possibility of non-radiative energy transfer and radiative emission is equal, could be estimated by R_c can be calculated by the following equation:

$$R_c \approx 2\left[\frac{3V}{4\pi x_c N}\right]^{1/3}$$
(1)

where V stands for the cell volume, x_c is the critical concentration of Mn⁴⁺ and N refers to the number of available sites occupied by Mn⁴⁺, respectively. For Sr₂TiO₄:0.009Mn⁴⁺ phosphor, V = 189.88 Å³, $x_c = 0.009$ and N = 1, so the R_c is

calculated to be 34.3 Å. This value is far beyond 5 A, implying that exchange interaction mechanism is impossible for the energy transfer among Mn^{4+} in present system while it is only working for the sample with significant overlap between the excitation and emission spectra. In consequence, the multipolar interaction energy transfer will dominate the concentration quenching mechanism in Mn^{4+} doped Sr_2TiO_4 and the type of interaction The following equation which is based on the Dexter theory, can reflect the type of interaction between Mn^{4+} ions:

$$\log\left(\frac{l}{x}\right) = A - \frac{\theta}{3}\log\left(x\right)$$
(2)

where *I* and *x* mean the emission intensity and concentration of Mn⁴⁺ dopant, and $\theta = 6, 8, 10$ refer to d–d, d–q, and q–q interactions, respectively. The specific value of θ is usually obtained by the slope of the dependence of log(*I*/*x*) versus log (*x*), *slope* $\approx -\theta/3$ (Fig. S2). So, the value of θ is 2.582, the type of interaction between Mn⁴⁺ ions can indicate the concentration quenching mechanism is d–d interaction in Sr₂TiO₄:*x*Mn⁴⁺ phosphor.

Figure S1. (a-d) Rietveld refinement of the powder XRD profiles of $Sr_2TiO_4:xMn^{4+}$ (x = 0.003, 0.006, 0.012, 0.015).

Figure S2. Diffuse reflectance spectra of Sr₂TiO₄ and Sr₂TiO₄:0.009Mn⁴⁺.

Figure S3. Raman spectra of Sr_2TiO_4 and Sr_2TiO_4 :0.009Mn⁴⁺. Table S1. The phosphor $Sr_2Ti_{1-x}O_4$: xMn^{4+} (x = 0.003, 0.006, 0.009, 0.012, 0.015)

Samples	<i>x</i> = 0.003	<i>x</i> = 0.006	x = 0.009	<i>x</i> = 0.012	<i>x</i> = 0.015
SrCO ₃	2	2	2	2	2
TiO ₂	0.5394	0.5378	0.5361	0.5345	0.5329
MnCO ₃	0.0023	0.0047	0.0070	0.0093	0.0117

detailed quantities (g) of raw materials.

Table S2. Crystallographic parameters for $Sr_2Ti_{1-x}O_4:xMn^{4+}$ (x = 0.003, 0.006, 0.009,

Samples	<i>x</i> = 0.003	<i>x</i> = 0.006	<i>x</i> = 0.009	<i>x</i> = 0.012	<i>x</i> = 0.015		
Crystal System			tetragonal				
Space Group	14/ <i>mmm</i>						
<i>a</i> (Å)	3.8839	3.8834	3.8839	3.8839	3.8835		
<i>b</i> (Å)	3.8839	3.8834	3.8839	3.8839	3.8835		
<i>c</i> (Å)	12.5876	12.5876	12.5889	12.5894	12.5876		
β (Å)	90	90	90	90	90		
γ (Å)	90	90	90	90	90		
$V(Å^3)$	189.835	189.847	189.882	189.907	189.913		
$R_{ m wp}$ (%)	9.95	9.83	9.77	8.90	9.72		
$R_{\rm p}$ (%)	6.73	6.42	6.36	6.03	6.04		

0.012, 0.015) from Rietveld Refinements.

Figure S4. Functional relationship between log(I/x) and log(x) for the

 $Sr_2TiO_4:0.009Mn^{4+}$ phosphors.