The effect of ring substituent position on the structural and optoelectronic properties of novel

quasi low-dimensional hybrid 2-, 3-, and 4-(bromomethyl)pyridinium lead bromides

D.A. Chaplygina^{1,a}, O.V. Patrusheva^{1,b}, C. Chen^{2,c}, A.V. Shtareva^{3,d}, C.C. Stoumpos^{4,5,e}, R. Kevorkyants^{5,f}, A.V. Emeline^{5,g}, D.S. Shtarev^{6,1,h,*}

- ¹ Institute of High Technologies and Advanced Materials of the Far Eastern Federal University, Russian Federation.
- ² Department of Chemistry, Southern University of Science and Technology, PRC.
- ³ Institute of Tectonics and Geophysics, Far Eastern Branch, Russian Academy of Sciences, Russian Federation.
- ⁴ The Department of Materials Science and Technology, University of Crete, Greece.
- ⁵ The Laboratory 'Photonics of crystals', Saint-Petersburg State University, Russian Federation.
- ⁶ Shenzhen MSU-BIT University, PRC.

^a chaplygina.dal@dvfu.ru, ^b patrusheva.ov@dvfu.ru, ^c 12331059@mail.sustech.edu.cn,

^d shtareva_anna@mail.ru, ^e cstoumpos@materials.uoc.gr, ^f r.kevorkyants@spbu.ru,

- ^g alexei.emeline@spbu.ru, ^h shtarev@mail.ru
- * Corresponding author (ORCID: 0000-0002-1274-0183)

Supplementary material

Figure S1. Organic cation orientations in 2- (a), 3- (b), and 4-(Bromomethyl)pyridinim (c) lead bromides.

Figure S2. Mutual orientation of organic cations in 2-(Bromomethyl)pyridinim lead bromide.

Figure S3. Mutual orientation of organic cations in 3-(Bromomethyl)pyridinim lead bromide.

Figure S4. Mutual orientation of organic cations in 4-(Bromomethyl)pyridinim lead bromide.

Table S1	rvstal data and structure refinement for (2-BrCH_PvH)Ph_Br_ at 173 K
	2 ystar data and structure refinement for (2-DiCH21 yH) 0_2 Dis at 175 K.

Empirical formula	C6 H7 Br6 N Pb2
Formula weight	986.9
Temperature	173 K
Wavelength	0.71073 Å
Crystal system	orthorhombic
Space group	P b c a
Unit cell dimensions	a = 17.1340(5) Å, $\alpha = 90^{\circ}$ b = 8.4626(3) Å, $\beta = 90^{\circ}$ c = 21.4906(6) Å, $\gamma = 90^{\circ}$

	Volume	3116.10(17) Å ³
	Z	8
	Density (calculated)	4.2074 g/cm ³
	Absorption coefficient	36.942 mm ⁻¹
	F(000)	3392
	Crystal size	0.102 x 0.101 x 0.085 mm ³
	θ range for data collection	1.9 to 33.73°
	Index ranges	-25<=h<=26, -13<=k<=12, - 28<=l<=31
	Reflections collected	41900
	Independent reflections	2806 [$R_{int} = 0.2267$]
	Completeness to $\theta = 31.54^{\circ}$	98%
	Refinement method	F
	Data / restraints / parameters	2806 / 0 / 137
	Goodness-of-fit	2.36
	Final R indices $[I \ge 2\sigma(I)]$	$R_{obs} = 0.0611, wR_{obs} = 0.0804$
	R indices [all data]	$R_{all} = 0.0684, wR_{all} = 0.0809$
	Extinction coefficient	7200(300)
	Largest diff. peak and hole	4.21 and -4.63 e·Å ⁻³
$\mathbf{R} = \boldsymbol{\Sigma} \mathbf{F}_{\mathbf{o}} - \mathbf{F}_{\mathbf{c}} ^{-1}$	$\sum F_{o} , wR = \{ \sum [w(F_{o} ^{2} - F_{c} ^{2})^{2}] / \sum (F_{o} ^{2} - F_{c} ^{2})^{2} \} $	$\Sigma[w(F_0 ^4)]$ ^{1/2} and w=1/($\sigma^2(F)$ +0.0001F ²)

Label	х	У	Z	Occupancy	${\rm U_{eq}}^*$
Pb(1)	2072(1)	6012(2)	2577(1)	1	27(1)
Pb(2)	4629(1)	4424(2)	2465(1)	1	27(1)
Br(1)	3547(2)	3121(3)	-45(1)	1	37(1)
Br(2)	1244(1)	2707(3)	2564(1)	1	26(1)
Br(3)	578(2)	6192(3)	1639(1)	1	25(1)
Br(4)	2989(2)	4294(3)	3494(1)	1	27(1)
Br(5)	2963(2)	4302(3)	1680(1)	1	25(1)
Br(6)	5447(2)	6125(3)	1555(1)	1	29(1)
C(1)	2799(12)	1660(30)	307(10)	1	37(8)
C(2)	1984(12)	2140(20)	156(8)	1	23(6)
C(3)	1450(12)	2630(30)	600(9)	1	28(7)
N(1)	1770(10)	2150(20)	-447(7)	1	29(6)
C(4)	1076(11)	2570(30)	-652(10)	1	29(7)
C(5)	526(12)	3060(30)	-224(9)	1	42(9)
C(6)	715(12)	3090(30)	398(9)	1	30(7)
H(1)	2896.06	619.21	148.21	1	44.9
H(2)	2863.72	1624.14	750.21	1	44.9
H(3)	1585.27	2656.59	1033.13	1	33.5
H(4)	2114.51	1858.75	-720.83	1	34.2
H(5)	956.82	2547.29	-1088.41	1	34.9
H(6)	13.63	3365.03	-358.31	1	50.7
H(7)	334.67	3436.84	695.58	1	36.2

Table S2. Atomic coordinates $(x10^4)$ and equivalent isotropic displacement parameters $(Å^2x10^3)$

for (2-BrCH₂PyH)Pb₂Br₅ at 173 K with estimated standard deviations in parentheses.

 U_{eq} is defined as one third of the trace of the orthogonalized U_{ij} tensor.

Table S3.	Anisotropic displacement paramet	ters ($Å^2x10^3$) for (2-BrCH ₂ PyH)Pb ₂ I	Br_5 at 173 K with

Labe	U ₁₁	U ₂₂	U ₃₃	U ₁₂	U ₁₃	U ₂₃
Pb(1)	27(1)	27(1)	28(1)	5(1)	0(1)	0(1)
Pb(2)	26(1)	26(1)	29(1)	-3(1)	1(1)	1(1)
Br(1)	26(2)	41(2)	45(2)	-1(2)	1(1)	3(2)
Br(2)	20(1)	19(2)	39(2)	0(1)	1(1)	0(1)
Br(3)	24(1)	27(2)	24(1)	-1(1)	0(1)	2(1)
Br(4)	26(1)	30(2)	24(1)	-1(1)	-1(1)	5(1)
Br(5)	24(1)	28(2)	24(1)	2(1)	1(1)	-2(1)
Br(6)	27(1)	33(2)	26(1)	-2(1)	2(1)	6(1)
C(1)	37(12)	28(15)	47(13)	2(11)	-5(11)	19(11)
C(2)	32(11)	13(11)	24(10)	0(9)	3(8)	-3(8)
C(3)	34(11)	20(13)	29(11)	-2(10)	0(9)	-1(9)
N(1)	32(10)	25(11)	29(9)	-10(8)	5(7)	-2(8)
C(4)	31(11)	22(13)	34(11)	-8(9)	-6(9)	4(9)
C(5)	25(11)	70(20)	29(11)	-4(12)	1(9)	5(12)
C(6)	25(11)	26(14)	40(12)	0(10)	9(9)	-4(10)

estimated standard deviations in parentheses.

The anisotropic displacement factor exponent takes the form: $-2\pi^2[h^2a^{*2}U_{11} + ... + 2hka^*b^*U_{12}]$.

Table S4. Bond lengths [Å] for $(2-BrCH_2PyH)Pb_2Br_5$ at 173 K with estimated standard deviations

in parentheses.

Label	Distances
Pb(1)-Br(2)	3.136(2)
Pb(1)-Br(2)#1	3.223(2)
Pb(1)-Br(3)	3.261(2)
Pb(1)-Br(4)	2.910(2)
Pb(1)-Br(5)	2.853(2)
Pb(1)-Br(5)#1	3.387(2)
Pb(1)-Br(6)#2	3.353(2)
Pb(2)-Br(2)#3	3.126(2)
Pb(2)-Br(2)#1	3.162(2)
Pb(2)-Br(3)#3	2.931(2)
Pb(2)-Br(3)#4	3.280(2)
Pb(2)-Br(5)	3.318(2)
Pb(2)-Br(6)	2.802(2)
Br(1)-C(1)	1.93(2)
Br(1)-N(1)	3.270(17)
Br(1)-N(1)#1	3.560(19)
Br(4)-N(1)#5	3.795(18)
Br(4)-N(1)#6	3.323(17)
C(1)-C(2)	1.49(3)
C(1)-H(1)	0.96
C(1)-H(2)	0.96
C(2)-C(3)	1.39(3)
C(2)-N(1)	1.35(2)
C(3)-C(6)	1.39(3)
C(3)-H(3)	0.96
N(1)-C(4)	1.32(3)
N(1)-H(4)	0.87
C(4)-C(5)	1.38(3)
C(4)-H(5)	0.96
C(5)-C(6)	1.37(3)
C(5)-H(6)	0.96
C(6)-H(7)	0.96

Symmetry transformations used to generate equivalent atoms:

(1) -x+1/2,y+1/2,z (2) x-1/2,y,-z+1/2 (3) x+1/2,y,-z+1/2 (4) -x+1/2,y-1/2,z (5) -x+1/2,-y+1,z+1/2 (6)

Table S5.	Bond angles	[°] for (2-E	BrCH ₂ PyH)Pb ₂ Br	, at 173 K wit	h estimated	standard deviations
-----------	-------------	--------------	--	----------------	-------------	---------------------

Label	Angles	Label	Angles
Br(2)-Pb(1)-Br(2)#1	143.31(6)	C(1)-Br(1)-N(1)	47.6(7)
Br(2)-Pb(1)-Br(3)	71.41(6)	C(1)-Br(1)-N(1)#1	127.3(7)
Br(2)-Pb(1)-Br(4)	78.74(6)	N(1)-Br(1)-N(1)#1	92.0(4)
Br(2)-Pb(1)-Br(5)	77.50(6)	Pb(1)-Br(2)-Pb(1)#4	89.54(5)
Br(2)-Pb(1)-Br(5)#1	136.07(5)	Pb(1)-Br(2)-Pb(2)#2	89.19(6)
Br(2)-Pb(1)-Br(6)#2	69.81(6)	Pb(1)-Br(2)-Pb(2)#4	176.38(7)
Br(2)#1-Pb(1)-Br(3)	132.57(6)	Pb(1)#4-Br(2)-Pb(2)#2	178.59(8)
Br(2)#1-Pb(1)-Br(4)	75.22(6)	Pb(1)#4-Br(2)-Pb(2)#4	91.89(6)
Br(2)#1-Pb(1)-Br(5)	74.98(6)	Pb(2)#2-Br(2)-Pb(2)#4	89.34(5)
Br(2)#1-Pb(1)-Br(5)#1	69.18(5)	Pb(1)-Br(3)-Pb(2)#2	90.30(5)
Br(2)#1-Pb(1)-Br(6)#2	137.37(6)	Pb(1)-Br(3)-Pb(2)#1	77.84(5)
Br(3)-Pb(1)-Br(4)	149.97(7)	Pb(2)#2-Br(3)-Pb(2)#1	90.57(5)
Br(3)-Pb(1)-Br(5)	91.48(5)	Pb(1)-Br(4)-N(1)#5	94.0(3)
Br(3)-Pb(1)-Br(5)#1	66.19(5)	Pb(1)-Br(4)-N(1)#6	108.0(3)
Br(3)-Pb(1)-Br(6)#2	71.99(5)	N(1)#5-Br(4)-N(1)#6	87.1(4)
Br(4)-Pb(1)-Br(5)	85.16(6)	Pb(1)-Br(5)-Pb(1)#4	91.31(6)
Br(4)-Pb(1)-Br(5)#1	143.67(6)	Pb(1)-Br(5)-Pb(2)	95.79(6)
Br(4)-Pb(1)-Br(6)#2	94.92(6)	Pb(1)#4-Br(5)-Pb(2)	75.59(5)
Br(5)-Pb(1)-Br(5)#1	92.38(6)	Pb(1)#3-Br(6)-Pb(2)	90.72(6)
Br(5)-Pb(1)-Br(6)#2	146.59(7)	Br(1)-C(1)-C(2)	111.3(16)
Br(5)#1-Pb(1)-Br(6)#2	106.19(6)	Br(1)-C(1)-H(1)	109.47
Br(2)#3-Pb(2)-Br(2)#1	145.93(6)	Br(1)-C(1)-H(2)	109.47
Br(2)#3-Pb(2)-Br(3)#3	76.05(6)	C(2)-C(1)-H(1)	109.47
Br(2)#3-Pb(2)-Br(3)#4	72.39(5)	C(2)-C(1)-H(2)	109.47
Br(2)#3-Pb(2)-Br(5)	137.50(6)	H(1)-C(1)-H(2)	107.58
Br(2)#3-Pb(2)-Br(6)	77.44(6)	C(1)-C(2)-C(3)	123.4(17)
Br(2)#1-Pb(2)-Br(3)#3	76.70(6)	C(1)-C(2)-N(1)	117.9(17)
Br(2)#1-Pb(2)-Br(3)#4	135.88(5)	C(3)-C(2)-N(1)	118.7(18)
Br(2)#1-Pb(2)-Br(5)	69.79(5)	C(2)-C(3)-C(6)	117.9(18)
Br(2)#1-Pb(2)-Br(6)	80.35(6)	C(2)-C(3)-H(3)	121.07
Br(3)#3-Pb(2)-Br(3)#4	147.25(6)	C(6)-C(3)-H(3)	121.07
Br(3)#3-Pb(2)-Br(5)	145.84(6)	Br(1)-N(1)-Br(1)#4	108.6(5)
Br(3)#3-Pb(2)-Br(6)	85.36(6)	Br(1)-N(1)-Br(4)#7	81.8(4)
Br(3)#4-Pb(2)-Br(5)	66.79(5)	Br(1)-N(1)-Br(4)#8	71.8(3)
Br(3)#4-Pb(2)-Br(6)	96.03(6)	Br(1)-N(1)-C(2)	59.6(10)
Br(5)-Pb(2)-Br(6)	95.26(6)	Br(1)-N(1)-C(4)	149.4(14)

in parentheses.

Label	Angles	Label	Angles
Br(1)#4-N(1)-Br(4)#8	84.8(4)	C(2)-N(1)-H(4)	117.61
Br(1)#4-N(1)-C(2)	78.5(12)	C(4)-N(1)-H(4)	117.61
Br(1)#4-N(1)-C(4)	101.8(13)	N(1)-C(4)-C(5)	118.3(19)
Br(1)#4-N(1)-H(4)	89.72	N(1)-C(4)-H(5)	120.86
Br(4)#7-N(1)-Br(4)#8	79.2(3)	C(5)-C(4)-H(5)	120.87
Br(4)#7-N(1)-C(2)	123.6(13)	C(4)-C(5)-C(6)	120(2)
Br(4)#7-N(1)-C(4)	71.5(12)	C(4)-C(5)-H(6)	120.24
Br(4)#7-N(1)-H(4)	75.25	C(6)-C(5)-H(6)	120.24
Br(4)#8-N(1)-C(2)	119.0(12)	C(3)-C(6)-C(5)	120.9(19)
Br(4)#8-N(1)-C(4)	116.0(12)	C(3)-C(6)-H(7)	119.57
Br(4)#8-N(1)-H(4)	5.63	C(5)-C(6)-H(7)	119.57
C(2)-N(1)-C(4)	124.8(18)		

C(2)-N(1)-C(4) 124.8(18) Symmetry transformations used to generate equivalent atoms:

(1) -x+1/2,y+1/2,z (2) x-1/2,y,-z+1/2 (3) x+1/2,y,-z+1/2 (4) -x+1/2,y-1/2,z (5) -x+1/2,-y+1,z+1/2 (6)

x,-y+1/2,z+1/2 (7) -x+1/2,-y+1,z-1/2 (8) x,-y+1/2,z-1/2

Table S6. Crystal data and structure refinement for (3-BrCH₂PyH)PbBr₃ at 173(2) K.

Empirical formula	C6 H7 Br4 N Pb
Formula weight	619.96
Temperature	173(2) K
Wavelength	0.71073 Å
Crystal system	monoclinic
Space group	$P2_{1}/c$
Unit cell dimensions	a = 4.3364(3) Å, $\alpha = 90^{\circ}$ b = 19.7860(15) Å, $\beta = 93.675(2)^{\circ}$ c = 14.1395(11) Å, $\gamma = 90^{\circ}$
Volume	1210.67(16) Å ³
Ζ	4
Density (calculated)	3.401 g/cm^3
Absorption coefficient	27.090 mm ⁻¹
F(000)	1088
Crystal size	0.085 x 0.065 x 0.054 mm ³
θ range for data collection	1.773 to 26.000°
Index ranges	-4<=h<=5, -24<=k<=24, -17<=l<=17
Reflections collected	11966
Independent reflections	2379 [$R_{int} = 0.0453$]
Completeness to $\theta = 25.242^{\circ}$	99.5%
Refinement method	Full-matrix least-squares on F ²
Data / restraints / parameters	2379 / 0 / 109
Goodness-of-fit	1.173
Final R indices $[I > 2\sigma(I)]$	$R_{obs} = 0.0467, wR_{obs} = 0.1376$
R indices [all data]	$R_{all} = 0.0540, wR_{all} = 0.1505$
Extinction coefficient	
Largest diff. peak and hole	3.440 and -2.224 e·Å ⁻³
$\Sigma F_o - F_c $ / $\Sigma F_o $, wR =	$\{\Sigma[w(F_o ^2 - F_c ^2)^2] \ / \ \Sigma[w(F_o ^4)]\}^{1/2} \text{ and }$

 $w=1/[\sigma^2(Fo^2)+(0.0791P)^2+29.5929P]$ where $P=(Fo^2+2Fc^2)/3$

R

=

Label	Х	У	Z	Occupancy	U _{eq} *
Pb(1)	7847(2)	4529(1)	1273(1)	1	18(1)
Br(1)	12584(3)	5613(1)	945(1)	1	22(1)
Br(2)	12705(3)	3509(1)	1320(1)	1	22(1)
Br(3)	8832(3)	4697(1)	3343(1)	1	25(1)
Br(4)	7413(4)	7761(1)	6385(1)	1	34(1)
N(1)	4780(30)	5984(6)	3941(10)	1	29(3)
H1N()	5410.29	5595.8	3719.42	1	35
C(1)	2030(30)	6995(8)	3693(10)	1	27(3)
H1C()	806.23	7288.9	3292.89	1	32
C(2)	2790(30)	7171(7)	4625(10)	1	23(3)
H(2)	2107.25	7592.62	4858.36	1	28
C(3)	5330(40)	6891(7)	6246(10)	1	26(3)
H(3A)	6688.24	6531.09	6521.96	1	31
H(3AB)	3417.72	6898.67	6593.83	1	31
C(4)	3050(40)	6393(8)	3351(11)	1	31(3)
H(4)	2560.37	6265.53	2711.36	1	37
C(5)	4530(30)	6742(7)	5227(10)	1	21(3)
C(6)	5590(30)	6141(7)	4851(11)	1	25(3)
H(6)	6868.65	5844.88	5232.3	1	30

Table S7. Atomic coordinates $(x10^4)$ and equivalent isotropic displacement parameters $(Å^2x10^3)$

for $(3-BrCH_2PyH)PbBr_3$ at 173(2) K with estimated standard deviations in parentheses.

 U_{eq} is defined as one third of the trace of the orthogonalized U_{ij} tensor.

Table S8. Anisotropic displacement parameters (Å²x10³) for (3-BrCH₂PyH)PbBr₃ at 173(2) K

Label	U ₁₁	U ₂₂	U ₃₃	U ₁₂	U ₁₃	U ₂₃
Pb(1)	18(1)	20(1)	18(1)	-1(1)	1(1)	1(1)
Br(1)	26(1)	19(1)	20(1)	-3(1)	1(1)	-2(1)
Br(2)	23(1)	18(1)	25(1)	0(1)	0(1)	-1(1)
Br(3)	30(1)	23(1)	20(1)	6(1)	-1(1)	-1(1)
Br(4)	47(1)	30(1)	23(1)	-1(1)	-6(1)	-6(1)
N(1)	28(7)	17(6)	43(8)	3(5)	3(6)	-7(5)
C(1)	38(8)	26(8)	18(7)	4(6)	6(6)	-4(5)
C(2)	32(7)	16(6)	21(7)	4(6)	4(6)	-2(5)
C(3)	32(8)	26(7)	19(7)	-2(6)	-3(6)	-1(6)
C(4)	39(9)	31(8)	22(8)	11(7)	1(7)	-2(6)
C(5)	25(7)	16(6)	22(7)	8(5)	4(6)	2(5)
C(6)	26(7)	19(7)	32(8)	4(6)	5(6)	-2(6)

with estimated standard deviations in parentheses.

The anisotropic displacement factor exponent takes the form: $-2\pi^2[h^2a^{*2}U_{11} + ... + 2hka^*b^*U_{12}]$.

Table S9.Bond lengths [Å] for (3-BrCH2PyH)PbBr3 at 173(2) K with estimated standard

deviations in parentheses.

Label	Distances	Label	Distances
Pb(1)-Br(2)	2.9155(14)	C(1)-C(2)	1.382(19)
Pb(1)-Br(3)	2.9486(15)	C(1)-H1C()	0.9500
Pb(1)-Br(2)#1	3.0122(14)	C(2)-C(5)	1.391(19)
Pb(1)-Br(1)	3.0252(14)	C(2)-H(2)	0.9500
Pb(1)-Br(1)#2	3.1428(14)	C(3)-C(5)	1.489(19)
Pb(1)-Br(1)#1	3.1436(15)	C(3)-H(3A)	0.9900
Br(4)-C(3)	1.948(14)	C(3)-H(3AB)	0.9900
N(1)-C(6)	1.35(2)	C(4)-H(4)	0.9500
N(1)-C(4)	1.354(19)	C(5)-C(6)	1.393(19)
N(1)-H1N()	0.8800	C(6)-H(6)	0.9500
C(1)-C(4)	1.37(2)		

Symmetry transformations used to generate equivalent atoms:

(1) x-1,y,z (2) -x+2,-y+1,-z (3) x+1,y,z

Label	Angles	Label	Angles
Br(2)-Pb(1)-Br(3)	89.81(4)	C(4)-C(1)-C(2)	119.6(14)
Br(2)-Pb(1)-Br(2)#1	94.02(4)	C(4)-C(1)-H1C(1)	120.2
Br(3)-Pb(1)-Br(2)#1	96.53(4)	C(2)-C(1)-H1C()	120.2
Br(2)-Pb(1)-Br(1)	89.86(4)	C(1)-C(2)-C(5)	121.0(13)
Br(3)-Pb(1)-Br(1)	90.92(4)	C(1)-C(2)-H(2)	119.5
Br(2)#1-Pb(1)-Br(1)	171.61(4)	C(5)-C(2)-H(2)	119.5
Br(2)-Pb(1)-Br(1)#2	87.57(4)	C(5)-C(3)-Br(4)	110.5(10)
Br(3)-Pb(1)-Br(1)#2	174.91(4)	C(5)-C(3)-H(3A)	109.5
Br(2)#1-Pb(1)-Br(1)#2	88.01(4)	Br(4)-C(3)-H(3A)	109.5
Br(1)-Pb(1)-Br(1)#2	84.71(4)	C(5)-C(3)-H(3AB)	109.5
Br(2)-Pb(1)-Br(1)#1	172.83(4)	Br(4)-C(3)-H(3AB)	109.5
Br(3)-Pb(1)-Br(1)#1	97.32(4)	H(3A)-C(3)-H(3AB)	108.1
Br(2)#1-Pb(1)-Br(1)#1	85.92(4)	N(1)-C(4)-C(1)	118.7(14)
Br(1)-Pb(1)-Br(1)#1	89.31(4)	N(1)-C(4)-H(4)	120.6
Br(1)#2-Pb(1)-Br(1)#1	85.26(4)	C(1)-C(4)-H(4)	120.6
Pb(1)-Br(1)-Pb(1)#2	95.28(4)	C(2)-C(5)-C(6)	117.9(13)
Pb(1)-Br(1)-Pb(1)#3	89.31(4)	C(2)-C(5)-C(3)	123.6(12)
Pb(1)#2-Br(1)-Pb(1)#3	94.74(4)	C(6)-C(5)-C(3)	118.5(13)
Pb(1)-Br(2)-Pb(1)#3	94.02(4)	N(1)-C(6)-C(5)	119.3(13)
C(6)-N(1)-C(4)	123.4(13)	N(1)-C(6)-H(6)	120.4
C(6)-N(1)-H1N()	118.3	C(5)-C(6)-H(6)	120.4
C(4)-N(1)-H1N()	118.3		

Table S10.	Bond angles [°] for	r (3-BrCH ₂ PyH)PbBr	at 173(2) K with	estimated standard deviations
------------	---------------------	---------------------------------	------------------	-------------------------------

in parentheses.

Symmetry transformations used to generate equivalent atoms:

(1) x-1,y,z (2) -x+2,-y+1,-z (3) x+1,y,z

Empirical formula	C6 H7 Br4 N Pb
Formula weight	619.96
Temperature	173(2) K
Wavelength	0.71073 Å
Crystal system	monoclinic
Space group	$P2_{1}/c$
Unit cell dimensions	a = 4.365(3) Å, $\alpha = 90^{\circ}$ b = 13.137(8) Å, $\beta = 94.66(4)^{\circ}$ c = 20.534(12) Å, $\gamma = 90^{\circ}$
Volume	1173.4(13) Å ³
Z	4
Density (calculated)	3.509 g/cm^3
Absorption coefficient	27.950 mm ⁻¹
F(000)	1088
Crystal size	0.121 x 0.056 x 0.052 mm ³
θ range for data collection	2.523 to 25.310°
Index ranges	-5<=h<=5, -15<=k<=15, -24<=l<=24
Reflections collected	10641
Independent reflections	2128 [$R_{int} = 0.0427$]
Completeness to $\theta = 25.242^{\circ}$	99.5%
Refinement method	Full-matrix least-squares on F ²
Data / restraints / parameters	2128 / 0 / 109
Goodness-of-fit	1.159
Final R indices $[I > 2\sigma(I)]$	$R_{obs} = 0.0232, wR_{obs} = 0.0593$
R indices [all data]	$R_{all} = 0.0257, wR_{all} = 0.0605$
Extinction coefficient	
Largest diff. peak and hole	0.931 and -1.832 e·Å ⁻³
$\mathbf{R} = \Sigma \mathbf{F}_{o} - \mathbf{F}_{c} / \Sigma \mathbf{F}_{o} , \mathbf{wR} = \{\Sigma \mathbf{w} \mathbf{F}_{o} \}$	$ s_o ^2 - F_o ^2)^2] / \Sigma[w(F_o ^4)] $ ^{1/2} and w=1/[$\sigma^2(Fo^2)$ +(0.0301P) ² +0.6925P]

where $P=(Fo^2+2Fc^2)/3$

Label	Х	У	Z	Occupancy	U _{eq} *
Pb(1)	5946(1)	8689(1)	5599(1)	1	17(1)
Br(1)	10552(2)	8874(1)	4527(1)	1	18(1)
Br(2)	1199(2)	8182(1)	6562(1)	1	20(1)
Br(3)	6648(2)	4159(1)	1944(1)	1	23(1)
Br(4)	5639(2)	6658(1)	5243(1)	1	19(1)
C(1)	6509(14)	6199(5)	3060(3)	1	24(2)
H(1)	5205.07	6457.47	2705.48	1	29
N(1)	10042(11)	6480(4)	3957(2)	1	20(2)
H(1A)	11110.52	6909.21	4214.21	1	23
C(2)	8231(13)	6851(5)	3466(3)	1	23(2)
H(2)	8120.49	7565.22	3393.19	1	28
C(3)	6692(12)	5162(5)	3174(3)	1	19(2)
C(4)	4727(14)	4437(6)	2751(3)	1	28(2)
H(4A)	2666.75	4737.68	2646.57	1	34
H(4AB)	4470.16	3792.33	2990.8	1	34
C(5)	8660(12)	4803(5)	3688(3)	1	19(2)
H(5)	8855.23	4092.21	3767.59	1	23
C(6)	10326(13)	5489(4)	4081(3)	1	19(2)
H(6)	11667.31	5256.66	4437.23	1	23

Table S12. Atomic coordinates $(x10^4)$ and equivalent isotropic displacement parameters $(Å^2x10^3)$

for (4-BrCH₂PyH)PbBr₃ at 173(2) K with estimated standard deviations in parentheses.

 U_{eq} is defined as one third of the trace of the orthogonalized U_{ij} tensor.

Label	U ₁₁	U ₂₂	U ₃₃	U ₁₂	U ₁₃	U ₂₃
Pb(1)	20(1)	15(1)	16(1)	-2(1)	0(1)	-1(1)
Br(1)	26(1)	14(1)	14(1)	-1(1)	2(1)	-1(1)
Br(2)	21(1)	25(1)	14(1)	-1(1)	-1(1)	-1(1)
Br(3)	24(1)	26(1)	18(1)	-4(1)	2(1)	-8(1)
Br(4)	21(1)	14(1)	20(1)	0(1)	0(1)	-1(1)
C(1)	28(3)	25(4)	18(3)	5(3)	-3(3)	3(3)
N(1)	27(3)	17(3)	15(2)	-3(2)	1(2)	-7(2)
C(2)	31(3)	18(3)	20(3)	6(3)	-5(3)	0(3)
C(3)	16(3)	26(3)	15(3)	-1(2)	6(2)	-7(2)
C(4)	25(3)	39(4)	22(3)	-10(3)	9(3)	-17(3)
C(5)	23(3)	15(3)	19(3)	-1(2)	6(2)	-1(2)
C(6)	25(3)	14(3)	18(3)	2(2)	-1(2)	3(2)

Anisotropic displacement parameters (Å²x10³) for (4-BrCH₂PyH)PbBr₃ at 173(2) K Table S13.

with estimated standard deviations in parentheses.

The anisotropic displacement factor exponent takes the form: $-2\pi^2[h^2a^{*2}U_{11} + ... + 2hka^*b^*U_{12}]$.

deviations in parentheses.

Label	Distances
Pb(1)-Br(4)	2.7673(16)
Pb(1)-Br(2)#1	2.9787(18)
Pb(1)-Br(2)	3.0512(17)
Pb(1)-Br(1)#2	3.0992(19)
Pb(1)-Br(1)	3.1092(18)
Br(3)-C(4)	1.951(6)
C(1)-C(2)	1.375(9)
C(1)-C(3)	1.383(9)
C(1)-H(1)	0.9500
N(1)-C(2)	1.324(7)
N(1)-C(6)	1.330(7)
N(1)-H(1A)	0.8800
C(2)-H(2)	0.9500
C(3)-C(5)	1.389(8)
C(3)-C(4)	1.509(8)
C(4)-H(4A)	0.9900
C(4)-H(4AB)	0.9900
C(5)-C(6)	1.378(8)
C(5)-H(5)	0.9500
C(6)-H(6)	0.9500

Symmetry transformations used to generate equivalent atoms:

(1) x+1,y,z (2) x-1,y,z

88.73(3) 86.56(3) 92.74(5)	N(1)-C(2)-C(1) N(1)-C(2)-H(2)	119.7(6)
86.56(3) 92.74(5)	N(1)-C(2)-H(2)	120.2
92.74(5)	$1 (1)^{-1} (2)^{-1} (2)$	17017
	C(1)-C(2)-H(2)	120.2
82 54(2)	C(1)-C(2)-H(2)	110 1(6)
32.34(2)	C(1) - C(3) - C(3)	117.1(0) 120.2(6)
171.217(19) 87 75(5)	C(1)-C(3)-C(4)	120.2(0)
84.74(2)	C(3) - C(3) - C(4)	120.7(0) 110.1(4)
04./4(2)	C(3) - C(4) - DI(3)	100.6
00.0/(3)	$U(3)-U(4)-\Pi(4A)$	109.0
1/1.111(18)	Br(3)-C(4)-H(4A)	109.6
89.34(5)	C(3)-C(4)-H(4AB)	109.6
89.34(5)	Br(3)-C(4)-H(4AB)	109.6
92.74(5)	H(4A)-C(4)-H(4AB)	108.2
119.4(6)	C(6)-C(5)-C(3)	119.1(6)
120.3	C(6)-C(5)-H(5)	120.4
120.3	C(3)-C(5)-H(5)	120.4
123.2(5)	N(1)-C(6)-C(5)	119.5(5)
118.4	N(1)-C(6)-H(6)	120.2
118.4	C(5)-C(6)-H(6)	120.2
	92.74(5) $82.54(2)$ $171.214(19)$ $87.75(5)$ $84.74(2)$ $88.87(5)$ $171.111(18)$ $89.34(5)$ $92.74(5)$ $119.4(6)$ 120.3 120.3 $123.2(5)$ 118.4 118.4	92.74(5) $C(1)-C(2)-H(2)$ $82.54(2)$ $C(1)-C(3)-C(5)$ $171.214(19)$ $C(1)-C(3)-C(4)$ $87.75(5)$ $C(5)-C(3)-C(4)$ $84.74(2)$ $C(3)-C(4)-Br(3)$ $88.87(5)$ $C(3)-C(4)-H(4A)$ $171.111(18)$ $Br(3)-C(4)-H(4A)$ $89.34(5)$ $C(3)-C(4)-H(4AB)$ $89.34(5)$ $Br(3)-C(4)-H(4AB)$ $92.74(5)$ $H(4A)-C(4)-H(4AB)$ $119.4(6)$ $C(6)-C(5)-C(3)$ 120.3 $C(3)-C(5)-H(5)$ $123.2(5)$ $N(1)-C(6)-C(5)$ 118.4 $N(1)-C(6)-H(6)$ 118.4 $C(5)-C(6)-H(6)$

Table S15.	Bond angles [°] for	c (4-BrCH ₂ PyH)PbBr ₃	at 173(2) K with	estimated standard deviations
------------	---------------------	--	------------------	-------------------------------

in parentheses.

Symmetry transformations used to generate equivalent atoms:

(1) x+1,y,z (2) x-1,y,z

Figure S5. Experimental powder vs. simulated single crystal XRD patterns of (2-BrCH₂PyH)Pb₂Br₅. Inset: interplanar distances within the angle \Box diffraction region [7.5-22.5]°.

Figure S6. Experimental powder vs. simulated single crystal XRD patterns of (3-BrCH₂PyH)PbBr₃. Inset: interplanar distances within the angle \Box diffraction region [7.5-12.5]°.

Figure S7. Experimental powder vs. simulated single crystal XRD patterns of (4-BrCH₂PyH)PbBr₃. Inset: interplanar distances within the angle \Box diffraction region [7.5-22.5]°.

Figure S8. Unoccupied electronic bands in 2-(Bromomethyl)pyridinim lead bromide.

Figure S9. Unoccupied electronic bands in 3-(Bromomethyl)pyridinim lead bromide.

Figure S10. PDOS from all atoms (left) vs. PDOS from bromine atoms of the organic cations (right) in 4-(Bromomethyl)pyridinim lead bromide.