Supplementary Information

Title: Crystal Structure, Optical Properties and Thermal Properties of M₂[W₂O₃(SO₄)₆] (M = Y, Eu, Tb, Lu, Bi)

Author(s): V. Wessels^[a], S. Kügle^[a], H. A. Höppe^[a]

^[a] Institut für Physik, Universität Augsburg, Universitätsstraße 1, 86159 Augsburg, Germany

Figure S1 CIE diagram for $Tb_2[W_2O_3(SO_4)_6]$ and $Eu_2[W_2O_3(SO_4)_6]$.

Figure S2 PXRD comparing the measured pattern of $Tb_2[W_2O_3(SO_4)_6]$ with the calculated pattern including the disorder and considering only W1A, O1A, O2A or W1B, O1B, O2B, respectively.

Figure S3 FT-IR spectrum of $M_2[W_2O_3(SO_4)_6]$.

Figure S4 Correlation of the ionic radii of the cations with the lattice parameters *a*, *b*, and *c* of the title compounds.

Figure S5 Correlation of the ionic radii with the cell volume of the title compounds.

Figure S6 Tauc-plots for the determination of the band gaps of $M_2[W_2O_3(SO_4)_6]$.

Figure S7 Thermogram of $Y_2[W_2O_3(SO_4)_6]$ recorded up to 1050°C in nitrogen atmosphere.

Figure S8 Thermogram of Tb₂[W₂O₃(SO₄)₆] recorded up to 1050°C in nitrogen atmosphere.

Figure S9 Thermogram of $Lu_2[W_2O_3(SO_4)_6]$ recorded up to 1050°C in nitrogen atmosphere.

Figure S10 PXRD after thermal treatment by measuring TGA up to 1050°C.

Figure S11 FT-IR spectrum after thermal treatment by measuring TGA up to 1050°C.

Table S1. Atomic coordinates, Wyckoff symbols and isotropic displacement parameters U_{eq} / Å² in Bi₂[W₂O₃(SO₄)₆]. Standard deviations are given in parentheses.

Atom	Wyckoff symbol	X	у	Z	$U_{ m eq}$
Bi1	8f	0.18682(2)	0.51513(2)	0.60717(2)	0.00714(4)
W1A	8f	0.44170(2)	0.26236(2)	0.66360(2)	0.00425(3)
01A	4e	1/2	0.1674(7)	3/4	0.0061(6)
02A	8f	0.47020(18)	0.0749(6)	0.60497(17)	0.0151(6)
W1B	8f	0.44064(12)	0.7484(4)	0.66337(13)	0.0264(5)
O1B	4e	1/2	0.854(6)	3/4	0.0061(6)
O2B	8f	0.4688(17)	-0.070(6)	0.6000(16)	0.0151(6)
S1	8f	0.29369(4)	0.01048(14)	0.68362(4)	0.00589(12)
011	8f	0.28155(17)	0.0119(6)	0.75668(15)	0.0153(5)
012	8f	0.26003(16)	0.2075(6)	0.63948(17)	0.0169(6)
013	8f	0.27755(16)	-0.2161(5)	0.64617(17)	0.0156(5)
014	8f	0.37035(15)	0.0465(6)	0.68469(19)	0.0175(6)
S2	8f	0.33797(4)	0.49146(14)	0.52059(4)	0.00549(12)
021	8f	0.36156(15)	0.7207(5)	0.49682(16)	0.0129(5)
022	8f	0.26531(13)	0.4930(5)	0.52372(14)	0.0088(4)
023	8f	0.35834(14)	0.2864(5)	0.48043(16)	0.0131(5)
024	8f	0.37655(14)	0.4575(5)	0.59943(14)	0.0109(4)
S3	8f	0.58483(4)	0.54058(17)	0.68159(4)	0.008827(13)

031	8f	0.61717(18)	0.3512(7)	0.64826(19)	0.0220(7)
032	8f	0.60307(15)	0.7824(6)	0.66168(17)	0.0157(5)
033	8f	0.59643(15)	0.5158(5)	0.76103(15)	0.0134(5)
034	8f	0.50685(14)	0.5227(5)	0.65645(16)	0.0130(5)

Table S2. Anisotropic displacement parameters U_{ij} / Å² in Bi₂[W₂O₃(SO₄)₆]. Standard deviations are given in parentheses.

Atom	<i>U</i> 11	U22	<i>U</i> 33	<i>U</i> 12	<i>U</i> 13	U23
Bi1	0.00661(5)	0.00689(5)	0.00770(5)	0.00029(4)	0.00063(3)	0.00011(4)
W1A	0.00329(5)	0.00546(6)	0.00352(5)	-0.00033(4)	-0.00067(4)	-0.00004(4)
01A	0.0034(13)	0.0061(14)	0.0077(14)	0.0000(0)	-0.0018(11)	0.0000(0)
02A	0.0192(15)	0.0152(13)	0.0101(12)	0.0051(12)	0.0006(11)	-0.0048(11)
W1B	0.0271(10)	0.0170(9)	0.0324(11)	0.0018(7)	-0.0023(8)	-0.0007(7)
O1B	0.0034(13)	0.0061(14)	0.0077(14)	0.0000(0)	-0.0018(11)	0.0000(0)
O2B	0.0192(15)	0.0152(13)	0.0101(12)	0.0051(12)	0.0006(11)	-0.0048(11)
S1	0.0062(3)	0.0054(3)	0.0056(3)	-0.0003(2)	0.0000(2)	-0.0001(2)
011	0.0235(14)	0.0173(13)	0.0052(10)	0.0003(11)	0.0029(10)	0.0002(9)
012	0.0175(13)	0.0180(13)	0.0162(12)	0.0100(11)	0.0054(10)	0.0094(11)
013	0.0170(13)	0.0122(12)	0.0189(13)	-0.0074(10)	0.0065(10)	-0.0088(10)
014	0.0062(11)	0.0192(14)	0.0259(15)	-0.0014(10)	-0.0007(10)	0.0092(12)
S2	0.0058(3)	0.0054(3)	0.0051(3)	-0.0001(2)	0.0004(2)	0.0003(2)
021	0.0128(11)	0.0106(11)	0.0151(11)	-0.0015(9)	0.0016(9)	0.0058(9)
022	0.0069(10)	0.0123(11)	0.0068(9)	0.0006(8)	0.0006(7)	0.0002(8)
023	0.0105(11)	0.0143(12)	0.0149(12)	0.0001(9)	0.0032(9)	-0.0083(10)
024	0.0084(10)	0.0183(12)	0.0052(9)	0.0017(9)	-0.0010(8)	0.0018(9)
S3	0.0056(3)	0.0132(3)	0.0062(3)	0.0000(3)	0.0017(2)	0.0010(3)
031	0.0228(15)	0.0216(15)	0.0237(15)	0.0091(13)	0.0097(13)	-0.0030(13)
032	0.0133(12)	0.0176(13)	0.0165(12)	-0.007(1)	0.0035(10)	0.0041(10)
033	0.0135(12)	0.0195(13)	0.0066(10)	-0.0086(10)	0.0001(8)	0.0026(9)
034	0.0071(10)	0.0173(13)	0.0135(11)	-0.0029(9)	-0.0016(9)	0.0043(10)

Figure S12 Rietveld refinement of $Eu_2[W_2O_3(SO_4)_6]$.

Table S3 Crystal data and structure refinement of $Eu_2[W_2O_3(SO_4)_6]$ determined from powered XRD data via Rietveld refinement. Respective standard deviations are given in parentheses.

<i>M</i> /g mol ⁻¹	1295.98
temperature / K	300(2)
space group	<i>C</i> 2/ <i>c</i> (no. 15)
a / Å	20.0032(5)
<i>b /</i> Å	5.51969(13)
c / Å	18.6673(4)
β /°	100.7616(17)
V/Å ³	2024.84(8)
Ζ	4
ho / g·cm ⁻³	4.32
radiation; wavelength λ / Å	Cu- <i>K</i> _α ; 1.54184
diffractometer	Bruker D8 Advance
heta range / °	2.5-40
R _{Bragg}	0.011
R _p	0.017
R _{wp}	0.024
GooF	2.30
site occupation scenario A	0.8841(1)

 Table S4 Polyhedron deviation / % of tungstate octahedra ordered by central atoms W1A and W1B.

Compound	W1A	W1B
Lu ₂ [W ₂ O ₃ (SO ₄) ₆]	-8.04	-20.46
Y ₂ [W ₂ O ₃ (SO ₄) ₆]	-5.13	-26.53
Tb ₂ [W ₂ O ₃ (SO ₄) ₆]	-5.91	-24.93
$Eu_2[W_2O_3(SO_4)_6]$	-5.06	-10.31
Bi ₂ [W ₂ O ₃ (SO ₄) ₆]	-4.47	-15.16