Supplementary Information (SI) for Dalton Transactions. This journal is © The Royal Society of Chemistry 2024

Comparative Study of Titanium Complexes Bearing 2-(Arylideneamino)phenolates and 2-((Arylimino)methyl)phenolates as Catalysts for Ring-Opening Polymerization of ε-Caprolactone and L-Lactide

Ling-Jo Wu,^{a‡} Ravi Kumar Kottalanka,^b Yu-Ting Chu,^{ac‡} Zheng-Ian Lin,^d Chun-Juei Chang,^a Shangwu Ding,^{ac} Hsuan-Ying Chen,*^{acde} Kuo-Hui Wu,*^g Chih-Kuang Chen*^d

- ^a Department of Medicinal and Applied Chemistry, Drug Development and Value Creation Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan, 80708, R.O.C.
- ^b Department of Chemistry, School of Applied Science and Humanities, Vignan's Foundation for Science Technology and Research, Vadlamudi, Guntur, Andhra Pradesh 522213, India.
- ^c Department of Chemistry, National Sun Yat-Sen University, Kaohsiung, Taiwan, 80424, R.O.C.
- ^d Polymeric Biomaterials Laboratory, Department of Materials and Optoelectronic Science, National Sun Yat-Sen University, Kaohsiung 80424, Taiwan
- ^e Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan, R.O.C.
- f National Pingtung University of Science and Technology, Pingtung 91201, Taiwan
- g Department of Chemistry, National Central University, Taoyuan, Taiwan, 32001, R.O.C.

Supporting Information

Table of Contents

Table S1.	Selected bond lengths (Å) and bond angles (deg) of FH-Ti, SH-Ti, and FOMe-
Ti	2
Table S2.	Kinetic study of CL polymerization with various five-membered ring Ti complexes4
Table S3.	Kinetic study of CL polymerization with various six-membered ring Ti complexes5
Table S4.	Kinetic study of CL polymerization with various concentration of FCl-Ti in toluene 5 mL,
	$[CL] = 2.0 \text{ M at } 60^{\circ}\text{C}$
Table S5.	Kinetic study of LA polymerization with various five membered ring Ti complexes9
Table S6.	Kinetic study of LA polymerization with various six-membered ring Ti complexes11
Table S7.	Kinetic study of LA polymerization with F ^H -Ti ^a in various concentrations
Table S8.	Measuring polymer's molar masses at different times/conversions for CL polymerization
Table S9.	using F ^{Cl} -Ti as a catalyst
Figure S1	. First-order kinetic plots of CL polymerization with various five membered ring Ti
	complexes plotted against time with [CL] = 2.0 M in toluene 5 mL (Table S3)5
Figure S2	2. First-order kinetic plots of CL polymerization with various six membered ring Ti complexes
	plotted against time with [CL] = 2.0 M in toluene 5 mL
Figure S3	6. First-order kinetic plots of CL polymerization by various five and six membered ring Ti
	complexes plotted against time with [CL] = 2.0 M in toluene 5 mL.
Figure S4	. First-order kinetic plots of CL polymerization with various concentrations of $[\mathbf{F^{Cl} ext{-}Ti}]$ plotted

against time with [CL] = 2.0 M in toluene 5 mL
Figure S5. First-order kinetic plots of LA polymerization by various five membered ring Ti complexes
plotted against time with [LA] = 0.5 M in toluene 5 mL (Table S1)
Figure S6. First-order kinetic plots of LA polymerization by various six membered ring Ti complexes
plotted against time with [LA] = 0.5 M in toluene 5 mL (Table S2)
Figure S7. First-order kinetic plots of LA polymerization by various five- and six-membered ring Ti
complexes plotted against time with [LA] = 0.5 M in toluene 5 mL
Figure S8. First-order kinetic plots of LA polymerization with various concentrations of [F ^H -Ti] plotted
against time with $[LA] = 0.5 M$ in toluene 5 mL
Figure S9-S22. ¹ H and ¹³ C NMR spectrum of Ti complexes in CDCl ₃
Figure S23. ¹ H NMR spectrum of PCL in CDCl ₃
Figure S24. ESI-MS spectra of PCL synthesized by using F ^{Cl} - Ti
Figure S25. ¹ H NMR spectrum of PLA in CDCl ₃
Figure S26. ESI-MS spectra of PCL synthesized by using F ^H - Ti
Figure S27. ¹³ C NMR of copolymer PLA-grad-PCL (entry 4 of Table 4) by F ^{OMe} -Ti25
Figure S28. ¹³ C NMR of copolymer PLA-grad-PCL polymerized by F ^{OMe} -Ti(A) and S ^{OMe} -Ti(B)25
Figure S29-S59. GPC spectrum of PCL and PLA (Table 1-3, S8-S9)
Figure S60. MALDI-TOF spectra of PLA-grad-PCL copolymerization (50 CL + 50 LA) using FOMe-Ti
as a catalyst; PLA conversion = 19% and PCL conversion =
2%36
Figure S61. MALDI-TOF spectra of PLA-grad-PCL copolymerization (50 CL + 50 LA) using F ^{OMe} -Ti
as a catalyst; PLA conversion = 37% and PCL conversion = 10%37
Figure S62. DSC curve of PLA (entry 3 of Table 3)
Figure S63. DSC curve of PCL (entry 3 of Table
2)38
Figure S62. DSC curve of PLA-grad-PCL (entry 8 of Table
4)

Table S1. Crystallographic parameters of F^H -Ti, S^H -Ti, and F^{OMe} -Ti.

CCDC number	F^H-Ti 2264712	F ^{OMe} -Ti 2264713
Identification code	K11004-HYC-D	K11007-HYC-L
Empirical formula	$C_{64}H_{68}N_4O_8Ti_2$	$C_{9.71}H_{10.86}N_{0.57}O_{1.71}Ti_{0.29}$
Formula weight	1117.02	176.73
Temperature/K	113(2)	113(2)
Crystal system	monoclinic	monoclinic
Space group	P2 ₁ /c	P2 ₁ /c

a/Å	12.1742(3)	11.8926(2)
b/Å	16.9814(4)	14.8890(3)
c/Å	27.9303(5)	18.5751(3)
α/°	90	90
β/°	101.516(2)	104.270(2)
γ/°	90	90
Volume/Å ³	5657.9(2)	3187.59(10)
Z	4	14
$\rho_{calc}g/cm^3$	1.311	1.289
μ /mm ⁻¹	0.342	0.315
F(000)	2352.0	1304.0
Crystal size/mm ³	$0.4\times0.1\times0.1$	$0.2\times0.2\times0.2$
Radiation	Mo Kα ($\lambda = 0.71073$)	Mo Kα ($\lambda = 0.71073$)
2Θ range for data collection/°	3.822 to 49.998	4.47 to 49.996
Index ranges	$-14 \le h \le 14, -19 \le k \le 20, -33 \le 1 \le 32$	$-14 \le h \le 14, -17 \le k \le 17, -21 \le l \le 22$
Reflections collected	60053	79538
Independent reflections	9916 [$R_{int} = 0.0568$, $R_{sigma} = 0.0451$]	$\begin{bmatrix} 5595 \ [R_{int} = 0.1077, \ R_{sigma} = \\ 0.0354] \end{bmatrix}$
Data/restraints/parameters	9916/2364/741	5595/1488/454
Goodness-of-fit on F ²	1.068	1.050
Final R indexes [I>= 2σ (I)]	$R_1 = 0.0549, wR_2 = 0.1368$	$R_1 = 0.0419, wR_2 = 0.1150$
Final R indexes [all data]	$R_1 = 0.0710, wR_2 = 0.1436$	$R_1 = 0.0508, wR_2 = 0.1206$
Largest diff. peak/hole / e Å-	0.61/-0.55	0.43/-0.38

Table S2. Kinetic study of CL polymerization with various five-membered ring Ti complexes^a

	[CL]:[Ti]=100:1		
F ^{OMe} -Ti	F ^H -Ti	F ^{Cl} -Ti	F ^{Bu} -Ti
PCL conversion b			
	0.10	0.10	
		0.26	
0.16			0.20
	0.30		
		0.45	
			0.31
			0.36
	0.50		
		0.66	
0.33			
		0.74	0.51
	0.69		
0.53		0.86	
	0.80		
0.64			
			0.90
	0.96		
0.92			
2 12(1)	2 88(6)	4 10(2)	2.35(4)
	0.16	PCL cor 0.10 0.16 0.30 0.50 0.69 0.69 0.64 0.92	PCL conversion b 0.10 0.10 0.26 0.16 0.30 0.45 0.50 0.66 0.33 0.74 0.69 0.80 0.80 0.92

I.P min (error)	154(38)	61(13)	79(14)	104(11)
R ²	0.991	0.998	0.993	0.998

^a In general, the reaction was carried out in toluene with [CL] = 2.0 M at 60°C.

^b The data were determined from ¹H NMR analysis.

Figure S1. First-order kinetic plots of CL polymerization with various five membered ring Ti complexes plotted against time with [CL] = 2.0 M in toluene 5 mL (**Table S3**).

Table S3. Kinetic study of CL polymerization with various six-membered ring Ti complexes^a

	[CL]:[Ti]= 100:1		
Time/ hour	S ^{OMe} -Ti	S ^H -Ti	S ^{Cl} -Ti
		PCL conversion b	
1102			0.15
1200		0.19	
1290	0.22		
1410			0.22
1510	0.26		
1520		0.26	
1580			0.25
2495		0.42	
2900			0.49
3055	0.54		
3100			0.52

3115		0.51	
3725			0.60
4110		0.63	
4425			0.69
4500	0.73		
4505		0.67	
5795	0.83		
5820			0.80
7100			0.88
7260	0.90		
8425		0.90	
k _{obs} × 10 ⁴ / min (error)	3.5(1)	2.9(1)	3.2(1)
I.P min (error)	666(80)	576(76)	725(90)
\mathbb{R}^2	0.998	0.998	0.996

^a In general, the reaction was carried out in toluene with [CL] = 2.0 M at 60°C .

^b The data were determined from ¹H NMR analysis.

Figure S2. First-order kinetic plots of CL polymerization with various six membered ring Ti complexes plotted against time with [CL] = 2.0 M in toluene 5 mL

Figure S3. First-order kinetic plots of CL polymerization by various five and six membered ring Ti complexes plotted against time with [CL] = 2.0 M in toluene 5 mL

 $\textbf{Table S4.} \ \text{Kinetic study of CL polymerization with various concentration of } \textbf{F}^{\text{Cl}}\textbf{-Ti} \ \text{in toluene 5 mL},$

 $[CL] = 2.0 \text{ M at } 60^{\circ}\text{C}^{a}$

[CL] - 2.0 W at	[CL]:[F ^{Cl} - Ti]			
time	100:1	100:2	100:4	100:6
min		PCL cor	iversion ^b	
10			0.10	
15			0.17	0.22
20				0.34
25				0.47
30			0.42	0.59
40		0.21		
50			0.72	
55				0.85
65			0.83	
70		0.40		
90	0.10	0.54		
115		0.67		
140		0.75		

150	0.26			
200		0.89		
240	0.45			
350	0.66			
420	0.74			
540	0.86			
$k_{obs} \times 10^4 / min^-$	41(2)	125(4)	309(20)	417(9)
¹ (error)				
I.P/ min	79(14)	26(3)	9(2)	9(1)
(error)				
R ²	0.993	0.998	0.996	0.999

^a In general, the reaction was carried out in toluene with [CL] = 2.0 M at 60°C .

Figure S4. First-order kinetic plots of CL polymerization with various concentrations of $[F^{Cl}-Ti]$ plotted against time with [CL] = 2.0 M in toluene 5 mL

^b The data were determined from ¹H NMR analysis.

Table S5. Kinetic study of LA polymerization with various five-membered ring Ti complexes^a

		[LA]:[T	i]=25:1	
Time (min)	F ^{OMe} -Ti	F ^H -Ti	F ^{Cl} -Ti	F ^{Bu} -Ti
		PLA con	iversion ^b	
30		0.24	0.23	
60				0.34
70		0.38		
90		0.43	0.42	
110	0.33			
120			0.48	
135				0.46
150	0.38	0.53	0.55	
183			0.61	
222			0.65	
230	0.48			
240		0.68		
250			0.69	
270				0.61
280			0.72	
290	0.51			
300				0.63
350	0.55			
355			0.79	
410	0.60			
430			0.85	
450		0.87		
530	0.65			
540			0.91	
650	0.69			
1080				0.90
1250	0.85			
1510	0.90			
k _{obs} × 10 ³ / min (error)	1.30 (3)	4.14 (8)	4.08 (6)	1.79 (9)
R ²	0.995	0.998	0.997	0.992

^a In general, the reaction was carried out in toluene with [LA] = 0.5 M at 60°C.

^b The data were determined from ¹H NMR analysis.

Figure S5. First-order kinetic plots of LA polymerization by various five membered ring Ti complexes plotted against time with [LA] = 0.5 M in toluene 5 mL (**Table S1**)

Table S6. Kinetic study of LA polymerization with various six-membered ring Ti complexes a

	[LA]:[Ti]= 25:1			
Time (h)	S ^{OMe} -Ti	S ^H -Ti	S ^{Cl} -Ti	
	PLA conversion b			
3.41		0.20		
4.00			0.19	
8.41			0.24	
10.58	0.25			
18.38			0.36	
20.00		0.35		
21.50	0.34			
23.50			0.41	
25.16	0.38			
26.33			0.43	
41.58		0.49		
50.91	0.56			
51.66			0.59	
68.50		0.62		
73.75			0.68	
75.00	0.68			
75.08		0.65		
96.58	0.75			
97.00			0.76	

118.33			0.82
121.00	0.82		
140.41		0.83	
142.33			0.87
144.50	0.86		
150.10		0.85	
156.36			0.90
k _{obs} × 10 ⁴ / min (error)	2.1 (0)	1.8 (0)	2.2 (1)
R ²	0.999	0.998	0.998

 $^{^{\}rm a}$ In general, the reaction was carried out in toluene with [LA] = 0.5 M at 60°C.

^b The data were determined from 1H NMR analysis.

Figure S6. First-order kinetic plots of LA polymerization by various six membered ring Ti complexes plotted against time with [LA] = 0.5 M in toluene 5 mL (**Table S2**).

Figure S7. First-order kinetic plots of LA polymerization by various five and six membered ring Ti complexes plotted against time with [LA] = 0.5 M in toluene 5 mL

Table. S7 Kinetic study of LA polymerization with FH-Ti a in various concentrations

	[LA]: [F ^H - Ti]				
	25:0.25	25:0.5	25:1	25:2	
Time/ min	PLA conversion ^b				
1				0.01	
3				0.17	
5			0.31	0.31	
9				0.50	
10		0.35			
15			0.46		
16				0.73	
20		0.45	0.51	0.80	
35			0.61	0.94	
50		0.60		0.98	
60	0.46		0.74		

70		0.69		
80	0.49			
110			0.88	
160	0.59			
180		0.89		
230	0.65			
360	0.73			
540	0.82			
710	0.87			
k _{obs} × 10 ⁴ / min ⁻¹ (error)	22(0)	103(4)	162(4)	799(3)
I.P/ min (error)	0(8)	0(3)	0(0)	0(0)
\mathbb{R}^2	0.998	0.997	0.998	0.999

^a In general, the reaction was carried out in toluene with [LA] = 0.5 M at 90°C.

^b The data were determined from ¹H NMR analysis.

Figure S8. First-order kinetic plots of LA polymerization with various concentrations of $[\mathbf{F^H}\text{-}\mathbf{Ti}]$ plotted against time with [LA] = 0.5 M in toluene 5 mL

Table. S8. Measuring polymer's molar masses at different times/conversions for CL polymerization using F^{Cl} -Ti as a catalyst

Entry	Time(min	Conv. (%) a	Mn _{cacld.} ^b	Mn _{GPC} ^c	∌ °
)`		ouera.	GI C	
1	10	5	1200	1735	1.08
2	20	18	4164	3696	1.07
3	30	29	6672	5639	1.11
4	40	36	8268	7461	1.15
5	50	57	13056	8320	1.20
6	60	64	14652	9379	1.24
7	75	78	17160	9221	1.30
8	90	87	19896	10028	1.40
9	105	91	20808	10851	1.35

The reaction was carried out in toluene with [CL] = 8 M, [CL]:[Cat]= 200:1, at 90°C

Table. S9. Measuring polymer's molar masses at different times/conversions for LA polymerization using F^H -Ti as a catalyst

Entry	Time(hr)	Conv. (%) a	$\mathbf{M}\mathbf{n}_{\mathrm{cacld.}}^{\mathrm{b}}$	Mn _{GPC} c	₽ °
	-()		cacia.	GI C	
1	1.50	15	2760	1040	1.13
2	4.37	34	6180	2201	1.10
3	7.83	51	9240	3212	1.07
4	10.25	54	9780	3657	1.10
5	23.50	76	13740	5231	1.16
6	30.50	86	15540	5591	1.20
7	48.87	94	16980	6309	1.29

The reaction was carried out in toluene with [LA] = 3.125 M, [LA]:[Cat]= 100:1, at 90°C

^a Data were obtained through ¹H NMR analysis.

^b Calculated from the molecular weight of $Mw(CL) \times [CL]_0/2[Cat]_0 \times conversion$ yield + Mw(PrOH).

 $^{^{\}circ}$ Obtained through gel permeation chromatography (GPC). Values of $Mn_{\rm GPC}$ were obtained times 0.56 for PCL.

^a Data were obtained through ¹H NMR analysis.

^b Calculated from the molecular weight of $Mw(LA) \times [LA]_0/2[Cat]_0 \times conversion$ yield $+ Mw(^iPrOH)$.

^cObtained through gel permeation chromatography (GPC). Values of Mn_{GPC} were obtained times 0.58 for PLA.

Figure S9. ¹H NMR spectrum of F^{OMe}-Ti in CDCl₃

Figure S10. ¹³C NMR spectrum of F^{OMe}-Ti in CDCl₃

Figure S11. 1 H NMR spectrum of F^{H} -Ti in CDCl $_{3}$

Figure S12. ¹³C NMR spectrum of F^H-Ti in CDCl₃

Figure S13. ¹H NMR spectrum of F^{Cl}-Ti in CDCl₃

Figure S14. 13 C NMR spectrum of F^{Cl} -Ti in CDCl $_3$

Figure S15. ^1H NMR spectrum of F^{Bu} -Ti in CDCl $_3$

Figure S16. ¹³C NMR spectrum of F^{Bu}-Ti in CDCl₃

Figure S17. ¹H NMR spectrum of S^{OMe}-Ti in CDCl₃

Figure S18. ¹³C NMR spectrum of S^{OMe}-Ti in CDCl₃

Figure S19. ¹H NMR spectrum of S^H-Ti in CDCl₃

Figure S20. 13 C NMR spectrum of S $^{\text{H}}$ -Ti in CDCl $_{3}$

Figure S21. ¹H NMR spectrum of S^{Cl}-Ti in CDCl₃

Figure S22. ¹³C NMR spectrum of S^{Cl}-Ti in CDCl₃

Figure S23. ¹H NMR spectrum of PCL in CDCl₃ (entry 8 of Table 2)

Figure S24. ESI-MS spectra of PCL synthesized by using F^{Cl}-Ti

Figure S25. ¹H NMR spectrum of PLA in CDCl₃ (entry 9 of Table 3)

Figure S26. ESI-MS spectra of PCL synthesized by using F^H-Ti

Figure S27. ¹³C NMR of copolymer PLA-grad-PCL (entry 4 of Table 4) by F^{OMe}-Ti

Figure S28. ¹³C NMR of copolymer PLA-*grad*-PCL polymerized by **F**^{OMe}-**Ti**(A) and **S**^{OMe}-**Ti**(B)

Figure S29. GPC spectrum of PCL (entry 1 of Table 1)

Figure S30. GPC spectrum of PCL (entry 2 of Table 1)

Figure S31. GPC spectrum of PCL (entry 3 of Table 1)

Figure S32. GPC spectrum of PCL (entry 4 of Table 1)

Figure S33. GPC spectrum of PCL (entry 5 of Table 1)

Figure S34. GPC spectrum of PCL (entry 6 of Table 1)

Figure S35. GPC spectrum of PCL (entry 7 of Table 1)

Figure S36. GPC spectrum of PLA (entry 1 of Table 2)

Figure S37. GPC spectrum of PLA (entry 2 of Table 2)

Figure S38. GPC spectrum of PLA (entry 3 of Table 2)

Figure S39. GPC spectrum of PLA (entry 4 of Table 2)

Figure S40. GPC spectrum of PLA (entry 5 of Table 2)

Figure S41. GPC spectrum of PLA (entry 6 of Table 2)

Figure S42. GPC spectrum of PLA (entry 7 of Table 2)

Figure S43. GPC spectrum of PLA (entry 8 of Table 2)

Figure S44. GPC spectrum of PLA (entry 9 of Table 2)

Figure S45. GPC spectrum of PLA (entry 4 of Table 3)

Figure S46. GPC spectrum of PCL (entry 1 of Table S8)

Figure S47. GPC spectrum of PCL (entry 2 of Table S8)

Figure S48. GPC spectrum of PCL (entry 3 of Table S8)

Figure S49. GPC spectrum of PCL (entry 4 of Table S8)

Figure S50. GPC spectrum of PCL (entry 5 of Table S8)

Figure S51. GPC spectrum of PCL (entry 6 of Table S8)

Figure S52. GPC spectrum of PCL (entry 7 of Table S8)

Figure S53. GPC spectrum of PLA (entry 1 of Table S9)

Figure S54. GPC spectrum of PLA (entry 2 of Table S9)

Figure S55. GPC spectrum of PLA (entry 3 of Table S9)

Figure S56. GPC spectrum of PLA (entry 4 of Table S9)

Figure S57. GPC spectrum of PLA (entry 5 of Table S9)

Figure S58. GPC spectrum of PLA (entry 6 of Table S9)

Figure S59. GPC spectrum of PLA (entry 7 of Table S9)

Figure S60. MALDI-TOF spectra of PLA-*grad*-PCL copolymer (50 CL + 50 LA) using $\mathbf{F^{OMe}}$ -Ti as a catalyst; PLA conversion = 19% and PCL conversion = 2% (matrix: DCTB; ionization salt: KI; solvent: CH_2Cl_2).

Figure S61. MALDI-TOF spectra of PLA-*grad*-PCL copolymer (50 CL + 50 LA) using $\mathbf{F^{OMe}}$ -Ti as a catalyst; PLA conversion = 37% and PCL conversion = 10% (matrix: DCTB; ionization salt: KI; solvent: CH_2Cl_2).

Figure S62. DSC curve of PLA (entry 3 of Table 3)

Figure S63. DSC curve of PCL (entry 3 of Table 2)

Figure S64. DSC curve of PLA-grad-PCL (entry 8 of Table 4)