Supplementary Information (SI) for Dalton Transactions. This journal is © The Royal Society of Chemistry 2024

Supporting Information

to

Biotin Functionalization of 8-Hydroxyquinoline Anticancer Organometallics: Low *in vivo* Toxicity but Potent *in vitro* Activity

Tasha R. Steel,¹ Julia Stjärnhage,¹ Zexiong Lin,¹ Hugh O. Bloomfield,¹ Caitlin D. Herbert,² Jonathan W. Astin,² Krzysztof Krawczyk,³ Błażej Rychlik,³ Damian Plażuk,⁴ Stephen M.F. Jamieson,⁵ Christian G. Hartinger^{1,*}

¹ School of Chemical Sciences, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand

² Department of Molecular Medicine and Pathology, Faculty of Medical and Health Sciences, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand

³ Centre for Digital Biology and Biomedical Science – Biobank[®] Lodz, Faculty of Biology and Environmental Protection, University of Lodz, ul. Pomorska 141/143, 90-236 Łódź, Poland

⁴ Laboratory of Molecular Spectroscopy, Department of Organic Chemistry, Faculty of Chemistry, University of Lodz, Tamka 12, 91-403 Łódź, Poland

⁵ Auckland Cancer Society Research Centre, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand.

Contents

- ¹H and ¹³C{¹H} DEPT-Q NMR spectra, and ESI-mass spectra for L1 and L2, 1a–1d and 2a
- UV-Vis and mass spectra from stability and biomolecule binding studies
- Molecular modelling data

Figure S1. ¹H NMR spectrum of ligands L1 and L2 with comparison to starting materials 6aminoindazole (AmInd) and biotinyl-6-aminohexanoic acid (BAHA) in d_{e} -DMSO.

Figure S2. ¹H NMR spectrum of **L1** in d_6 -DMSO.

Figure S3. ¹H NMR spectrum of **L2** in d_6 -DMSO.

Figure S4. ESI-mass spectrum of L1 indicating the base peak at m/z 495.2139 assigned to [L1 + Na]⁺.

Figure S5. ¹³C{¹H} DEPT-Q NMR spectrum of L1 in d_6 -DMSO.

Figure S6. ¹³C{¹H} DEPT-Q NMR spectrum of L2 in d_6 -DMSO.

¹H and ¹³C{¹H} DEPT-Q NMR spectra, and ESI-mass spectra for 1a–1d and 2a

Figure S7. ¹H NMR spectrum of **1a** in d_4 -methanol.

Figure S8. ¹³C{¹H} DEPT-Q NMR spectrum of **1a** in d_4 -methanol.

Figure S9. ¹H NMR spectrum of **1b** in d_{4} -methanol.

Figure S10. ¹³C{¹H} DEPT-Q NMR spectrum of **1b** in d_4 -methanol.

Figure S11. ¹H NMR spectrum of **1c** in d_4 -methanol.

Figure S12. ¹³C{¹H} DEPT-Q NMR spectrum of **1c** in d_4 -methanol.

Figure S13. ¹H NMR spectrum of **1d** in d_4 -methanol.

Figure S14. ¹³C{¹H} DEPT-Q NMR spectrum of **1d** in d_4 -methanol.

Figure S15. ¹H NMR spectrum of **2a** in d_{a} -methanol.

Figure S16. ¹³C{¹H} NMR spectrum of **2a** in d_4 -methanol.

Figure S17. ¹H NMR spectrum of ligand L1 with comparison to complexes 1a-1d in d_{4} -methanol. The coloured dots indicate the downfield shifting observed upon coordination of L1 to the metal centres.

Figure S18. Comparative ¹H NMR spectra for Ru complexes containing one (**1a**) or two (**2a**) biotinyl units in d_{4} -methanol, showing the relative integration values of the aminoindazole and biotinyl groups.

Figure S19. ¹H-¹H COSY NMR spectrum of Ru complex **2a** in d_4 -methanol.

Figure S20. ESI-mass spectrum of **1a**. The inset shows the peak at m/z 852.2839 assigned to [**1a** – PF₆]⁺ (m/z_{calc} 852.2840).

Figure S21. ESI-mass spectrum of **1b**. The inset shows the base peak at m/z 942.3391 assigned to [**1b** – PF₆]⁺ (m/z_{calc} 942.3411).

Figure S22. ESI-mass spectrum of **1c**. The inset shows the peak at m/z 854.2901 assigned to [**1c** – PF₆]⁺ (m/z_{calc} 854.2929).

Figure S23. ESI-mass spectrum of **1d**. The inset shows the peak at m/z 944.3502 assigned to [**1d** – PF₆]⁺ (m/z_{calc} 944.3504).

Figure S24. ESI-mass spectrum of **2a**. The inset shows the peak at m/z 380.0586 assigned to [**2a** – PF₆ – **L2**]⁺ (m/z_{calc} 380.0583).

Zebrafish embryo toxicity data

Figure S25. Kaplan Meier plot tracking the survival of zebrafish embryos treated over three replicate experiments with **1a**, **1b** and **1d** over 5 d at concentrations ranging from 0.5 to 32 μ M.

UV-Vis and ESI-mass spectra for biomolecule binding assays

Figure S26. Stability study of AmInd-BAHA ligand L1 and non-biotinylated parent complexes $[M(cym/Cp^*)(HQ)CI]$ in 10% DMSO/H₂O by UV-Vis absorption spectroscopy over the course of 1 week.

Figure S27. UV-Vis spectra of non-biotinylated [M(cym/Cp*)(HQ)Cl] complexes (red lines) in 10% DMSO/H₂O as well as those with the addition of 2 equiv. AgNO₃ over the course of 1 week.

Figure S28. Comparative UV-Vis absorption spectra of biotinylated HQ complexes **1b–1d** against biotinyl-aminoindazole ligand **L1** and their respective non-biotinylated chlorido complexes.

Figure S29. Stability study of biotinylated complexes **1a–1d** in 10% DMSO/H₂O by UV-Vis over the course of 1 week.

Figure S30. UV-Vis absorption spectra of complexes **1a**, **1b** and **1d** in 10% DMSO/H₂O before incubation with L-histidine as well as at several time intervals after incubation, including spectra of their respective non biotinylated [M(cym/Cp*)(HQ)CI] complexes.

Figure S31. ESI-mass spectrum of **1a** incubated with L-histidine (His) for 1 week indicating relevant peaks.

Figure S32. ESI-mass spectrum of **1b** incubated with L-histidine (His) for 1 week indicating relevant peaks.

Figure S33. ESI-mass spectrum of **1d** incubated with L-histidine (His) for 1 week indicating relevant peaks.

Figure S34. UV-Vis absorption spectra of complexes 1a-1d in 10% DMSO/H₂O before incubation with L-cysteine as well as at several time intervals after incubation, including spectra of their respective non biotinylated [M(cym/Cp*)(HQ)CI] complexes.

Figure S35. UV-Vis absorption spectra of complexes **1a–1d** in 10% DMSO/H₂O before incubation with glutathione as well as at several time intervals after incubation, including spectra of their respective non biotinylated [M(cym/Cp*)(HQ)CI] complexes.

Figure S36. ESI-mass spectrum of **1a** incubated with L-cysteine (Cys) for 1 week indicating relevant peaks.

Figure S37. ESI-mass spectrum of **1b** incubated with L-cysteine (Cys) for 1 week indicating relevant peaks.

Figure S38. ESI-mass spectrum of **1c** incubated with L-cysteine (Cys) for 1 week indicating relevant peaks.

Figure S39. ESI-mass spectrum of **1d** incubated with L-cysteine (Cys) for 1 week indicating relevant peaks.

Figure S40. ESI-mass spectrum of **1a** incubated with glutathione (GSH) for 1 week indicating relevant peaks.

Figure S41. ESI-mass spectrum of **1b** incubated with glutathione (GSH) for 1 week indicating relevant peaks.

Figure S42. ESI-mass spectrum of **1c** incubated with glutathione (GSH) for 1 week indicating relevant peaks.

Figure S43. ESI-mass spectrum of **1d** incubated with glutathione (GSH) for 1 week indicating relevant peaks.

S44. UV-Vis absorption spectra of complexes **1a–1d** in 10% DMSO/H₂O before incubation with 9ethylguanine (9EtG) as well as at several time intervals after incubation, including spectra of their respective non biotinylated [M(cym/Cp*)(HQ)CI] complexes.

Figure S45. ESI-mass spectrum of **1b** incubated with 9-ethylguanine (9EtG) for 1 week indicating relevant peaks.

Figure S46. ESI-mass spectrum of **1c** incubated with 9-ethylguanine (9EtG) for 1 week indicating relevant peaks.

Figure S47. ESI-mass spectrum of **1d** incubated with 9-ethylguanine (9EtG) for 1 week indicating relevant peaks.

Table S1. GoldScore docking scores for both enantiomers of compounds 1a-1d with regard to the configuration at the metal center ($1a-M_R$, $1a-M_S$, $1b-M_R$, $1b-M_S$, $1c-M_R$, $1c-M_S$, $1d-M_R$, $1d-M_S$) at the biotin binding site of streptavidin (PDB ID: 3YR2), as predicted by GOLD, including root mean square deviation (RMSD) values relative to the positioning of co-crystallized biotin.

Compound	GoldScore	RMSD (Å)
Biotin	73.8	0.21
1а - <i>М</i> ѕ	88.7	0.64
1 a - <i>M</i> _ℝ	91.7	0.44
1b - <i>M</i> s	102	0.70
1b- <i>M</i> _ℝ	92.7	0.33
1 c - <i>M</i> s	88.2	0.78
1 с - <i>M</i> _ℝ	85.8	0.68
1 d - <i>M</i> s	102	0.70
1 d - <i>M</i> _R	95.3	0.75

Figure S48. The minimum energy docked pose of biotin with streptavidin (PDB ID: 3YR2) indicating hydrogen bonding interactions, as predicted by GOLD.

Figure S49. The highest scoring poses of both enantiomers of compounds 1a-1d with regard to the configuration at the metal center ($1a-M_R$, $1a-M_S$, $1b-M_R$, $1b-M_S$, $1c-M_R$, $1c-M_S$, $1d-M_R$, $1d-M_S$) in docking studies at the biotin binding site of streptavidin (PDB ID: 3YR2), as predicted by GOLD. The protein surface is rendered to depict hydrophilic regions on the surface in blue, hydrophobic regions in brown, and neutral areas in grey.