Supporting Information for

Solvent-dependent Ln(III) clusters assembled by immobilization of CO₂ in

the air: zero-field single-molecule magnets and magnetic refrigerant

materials

Cai-Ming Liu,*^a Xiang Hao,^a Zhao-Bo Hu^b and He-Rui Wen^b

^a Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory for Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China. E-mail: cmliu@iccas.ac.cn

^bSchool of Metallurgy and Chemical Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, Jiangxi, China.

- 1. Fig. S1. Diagram showing the residual density plot of the X-ray structure of **3**.
- 2. Fig. S2. Diagram showing the residual density plot of the X-ray structure of 4.
- 3. Table S1. Selected bond lengths (Å) and angles (°) for 1.
- 4. Table S2. Selected bond lengths (Å) and angles (°) for **2**.
- 5. Table S3. Selected bond lengths (Å) and angles (°) for **3**.
- 6. Table S4. Selected bond lengths (Å) and angles (°) for 4.
- 7. Tables S5 and S6. Dy (III) ion geometry analysis by SHAPE 2.1 software for 1.
- 8. Table S7. Dy (III) ion geometry analysis by SHAPE 2.1 software for **2**.
- 9. Tables S8 and S9. Dy (III) ion geometry analysis by SHAPE 2.1 software for **3**.
- 10. Tables S10 and S11. Dy (III) ion geometry analysis by SHAPE 2.1 software for 4.
- 11. Fig. S3. The unique trapezoidal pyramid metal core in 1.
- 12. Fig. S4. The unique trapezoidal pyramid metal core in 4.
- 13. Fig. S5. $1/\chi_M$ -*T* curve of **3**.
- 14. Fig. S6. $1/\chi_M$ -*T* curve of **4**.
- 15. Fig. S7. *M versus H*/*T* plots at 2 K, 4 K and 6 K of 1.
- 16. Fig. S8. *M versus H/T* plots at 2 K, 4 K and 6 K of **2**.

- 17. Fig. S9. *M versus H* plots at 2-10 K of **3**.
- 18. Fig. S10. *M versus H plots* at 2-10 K of 4.
- 19. Table S12. The $-\Delta S_m$ maximum value for some Gd_n clusters (n \geq 4).
- 20. Fig. S11. Hysteresis loop for 1 at 1.9 K.
- 21. Fig. S12. Plots of χ'' versus *T* for $\mathbf{1}(H_{dc} = 1 \text{ kOe})$ (a), plot of $\ln(\tau)$ versus 1/T for $\mathbf{1}(H_{dc} = 1 \text{ kOe})$ (b).
- 22. Fig. S13. Hysteresis loop for 2 at 1.9 K and 2.0 K.
- 23. Fig. S14. Plots of χ'' versus *T* for **2** ($H_{dc} = 1$ kOe) (a), plot of $\ln(\tau)$ versus 1/T for **2** ($H_{dc} = 1$ kOe) (b).

Fig. S1. Diagram showing the residual density plot of the X-ray structure of 3.

Fig. S2. Diagram showing the residual density plot of the X-ray structure of 4.

bond lengths (Å)					
Dv1-N1	2.481(5)	Dv1-N19	2.548(6)		
Dv1-01	2.205(4)	Dy1-O1W	2.342(5)		
Dv1-O2	2.336(4)	Dv1-O10	2.523(4)		
Dv1-011	2.311(4)	Dv1-O14	2.346(5)		
Dv2-N3	2.568(5)	Dv2-N5	2.500(6)		
Dv2-N11	2.690(5)	Dv2-O2	2.421(4)		
Dv2-O3	2.199(4)	Dv2-O4	2.489(4)		
Dy2-06	2.384(4)	Dy2-O10	2.584(4)		
Dv2-O17	2.341(4)	Dv3-N7	2.696(5)		
Dy3-N9	2.513(5)	Dy3-N15	2.577(5)		
Dy3-04	2.567(4)	Dy3-O5	2.276(4)		
Dy3-O6	2.367(4)	Dy3-O8	2.401(4)		
Dy3-017	2.383(4)	Dy3-O18	2.289(4)		
Dy4-N13	2.495(6)	Dy4-O7	2.210(5)		
Dy4-08	2.353(4)	Dy4-O12	2.357(4)		
Dy4-018	2.401(5)	Dy4-O19	2.379(5)		
Dy4-O20	2.399(5)	Dy4-O21	2.412(4)		
Dy5-N21	2.493(6)	Dy5-O4	2.495(4)		
Dy5-09	2.279(4)	Dy5-O10	2.409(4)		
Dy5-011	2.402(4)	Dy5-O12	2.429(5)		
Dy5-O15	2.356(5)	Dy5-O17	2.517(4)		
Dy5-O18	2.398(4)				
	bond ar	ngles (°)			
O1-Dy1-N1	72.73(17)	O2-Dy1-N1	65.83(16)		
010-Dy1-N19	64.07(15)	011-Dy1-014	76.65(16)		
O3-Dy2-N5	72.54(17)	06-Dy2-N11	61.17(15)		
O17-Dy2-O6	71.38(14)	O17-Dy2-O10	75.52(14)		
O5-Dy3-N9	72.90(17)	04-Dy3-N7	60.56(14)		
O6-Dy3-N9	63.71(16)	O8-Dy3-N15	63.88(16)		
07-Dy4-N13	72.76(18)	O8-Dy4-N13	64.73(17)		
08-Dy4-O12	91.33(16)	O9-Dy5-N21	70.92(18)		
04-Dy5-017	57.97(14)	O11-Dy5-O12	53.59(15)		
O11-Dy5-O10	69.51(15)	O9-Dy5-O12	95.95(17)		
Dy1-O2-Dy2	118.79(17)	Dy2-O4-Dy3	95.79(14)		
Dy2-O4-Dy5	96.81(14)	Dy5-O4-Dy3	92.31(14)		
Dy3-O6-Dy2	104.30(16)	Dy4-O8-Dy3	111.25(18)		
Dy1-O10-Dy2	106.59(15)	Dy5-O10-Dy1	106.04(17)		
Dy5-O10-Dy2	96.51(15)	Dy1-O11-Dy5	113.47(19)		
Dy4-O12-Dy5	111.53(17)	Dy2-O17-Dy3	105.13(16)		
Dy2-O17-Dy5	100.16(16)	Dy3-O17-Dy5	96.30(14)		
Dy3-O18-Dy4	113.55(18)	Dy3-O18-Dy5	102.33(16)		
Dy4-O18-Dy5	111.11(17)				

Table S1. Selected bond lengths (Å) and angles (°) for 1.

bond lengths (Å)				
Dy1-Cl1	2.7605(7)	Dy1-O1	2.1585(19)	
Dy1-O2	2.3389(18)	Dy1-O8	2.3664(18)	
Dy1-O13	2.4364(18)	Dy1-O14	2.4310(18)	
Dy1-N1	2.450(2)	Dy1-N15	2.523(2)	
Dy2-O3	2.149(2)	Dy2-O4	2.3359(18)	
Dy2-O10	2.3608(18)	Dy2-O14	2.4198(18)	
Dy2-O15	2.4431(18)	Dy2-N5	2.458(2)	
Dy2-N19	2.519(2)	Dy2-O1W	2.450(2)	
Dy3-O5	2.1610(19)	Dy3-O6	2.3446(17)	
Dy3-O12	2.3548(18)	Dy3-O13	2.4329(18)	
Dy3-O15	2.4825(18)	Dy3-N9	2.446(2)	
Dy3-N23	2.551(2)	Dy3-Cl2	2.7155(7)	
Dy4-O2	2.3452(18)	Dy4-O7	2.1561(19)	
Dy4-O8	2.3395(18)	Dy4-O16	2.4820(18)	
Dy4-O17	2.4404(18)	Dy4-O19	2.4048(19)	
Dy4-N3	2.541(2)	Dy4-N13	2.494(2)	
Dy5-O2W	2.409(2)	Dy5-O4	2.3551(18)	
Dy5-O9	2.1650(19)	Dy5-O10	2.3176(18)	
Dy5-O17	2.4703(18)	Dy5-O18	2.3925(18)	
Dy5-N7	2.508(2)	Dy5-N17	2.460(2)	
Dy6-O6	2.3308(17)	Dy6-O11	2.1652(18)	
Dy6-O12	2.3331(17)	Dy6-O16	2.4770(18)	
Dy6-O18	2.4114(18)	Dy6-O20	2.3748(19)	
Dy6-N11	2.568(2)	Dy6-N21	2.449(2)	
	bond ar	ngles (°)		
O1-Dy1-N1	74.96(7)	O8-Dy1-N15	66.08(7)	
O2-Dy1-O8	66.30(6)	O3-Dy2-N5	74.82(8)	
O4-Dy2-O10	67.02(6)	O3-Dy2-N19	82.05(8)	
O5-Dy3-N23	86.80(7)	O5-Dy3-Cl2	95.43(6)	
07-Dy4-N13	73.17(7)	O2-Dy4-N3	65.44(7)	
O17-Dy4-O16	53.48(6)	08-Dy4-O2	66.63(6)	
O9-Dy5-N17	74.89(9)	O4-Dy5-N7	65.13(8)	
O6-Dy6-N11	65.17(7)	O11-Dy6-N21	75.06(7)	
Dy1-O2-Dy4	113.70(7)	Dy2-O4-Dy5	112.40(7)	
Dy6-O6-Dy3	113.30(7)	Dy4-O8-Dy1	112.89(7)	
Dy5-O10-Dy2	112.87(7)	Dy6-O12-Dy3	112.83(7)	
Dy3-O13-Dy1	172.05(9)	Dy2-O14-Dy1	171.21(9)	
Dy2-O15-Dy3	171.68(9)	Dy6-O16-Dy4	173.27(8)	
Dy4-O17-Dy5	167.96(9)	Dy5-O18-Dy6	165.64(9)	

Table S2. Selected bond lengths (Å) and angles (°) for 2.

bond lengths (Å)				
Gd1-N1	2.513(3)	Gd1-N31	2.675(3)	
Gd1-O2	2.408(2)	Gd1-O16	2.476(2)	
Gd1-O17	2.587(2)	Gd1-O18	2.399(2)	
Gd1-O28	2.428(2)	Gd1-O29	2.481(3)	
Gd1-O46	2.279(2)	Gd1-O29W	2.481(3)	
Gd2-N3	2.662(3)	Gd2-N5	2.461(3)	
Gd2-O1W	2.432(2)	Gd2-O2	2.352(2)	
Gd2-O3	2.236(2)	Gd2-O4	2.353(2)	
Gd2-O17	2.333(2)	Gd2-O27	2.356(2)	
Gd3-N7	2.658(3)	Gd3-N9	2.521(3)	
Gd3-O4	2.465(2)	Gd3-O5	2.288(2)	
Gd3-O6	2.376(2)	Gd3-O25	2.442(2)	
Gd3-O26	2.542(2)	Gd3-O27	2.410(2)	
Gd3-O32	2.477(3)	Gd3-O32W	2.477(3)	
Gd4-N11	2.631(3)	Gd4-N13	2.480(3)	
Gd4-O3W	2.421(2)	Gd4-06	2.422(2)	
Gd4-07	2.252(2)	Gd4-O8	2.388(2)	
Gd4-O24	2.333(2)	Gd4-O26	2.330(2)	
Gd5-N15	2.672(3)	Gd5-N17	2.540(3)	
Gd5-08	2.475(2)	Gd5-O9	2.313(2)	
Gd5-O10	2,433(2)	Gd5-022	2.397(2)	
Gd5-023	2.581(2)	Gd5-O24	2.387(2)	
Gd5-O31	2421(3)	Gd6-N19	2.616(3)	
Gd6-N21	2.532(3)	Gd6-O2W	2 422(2)	
Gd6-O10	2439(2)	Gd6-O11	2.122(2)	
Gd6-012	2 396(2)	Gd6-021	2 375(2)	
Gd6-023	2.348(2)	Gd7-N23	2.610(3)	
Gd7-N25	2.510(2)	Gd7-012	2.010(3)	
Gd7-013	2.307(2)	Gd7-O14	2.390(2)	
Gd7-019	2.418(2)	Gd7-O20	2 499(2)	
Gd7-021	2.399(2)	Gd7-O30	2.545(2)	
Gd8-N27	2 666(3)	Gd8-N29	2479(3)	
Gd8-O4W	2.000(3)	Gd8-O14	2.175(3)	
Gd8-015	2 235(2)	Gd8-O16	2.101(2) 2.364(2)	
Gd8-018	2.233(2) 2.342(2)	Gd8-O20	2.327(2)	
	bond au	ngles (°)	2.027(2)	
02-Gd1-N1	62 86(8)	02-Gd1-028	71.91(8)	
O46 Gd1 N1	72 65(9)	N1 Gd1 N21	71.36(0)	
N5 Gd2 N3	72.03(9)	$O_3 G_{d2} O_2$	<u>71.50(9)</u> <u>86.12(0)</u>	
N3-OU2-N3	75.99(9) 91.05(9)	03-002-02	80.12(9)	
04-Gd2-N3	81.05(8)	04-Gd2-N5	03.50(8)	
N9-Gd3-N7	/1.69(9)	04-Gd3-N7	62.18(7)	
05-Gd3-N/	/5.5/(8)	05-Gd3-04	/3.69(7)	
0/-Gd4-06	83.18(8)	N13-Gd4-N11	80.26(9)	
06-Gd4-NTI	62.58(8)	0/-Gd4-06	83.18(8)	
N1/-Ga5-N15	72.01(9)	09-003-08	(2.35(8)	
09-Gd5-022	72.26(8)	010-Gd5-N17	03.28(8)	
N21-Gd6-N19	/8.39(9)	010-Gd6-N19	02.9/(8)	
011-Gdb-N19	85./1(9)	011-Gdb-023	80.03(8)	
N25-Gd7-N23	/1.29(9)	012-Gd/-030	/9.58(7)	
013-Gd/-012	12.13(8)	014-Gd/-019	/5.05(/)	
N29-Gd8-N27	75.69(9)	014-Gd8-N27	62.87(8)	
015-Gd8-014	87.18(8)	018-Gd8-O16	66.29(7)	

Table S3. Selected bond lengths (Å) and angles (°) for 3.

Gd2-O2-Gd1	112.34(9)	Gd2-O4-Gd3	110.86(8)
Gd3-O6-Gd4	111.56(8)	Gd4-O8-Gd5	110.70(9)
Gd5-O10-Gd6	113.31(8)	Gd6-O12-Gd7	111.92(8)
Gd7-O14-Gd8	110.76(9)	Gd8-O16-Gd1	111.57(8)
Gd2-O17-Gd1	106.88(8)	Gd8-O18-Gd1	115.23(9)
Gd8-O20-Gd7	109.48(9)	Gd6-O21-Gd7	115.30(9)
Gd7-O14-Gd8	110.76(9)	Gd8-O16-Gd1	111.57(8)
Gd2-O17-Gd1	106.88(8)	Gd8-O18-Gd1	115.23(9)
Gd8-O20-Gd7	109.48(9)	Gd6-O21-Gd7	115.30(9)
Gd6-O23-Gd5	111.25(8)	Gd4-O24-Gd5	115.91(9)
Gd4-O26-Gd3	108.98(8)	Gd2-O27-Gd3	112.71(9)

	bond lengths (Å)				
Gd1-N1	2.510(6)	Gd1-N7	2.530(5)		
Gd1-O1	2.215(5)	Gd1-O2	2.366(4)		
Gd1-O4	2.531(4)	Gd1-O11	2.316(4)		
Gd1-O16	2.422(5)	Gd1-O17	2.360(5)		
Gd2-N3	2.622(5)	Gd2-N9	2.549(5)		
Gd2-N15	2.643(5)	Gd2-O2	2.438(4)		
Gd2-O4	2.593(4)	Gd2-O5	2.241(4)		
Gd2-O6	2.521(4)	Gd2-O8	2.405(4)		
Gd2-O14	2.376(4)	Gd3-N11	2.683(6)		
Gd3-N13	2.559(6)	Gd3-N19	2.599(5)		
Gd3-O6	2.549(4)	Gd3-O7	2.324(5)		
Gd3-O8	2.419(4)	Gd3-O10	2.419(4)		
Gd3-O14	2.446(4)	Gd3-O15	2.317(4)		
Gd4-N17	2.536(6)	Gd4-O9	2.222(5)		
Gd4-O10	2.379(4)	Gd4-O12	2.372(5)		
Gd4-O15	2.445(4)	Gd4-O18	2.426(5)		
Gd4-O19	2.437(5)	Gd4-O20	2.424(5)		
Cl1-Gd5	2.7564(19)	Gd5-N5	2.548(5)		
Gd5-O3	2.281(4)	Gd5-O4	2.525(4)		
Gd5-O6	2.482(4)	Gd5-O11	2.511(4)		
Gd5-O14	2.524(4)	Gd5-O15	2.423(4)		
	bond ar	ngles (°)			
N7-Gd1-O4	65.22(16)	O2-Gd1-N1	64.75(17)		
01-Gd1-N1	71.68(19)	O11-Gd1-O4	66.91(14)		
O5-Gd2-N9	72.13(16)	O6-Gd2-N9	61.87(15)		
O8-Gd2-O6	64.97(14)	O14-Gd2-O6	59.88(14)		
O6-Gd3-N11	61.21(15)	O7-Gd3-N13	72.57(18)		
O8-Gd3-N13	62.59(17)	O8-Gd3-O14	70.68(14)		
O10-Gd4-N17	64.23(16)	O9-Gd4-N17	71.64(19)		
O12-Gd4-O10	94.97(15)	O4-Gd5-N5	62.83(15)		
O3-Gd5-O12	110.13(16)	O11-Gd5-O4	64.25(13)		
O12-Gd5-O11	51.89(14)	O14-Gd5-O4	74.29(13)		
Gd1-O2-Gd2	116.71(16)	Gd1-O4-Gd2	105.90(15)		
Gd5-O4-Gd1	110.20(15)	Gd5-O4-Gd2	94.34(14)		
Gd2-O6-Gd3	97.41(13)	Gd5-O6-Gd2	97.22(14)		
Gd5-O6-Gd3	92.99(13)	Gd2-O8-Gd3	104.32(15)		
Gd4-O10-Gd3	112.08(16)	Gd1-O11-Gd5	118.37(17)		
Gd4-012-Gd5	112.15(18)	Gd2-O14-Gd3	104.38(16)		
Gd2-O14-Gd5	99.97(15)	Gd3-O14-Gd5	94.47(14)		
Gd3-O15-Gd4	113.31(17)	Gd3-O15-Gd5	100.66(15)		
Gd5-O15-Gd4	111.54(18)				

Table S4. Selected bond lengths (Å) and angles (°) for 4.

Configuration	ABOXIV	ABOXIV	ABOXIV
Configuration	ABOATT	ABOATT	ADUATI
	Dy2	Dy3	Dy5
Enneagon (D_{9h})	33.088	34.378	34.953
Octagonal pyramid (C_{8v})	21.903	21.837	22.916
Heptagonal bipyramid (D_{7h})	19.209	18.129	17.491
Johnson triangular cupola J3 (C_{3v})	13.894	14.294	14.176
Capped cube J8 (C_{4v})	10.606	9.925	8.713
Spherical-relaxed capped cube (C_{4v})	9.392	8.798	7.350
Capped square antiprism J10 (C_{4v})	2.364	2.070	2.797
Spherical capped square antiprism (C_{4v})	1.284	1.109	1.834
Tricapped trigonal prism J51 (D_{3h})	2.632	3.499	3.261
Spherical tricapped trigonal prism (D_{3h})	2.303	1.909	1.950
Tridiminished icosahedron J63 (C_{3v})	11.531	12.074	10.270
Hula-hoop (C_{2v})	10.326	11.759	8.438
Muffin ($C_{\rm s}$)	1.848	1.540	2.467

 Table S5. 9-coordinated Dy (III) ion geometry analysis by SHAPE 2.1 software for 1.

 Table S6. 8-coordinated Dy (III) ion geometry analysis by SHAPE 2.1 software for 1.

Configuration	ABOXIY	ABOXIY
	Dy1	Dy4
$Octagon(D_{8h})$	31.272	32.167
Heptagonal pyramid(C_{7v})	23.586	23.784
Cube (O_h)	14.761	13.867
Hexagonal bipyramid(D_{6h})	10.980	10.190
Square antiprism (D_{4d})	2.011	2.299
Triangular dodecahedron (D_{2d})	1.688	2.065
Johnson gyrobifastigium J26 (D _{2d})	12.710	12.861
Johnson elongated triangular bipyramid J14 (D_{3h})	27.858	27.171
Biaugmented trigonal prism J50 (C_{2v})	1.607	1.671
Biaugmented trigonal prism (C_{2v})	1.118	0.975
Snub diphenoid J84 (D_{2d})	3.715	4.125
Triakis tetrahedron (T_d)	11.541	10.653
Elongated trigonal bipyramid (D_{3h})	24.067	23.616

	-					
Configuration	ABOXIY	ABOXIY	ABOXIY	ABOXIY	ABOXIY	ABOXIY
	Dy1	Dy2	Dy3	Dy4	Dy5	Dy6
$Octagon(D_{8h})$	31.475	32.237	31.620	31.799	32.086	32.687
Heptagonal pyramid(C_{7v})	22.636	22.021	22.817	22.041	22.129	21.894
Cube (O_h)	16.027	16.256	16.408	15.345	15.756	16.351
Hexagonal	12.487	12.416	13.230	11.247	12.202	13.610
bipyramid(D _{6h})						
Square antiprism (D_{4d})	4.186	4.031	4.002	4.655	4.269	4.440
Triangular dodecahedron	2.897	2.897	3.072	2.865	2.858	3.315
(D_{2d})						
Johnson gyrobifastigium	14.255	13.306	14.640	12.723	13.031	13.715
J26 (D _{2d})						
Johnson elongated	26.665	26.428	26.951	25.170	25.447	25.671
triangular bipyramid J14						
(D_{3h})						
Biaugmented trigonal	3.676	2.901	3.494	3.252	2.884	2.835
prism J50 (C _{2v})						
Biaugmented trigonal	3.325	2.841	3.235	3.312	2.797	2.877
prism (C_{2v})						
Snub diphenoid J84 (D _{2d})	5.288	4.779	5.186	4.939	4.807	4.663
Triakis tetrahedron (T_d)	13.280	12.883	13.986	11.708	12.730	13.921
Elongated trigonal	24.024	23.897	24.569	22.471	22.912	23.473
bipyramid (D_{3h})						

Table S7. 8-coordinated Dy (III) ion geometry analysis by SHAPE 2.1 software for 2.

 Table S8. 8-coordinated Gd(III) ion geometry analysis by SHAPE 2.1 software for 3.

Configuration	ABOXIY	ABOXIY	ABOXIY	ABOXIY
	Gd2	Gd4	Gd6	Gd8
$Octagon(D_{8h})$	29.670	29.894	28.185	29.554
Heptagonal pyramid(C_{7v})	23.744	23.652	24.178	24.417
Cube (O_h)	14.025	15.325	15.016	14.553
Hexagonal bipyramid(D_{6h})	9.734	11.502	9.825	10.797
Square antiprism (D_{4d})	2.675	2.544	1.714	2.202
Triangular dodecahedron (D_{2d})	2.591	1.909	1.920	1.759
Johnson gyrobifastigium J26 (D_{2d})	12.264	12.633	13.395	12.476
Johnson elongated triangular bipyramid J14 (D_{3h})	26.748	27.998	26.118	28.386
Biaugmented trigonal prism J50 (C_{2v})	2.647	2.758	2.327	3.093
Biaugmented trigonal prism (C_{2v})	2.306	2.295	1.754	2.061
Snub diphenoid J84 (D_{2d})	4.238	3.907	4.012	3.510
Triakis tetrahedron (T_d)	10.359	12.103	10.292	11.466
Elongated trigonal bipyramid (D_{3h})	23.276	24.267	23.305	24.223

Configuration	ABOXIV	ABOXIV	ABOXIV	ABOXIV
Configuration	Gd1	Gd3	Gd5	Gd7
Γ_{n}	20.501	22.020	22.151	22.020
Enneagon (D_{9h})	29.391	32.030	33.131	32.030
Octagonal pyramid (C_{8v})	22.493	22.661	22.491	22.661
Heptagonal bipyramid (D_{7h})	14.835	16.977	15.623	16.977
Johnson triangular cupola J3 (C_{3v})	14.235	14.855	13.673	14.855
Capped cube J8 (C_{4v})	7.562	8.726	6.946	8.726
Spherical-relaxed capped cube (C_{4v})	6.564	7.706	5.864	7.706
Capped square antiprism J10 (C_{4v})	5.153	4.205	5.550	4.205
Spherical capped square antiprism (C_{4v})	4.206	2.976	4.234	2.976
Tricapped trigonal prism J51 (D_{3h})	5.792	5.563	6.039	5.563
Spherical tricapped trigonal prism (D_{3h})	4.801	3.588	5.210	3.588
Tridiminished icosahedron J63 (C_{3v})	11.496	11.290	10.567	11.290
Hula-hoop (C_{2v})	5.406	6.940	5.677	6.940
Muffin (C_s)	2.640	1.711	2.747	1.711

 Table S9. 9-coordinated Gd(III) ion geometry analysis by SHAPE 2.1 software for 3.

 Table S10. 9-coordinated Gd(III) ion geometry analysis by SHAPE 2.1 software for 4.

Configuration	ABOXIY	ABOXIY	ABOXIY
	Gd2	Gd3	Gd5
Enneagon (D_{9h})	33.595	34.341	33.579
Octagonal pyramid (C_{8v})	22.435	21.205	24.308
Heptagonal bipyramid (<i>D</i> _{7h})	18.998	18.338	16.240
Johnson triangular cupola J3 (C_{3v})	13.731	14.261	14.338
Capped cube J8 (C_{4v})	10.643	10.290	8.763
Spherical-relaxed capped cube (C_{4v})	9.435	9.057	7.001
Capped square antiprism J10 (C_{4v})	2.498	2.301	4.171
Spherical capped square antiprism (C_{4v})	1.344	1.241	3.425
Tricapped trigonal prism J51 (D_{3h})	2.820	3.789	4.816
Spherical tricapped trigonal prism (D_{3h})	2.189	1.657	3.752
Tridiminished icosahedron J63 (C_{3v})	11.989	11.651	11.097
Hula-hoop (C_{2v})	10.227	11.485	5.676
Muffin (C_s)	1.623	1.546	3.112

 Table S11. 8-coordinated Gd(III) ion geometry analysis by SHAPE 2.1 software for 4.

ABOXIY	ABOXIY
Gd1	Gd4
31.759	33.619
22.934	23.092
13.147	13.808
10.425	10.972
2.401	3.145
1.922	2.438
11.354	12.651
26.488	26.738
2.076	1.847
1.735	1.252
3.834	4.237
10.928	11.365
22.526	23.085
	ABOXIY Gd1 31.759 22.934 13.147 10.425 2.401 1.922 11.354 26.488 2.076 1.735 3.834 10.928 22.526

Fig. S3. The unique trapezoidal pyramid metal core in 1.

Fig. S4. The unique trapezoidal pyramid metal core in 4.

Fig. S5. $1/\chi_M$ -*T* curve of **3**.

Fig. S6. $1/\chi_M$ -*T* curve of **4**.

Fig. S7. *M versus H/T* plots at 2 K, 4 K and 6 K of **1**.

Fig. S8. *M versus H/T* plots at 2 K, 4 K and 6 K of **2**.

Fig. S9. *M versus H* plots at 2-10 K of **3**.

Fig. S10. *M versus H* plots at 2-10 K of **4**.

Table S12. The $-\Delta S_m$ maximum value for some Gd _n clusters (n ≥ 4) on ΔH at a given temperat

cluster	$-\Delta S_m^{max} (I k \sigma^{-1} K^{-1})$	$\Lambda H(T)$	$T(\mathbf{K})$	reference
$[Gd_4(H_3L)_2(OAc)_3(F_{6acac})_3]$	21.88	5	2.0	36
$[Gd_4(LH_2)_2(Piv)_4(\mu_3-Q_2)_2(H_2Q)_2] \cdot 2MeOH$	33.60	13	4	37
$[Gd_4(HL)_4(OAc)_2(H2O)_2] \cdot 2Et_3NH \cdot solvents$	20.8	7	2.0	38
$[Gd_4(\mu_4-O)L_2(PhCOO)_6]$ solvent	22.88	7	3.0	66
$[Gd_5L_4(HL)(CO_3)O(OH)(EtOH)_5(H_2O)_2Cl]$ solvents	27.58	7	2.5	this work
[H ₃ O][Gd ₆ (PO ₄)(AnPO ₃) ₈ (DMF) ₆] solvents	25.92	7	2.5	67
$[Gd_7L_6(CH_3O)_8(OH)_4(NO_3)_2]NO_3$ solvents	17.4	5	3.0	68
$[Gd_7(OH)_6(thmeH_2)_5(thmeH)(tpa)_6(MeCN)_2](NO_3)_2$	23.0	7	3.0	69
$[Gd_8L_8(CO_3)_4(MeOH)_4(H_2O)_4]$ solvents	27.52	7	2.0	this work
$[Gd_8(\mu_3-OH)_4(CO_3)_2L_4(PhCOO)_8]$ · solvent	28.38	7	2.0	66
$[Gd_8(acac)_4(HL)_4(L)_2(\mu_3-O)_4(C_2H_5O)_4]$ solvents	33.06	7	2.0	70
$[Gd_8(IN)_{14}(\mu_3-OH)_8(\mu_2-OH)_2(H_2O)_8]$ · solvents	31.77	7	2.0	71
${Gd_{9}L_{4}(OH)_{10}(OCH_{3})_{4}(NO_{3})_{8}(H_{2}O)_{8}}(OH) \cdot 2H_{2}O$	40.60	7	2.0	72
$[Gd_{9}(acac)_{16}(\mu_{3}\text{-OH})_{8}(\mu_{4}\text{-OH})_{2}]OH \cdot 6H_{2}O$	20.98	9	2.0	73
$[Gd_{10}(3-TCA)_{22}(\mu_3-OH)_8(H_2O)_4]$	31.22	7	2.0	74
$[Gd_{10}(LH)_{10}(k^2-Piv)_{10}]$ solvents	26.6	7	2.2	75
$[Gd_{12}(H_2L1)_4O_4(OH)_4(AcO)_{15}] \cdot (AcO) \cdot (CH_3OH)_6$	35.63	7	2.0	76
$[Gd_{14}(H_{0.5}L)_8O_3(OH)_{16}(NO_3)_{16}]$ · solvents	22.3	5	2.0	68
$Gd_{16}L_3(OH)_{18}(NO_3)_{12}(H_2O)_6$	34.05	7	2.0	77
$[Gd_{24}(DMC)_{36}(\mu_4-CO_3)_{18}(\mu_3-H_2O)_2] \cdot nH_2O$	46.12	7	2.5	25
$[(ClO_4)@Gd_{27}(\mu_3-OH)_{32}(CO_3)_8(CH_3CH_2COO)_{20}(H_2)]$	41.8	7	2.0	78
$O_{40}] \cdot (ClO_4)_{12} \cdot (H_2O)_{50}$				
$[Gd_{28}(IN)_{25}(C_2O_4)_6(HCOO)(\mu_3-OH)_{36}(\mu_2-OH)_2(H_2O)]$	37.5	7	2.0	79
$)_{36}] \cdot 8Br \cdot xH_2O$				
[Gd ₃₈ (µ-O)(µ ₈ -ClO ₄) ₆ (µ ₃ -OH) ₄₂ (CAA) ₃₇ (H ₂ O) ₃₆ (Et	37.9	7	1.8	80
OH) ₆](ClO ₄) ₁₀ (OH) ₁₇ ·solvents				
$[Gd_{48}(\mu_4-O)_6(\mu_3-OH)_{84}(CAA)_{36}(NO_3)_6(H_2O)_{24}(EtO)$	43.6	7	1.8	80
$H_{12}(NO_3)Cl_2]Cl_3$ ·solvents				

Fig. S11. Hysteresis loop for **1** at 1.9 K with a sweep rate of 100 $Oe S^{-1}$.

Fig. S12. Plots of χ'' versus *T* for **1** ($H_{dc} = 1000 \text{ Oe}$) (a); plot of $\ln(\tau)$ versus 1/T for **1** ($H_{dc} = 1000 \text{ Oe}$) (b), the solid line represents the best fitting with Orbach *plus* Raman.

Fig. S13. Hysteresis loop for 2 at 1.9 K and 2.0 K with a sweep rate of 100 Oe S⁻¹.

Fig. S14. Plots of χ'' versus *T* for **2** ($H_{dc} = 1000 \text{ Oe}$) (a); plot of $\ln(\tau)$ versus 1/T for **2** ($H_{dc} = 1000 \text{ Oe}$) (b), the solid line represents the best fitting with Orbach *plus* Raman.