Supplementary Information for

Structural and electrochemical properties of mononuclear copper(II) complexes with pentadentate ethylenediamine-based ligands with pyridine/quinoline/isoquinoline/quinoxaline binding sites

Yuji Mikata,^{a,b,c,d,*} Miyu Akedo,^b Erina Hamamoto,^c Shoko Yoshida,^c Sunao Shoji,^{a,b} Yutaka Ohsedo,^b Takashi Matsuo,^e Tim Storr^f and Yasuhiro Funahashi^g

^aLaboratory for Molecular & Functional Design, Department of Engineering, Nara Women's University, Nara 630-8506, Japan

^bCooperative Major in Human Centered Engineering, Nara Women's University, Nara 630-8506, Japan

^cDepartment of Chemistry, Biology, and Environmental Science, Faculty of Science, Nara Women's University, Nara 630-8506, Japan

^dKYOUSEI Science Center, Nara Women's University, Nara 630-8506, Japan

 ^eDivision of Materials Science, Graduate School of Science and Technology, Nara Institute of Science and Technology (NAIST), Takayama, Ikoma, Nara 630-0192, Japan
 ^fDepartment of Chemistry, Simon Fraser University, Burnaby, BC, V5A-1S6, Canada
 ^gDepartment of Chemistry, Graduate School of Science, Osaka University, Machikaneyama, Toyonaka, Osaka 560-0043, Japan

INDEX

Preparation of copper(II)	complexes	······S5-S10
1 reparation of copper(11)	complexes	00 010

X-ray cryst	allographyS12-S20
Table S1.	Crystallographic data for [Cu(Me-PPP)](ClO ₄) ₂ ·CH ₃ CN and [Cu(Me-
	QQQ)](ClO ₄) ₂ ·1.75CH ₃ CN
Table S2.	Crystallographic data for [Cu(Me-333)](ClO ₄) ₂ ·CH ₃ OH·0.5CH ₃ CN·
	0.5CHCl ₃ and [Cu(Bn-PPP)](ClO ₄) ₂
Table S3.	Crystallographic data for [Cu(Bn-111)](ClO ₄) ₂ ·DMF and [Cu(Bn-
	333)](ClO ₄) ₂ ·CH ₃ CN·0.25H ₂ O
Table S4.	Crystallographic data for [Cu(Ph-PPP)(ClO ₄)]ClO ₄ and [Cu(Ph-
	PPP)(ClO ₄)]PF ₆
Table S5.	Crystallographic data for [Cu(Ph-QQQ)](ClO ₄) ₂ ·NaClO ₄ ·CH ₃ CN and
	[Cu(Ph-PQQ)](ClO ₄) ₂ ·CH ₃ CN
Table S6.	Crystallographic data for [Cu(Ph-QQP)](ClO ₄) ₂ and [Cu(Ph-
	PPQ)](ClO ₄) ₂ ·0.75CH ₃ OH·0.125H ₂ O
Table S7.	Selected Bond Angles (°) for Me-PPP-Cu, Me-QQQ-Cu, Me-333-Cu,
	Bn-PPP-Cu, Bn-111-Cu, and Bn-333-Cu
Table S8.	Selected Bond Angles (°) for Ph-PPP-Cu , Ph-PPP-Cu , Ph-QQQ-Cu ,
	Ph-PQQ-Cu, and Ph-QQP-Cu
Table S9.	Selected Bond Angles (°) for Ph-PPQ-Cu
Fig. S1.	Perspective view for Ph-PPP-Cu' .
Fig. S2.	Perspective view for Ph-PPQ-Cu .

Fig. S3. Cyclic voltammogram of **R-ArArAr-Cu** in acetonitrile.

- **Fig. S4.** Cyclic voltammogram of **Ph-Ar**¹**Ar**²**Ar**³**-Cu** in acetonitrile.
- **Fig. S5.** Cyclic voltammogram of **Ph-PPP-Cu** and **Ph-QQQ-Cu** in acetonitrile at various scan rates.

- Fig. S6. Absorption spectrum of **R-ArArAr-Cu** in acetonitrile.
- **Fig. S7.** Absorption spectrum of **Ph-Ar**¹**Ar**²**Ar**³**-Cu** in acetonitrile.
- Fig. S8. Absorption spectrum of **R-ArArAr-Cu** in methanol.
- **Fig. S9.** Absorption spectrum of **Ph-Ar**¹**Ar**²**Ar**³**-Cu** in methanol.
- **Fig. S10.** Plot for maximum wavelengths of copper complexes with τ values.

¹ <i>H</i> / ¹³ <i>C NMR</i> s	spectrumS34-S52
Fig. S11.	¹ H/ ¹³ C NMR spectrum of Me-111 in CDCl ₃ .
Fig. S12.	¹ H/ ¹³ C NMR spectrum of Me-333 in CDCl ₃ .
Fig. S13.	¹ H/ ¹³ C NMR spectrum of Me-XXX in CDCl ₃ .
Fig. S14.	¹ H/ ¹³ C NMR spectrum of Bn-QQQ in CDCl ₃ .
Fig. S15.	¹ H/ ¹³ C NMR spectrum of Bn-111 in CDCl ₃ .
Fig. S16.	¹ H/ ¹³ C NMR spectrum of Bn-333 in CDCl ₃ .
Fig. S17.	¹ H/ ¹³ C NMR spectrum of Bn-XXX in CDCl ₃ .
Fig. S18.	¹ H/ ¹³ C NMR spectrum of Ph-QQQ in CDCl ₃ .
Fig. S19.	¹ H/ ¹³ C NMR spectrum of Ph-111 in CDCl ₃ .
Fig. S20.	¹ H/ ¹³ C NMR spectrum of Ph-333 in CDCl ₃ .
Fig. S21.	¹ H/ ¹³ C NMR spectrum of Ph-XXX in CDCl ₃ .
Fig. S22.	¹ H NMR spectrum of Ph-PPH in CDCl ₃ .
Fig. S23.	¹ H/ ¹³ C NMR spectrum of Ph-PPQ in CDCl ₃ .
Fig. S24.	¹ H/ ¹³ C NMR spectrum of Ph-QHH in CDCl ₃ .
Fig. S25.	¹ H/ ¹³ C NMR spectrum of Ph-PQP in CDCl ₃ .
Fig. S26.	¹ H NMR spectrum of Ph-PHH in CDCl ₃ .
Fig. S27.	¹ H/ ¹³ C NMR spectrum of Ph-PQQ in CDCl ₃ .
Fig. S28.	¹ H/ ¹³ C NMR spectrum of Ph-QQH in CDCl ₃ .
Fig. S29.	¹ H/ ¹³ C NMR spectrum of Ph-QQP in CDCl ₃ .

IR spectrum-------S53-S71

- Fig. S30. IR spectrum of Me-PPP.
- **Fig. S31.** IR spectrum of **Me-QQQ**.
- Fig. S32. IR spectrum of Me-111.
- Fig. S33. IR spectrum of Me-333.
- Fig. S34. IR spectrum of Me-XXX.
- Fig. S35. IR spectrum of **Bn-PPP**.
- Fig. S36. IR spectrum of **Bn-QQQ**.
- Fig. S37. IR spectrum of **Bn-111**.
- Fig. S38. IR spectrum of **Bn-333**.
- Fig. S39. IR spectrum of **Bn-XXX**.
- **Fig. S40.** IR spectrum of **Ph-PPP**.
- Fig. S41. IR spectrum of Ph-QQQ.
- Fig. S42. IR spectrum of Ph-111.
- Fig. S43. IR spectrum of Ph-333.

Fig. S44.	IR spectrum of Ph-XXX
Fig. S45.	IR spectrum of Ph-PPQ .
Fig. S46.	IR spectrum of Ph-PQP .
Fig. S47.	IR spectrum of Ph-PQQ .
Fig. S48.	IR spectrum of Ph-QQP .
Fig. S49.	IR spectrum of Me-PPP-Cu .
Fig. S50.	IR spectrum of Me-QQQ-Cu .
Fig. S51.	IR spectrum of Me-111-Cu.
Fig. S52.	IR spectrum of Me-333-Cu .
Fig. S53.	IR spectrum of Me-XXX-Cu .
Fig. S54.	IR spectrum of Bn-PPP-Cu .
Fig. S55.	IR spectrum of Bn-QQQ-Cu .
Fig. S56.	IR spectrum of Bn-111-Cu .
Fig. S57.	IR spectrum of Bn-333-Cu .
Fig. S58.	IR spectrum of Bn-XXX-Cu .
Fig. S59.	IR spectrum of Ph-PPP-Cu .
Fig. S60.	IR spectrum of Ph-QQQ-Cu .
Fig. S61.	IR spectrum of Ph-111-Cu .
Fig. S62.	IR spectrum of Ph-333-Cu .
Fig. S63.	IR spectrum of Ph-XXX-Cu .
Fig. S64.	IR spectrum of Ph-PPQ-Cu .
Fig. S65.	IR spectrum of Ph-PQP-Cu .
Fig. S66.	IR spectrum of Ph-PQQ-Cu .
Fig. S67.	IR spectrum of Ph-QQP-Cu .

Re	ferences ······S7	72	2

Preparation of copper(II) complexes

Me-PPP-Cu ([Cu(Me-PPP)](ClO₄)₂)¹

To a solution of **Me-PPP** (8.7 mg, 25 µmol) in ethanol (0.5 mL) was added Cu(ClO₄)₂·6H₂O (9.8 mg, 26 µmol) in ethanol (0.5 mL). After stirring for 5 min, resulting precipitate was collected by filtration and washed with ethanol to afford **Me-PPP-Cu** as a blue powder (13.0 mg, 21.3 µmol, 85%). Single crystals suitable for X-ray crystallography were obtained by recrystallization from acetonitrile and chloroform. λ_{max} : 678 nm (CH₃CN), 672 nm (CH₃OH).

Anal Calcd. for C₂₂H_{26.5}Cl₂CuN_{5.5}O₈ (**Me-PPP-Cu**·0.5CH₃CN): C, 41.91; H, 4.24; N, 12.22. Found: C, 41.52; H, 4.26; N, 12.63.

Me-QQQ-Cu ([Cu(Me-QQQ)](ClO₄)₂)²

To a solution of **Me-QQQ** (14.9 mg, 30.0 μ mol) in ethanol (0.5 mL) was added Cu(ClO₄)₂·6H₂O (12.0 mg, 32.4 μ mol) in ethanol (0.5 mL). After stirring for 5 min, resulting precipitate was collected by filtration and washed with ethanol to afford **Me-QQQ-Cu** as blue powder (18.1 mg, 23.8 μ mol, 79%). Single crystals suitable for X-ray crystallography were obtained by recrystallization from acetonitrile.

λ_{max}: 655 nm (CH₃CN), 659 nm (CH₃OH).

Anal Calcd. for C₃₃H₃₃Cl₂CuN₅O₉ (**Me-QQQ-Cu**·H₂O): C, 50.94; H, 4.27; N, 9.00. Found: C, 50.68; H, 4.34; N, 9.25.

Me-111-Cu

To a solution of **Me-111** (12.5 mg, 25.1 μ mol) in ethanol (0.5 mL) was added Cu(ClO₄)₂·6H₂O (10.1 mg, 27.3 μ mol) in ethanol (0.5 mL). After stirring for 5 min, resulting precipitate was collected by filtration and washed with ethanol to afford **Me-111-Cu** as a blue powder (14.4 mg, 18.9 μ mol, 76%).

λ_{max}: 694 nm (CH₃CN), 687 nm (CH₃OH).

HRMS (ESI) m/z: [**Me-111** + Cu^{II} + Cl]⁺ calcd. for C₃₃H₃₁ClCuN₅ 595.15640; found 595.15876.

Me-333-Cu ([Cu(Me-333)](ClO₄)₂)

To a solution of **Me-333** (15.1 mg, 30.3 µmol) in ethanol (0.5 mL) was added $Cu(ClO_4)_{2}\cdot 6H_2O$ (12.0 mg, 32.4 µmol) in ethanol (0.5 mL). After stirring for 5 min, resulting precipitate was collected by filtration and washed with ethanol to afford **Me-333-Cu** as blue powder (17.4 mg, 22.9 µmol, 76%). Single crystals suitable for X-ray crystallography were obtained by recrystallization from acetonitrile.

λ_{max}: 683 nm (CH₃CN), 676 nm (CH₃OH).

Anal Calcd. for C₃₃H₃₆Cl₂CuN₅O_{10.5} (**Me-333-Cu**·2.5H₂O): C, 49.23; H, 4.51; N, 8.70. Found: C, 49.33; H, 4.22; N, 8.80.

Me-XXX-Cu

To a solution of **Me-XXX** (12.2 mg, 24.4 μ mol) in ethanol (0.5 mL) was added Cu(ClO₄)₂·6H₂O (9.6 mg, 26 μ mol) in ethanol (0.5 mL). After stirring for 5 min, resulting precipitate was collected by filtration and washed with ethanol to afford **Me-XXX** as yellow-green powder (12.3 mg, 61.1 μ mol, 66%).

λ_{max}: 641 nm (CH₃CN).

HRMS (ESI) *m*/*z*: [**Me-XXX** + Cu^I]⁺ calcd. for C₃₀H₂₈CuN₈ 563.17329; found 563.16825.

Bn-PPP-Cu ([Cu(Bn-PPP)](ClO₄)₂)

To a solution of **Bn-PPP** (12.7 mg, 30.0 μ mol) in ethanol (0.5 mL) was added Cu(ClO₄)₂·6H₂O (12.0 mg, 32.4 μ mol) in ethanol (0.5 mL). After stirring for 5 min, resulting precipitate was collected by filtration and washed with ethanol to afford **Bn-PPP-Cu** as blue powder (18.6 mg, 27.1 μ mol, 90%). Single crystals suitable for X-ray crystallography were obtained by recrystallization from acetonitrile.

λ_{max}: 696 nm (CH₃CN), 690 nm (CH₃OH).

Anal Calcd. for C₂₇H₂₉Cl₂CuN₅O₈ (**Bn-PPP-Cu**): C, 47.27; H, 4.26; N, 10.21. Found: C, 47.14; H, 4.30; N, 10.07.

Bn-QQQ-Cu

To a solution of **Bn-QQQ** (14.6 mg, 25.4 μ mol) in ethanol (0.5 mL) was added Cu(ClO₄)₂·6H₂O (9.8 mg, 26 μ mol) in ethanol (0.5 mL). After stirring for 5 min, resulting precipitate was collected by filtration and washed with ethanol to afford **Bn-QQQ-Cu** as a green powder (17.2 mg, 20.6 μ mol, 82%).

λ_{max}: 661 nm (CH₃CN), 660 nm (CH₃OH).

HRMS (ESI) *m*/*z*: [**Bn-QQQ** + Cu^I]⁺ calcd. for C₃₉H₃₅CuN₅ 636.21885; found 636.21728.

Bn-111-Cu ([Cu(Bn-111)](ClO₄)₂)

To a solution of **Bn-111** (17.2 mg, 30.0 μ mol) in ethanol (2.5 mL) was added Cu(ClO₄)₂·6H₂O (13.0 mg, 35.0 μ mol) in ethanol (2.0 mL). After stirring for 5 min, resulting precipitate was dissolved by addition of DMF. The blue solution was kept at 4 °C to precipitate the complex, which was collected by filtration and washed with ethanol to afford **Bn-111-Cu** as blue crystals suitable for X-ray crystalloagraphy (29.2 mg, 35.0 μ mol, 43%).

λ_{max}: 703 nm (CH₃CN), 699 nm (CH₃OH).

Anal Calcd. for C₃₉H₃₇Cl₂CuN₅O₉ (**Bn-111-Cu**·H₂O): C, 54.83; H, 4.37; N, 8.20. Found: C, 54.73; H, 4.34; N, 8.29.

Bn-333-Cu ([Cu(Bn-333)](ClO₄)₂)

To a solution of **Bn-333** (15.4 mg, 26.6 μ mol) in ethanol (0.5 mL) was added Cu(ClO₄)₂·6H₂O (9.85 mg, 26.8 μ mol) in ethanol (1.5 mL). After stirring for 5 min, resulting precipitate was collected by filtration and washed with ethanol to afford **Bn-333-Cu** as blue powder (16.0 mg, 19.1 μ mol, 72%). Single crystals suitable for X-ray crystallography were obtained by recrystallization from acetonitrile.

λ_{max}: 694 nm (CH₃CN), 692 nm (CH₃OH).

Anal Calcd. for C₃₉H₃₇Cl₂CuN₅O₉ (**Bn-333-Cu**·H₂O): C, 54.83; H, 4.37; N, 8.20. Found: C, 54.83; H, 4.03; N, 8.25.

Bn-XXX-Cu

To a solution of **Bn-XXX** (14.7 mg, 25.5 μ mol) in ethanol (0.5 mL) was added Cu(ClO₄)₂·6H₂O (9.8 mg, 26 μ mol) in ethanol (0.5 mL). After stirring for 5 min, resulting precipitate was collected by filtration and washed with ethanol to afford **Bn-XXX-Cu** as a yellow-green powder (15.4 mg, 18.4 μ mol, 74%).

λ_{max}: 636 nm (CH₃CN).

HRMS (ESI) *m*/*z*: [**Bn-XXX** + Cu¹]⁺ calcd. for C₃₆H₃₂CuN₈ 639.20459; found 639.20499.

Ph-PPP-Cu ([Cu(Ph-PPP)(ClO₄)]ClO₄)

To a solution of **Ph-PPP** (10.2 mg, 25.0 μ mol) in ethanol (0.5 mL) was added Cu(ClO₄)₂·6H₂O (9.5 mg, 26 μ mol) in ethanol (0.5 mL). After stirring for 5 min, resulting precipitate was collected by filtration and washed with ethanol to afford **Ph-PPP-Cu** as a blue powder (13.4 mg, 19.9 μ mol, 80%). Single crystals suitable for X-ray crystallography were obtained from recrystallization from acetonitrile (0.1 mL) in the presence of NaClO₄ (10.8 mg, 76.9 μ mol) under ether diffusion condition.

Anal Calcd. for C₂₆H₂₇Cl₂CuN₅O₈ (**Ph-PPP-Cu**): C, 46.47; H, 4.05; N, 10.42. Found: C, 45.73; H, 3.78; N, 10.28.

On the other hand, recrystallization from acetonitrile (0.2 mL) in the presence of NH₄PF₆ (4.2 mg, 26 µmol) afforded **Ph-PPP-Cu'** ([Cu(**Ph-PPP**)(ClO₄)]PF₆) as single crystals suitable for X-ray crystallography.

λ_{max}: 655 nm (CH₃CN), 633 nm (CH₃OH).

Anal Calcd. for C₂₆H₃₀ClCuF₆N₅O_{5.5}P (**Ph-PPP-Cu'**·1.5H₂O): C, 41.94; H, 4.06; N, 9.41. Found: C, 41.66; H, 3.71; N, 9.87.

Ph-QQQ-Cu ([Cu(Ph-QQQ)](ClO₄)₂)

To a solution of **Ph-QQQ** (14.3 mg, 25.5 μ mol) in ethanol (0.5 mL) was added Cu(ClO₄)₂·6H₂O (9.4 mg, 25 μ mol) in ethanol (0.5 mL). After stirring for 5 min, resulting precipitate was collected by filtration and washed with ethanol to afford **Ph-QQQ-Cu** as a green powder (16.3 mg, 19.8 μ mol, 78%). Single crystals suitable for X-

ray crystallography were obtained from recrystallization from acetonitrile (0.1 mL) in the presence of NaClO₄ (3.3 mg, 23 μ mol) under ether diffusion condition. λ_{max} : 643 nm (CH₃CN), 650 nm (CH₃OH).

Anal Calcd. for C₄₀H₃₆Cl₃CuN₆NaO₁₂ (**Ph-QQQ-Cu**·NaClO₄·CH₃CN): C, 48.74; H, 3.68; N, 8.53. Found: C, 48.80; H, 3.70; N, 8.13.

Ph-111-Cu

To a solution of **Ph-111** (14.1 mg, 25.2 μ mol) in ethanol (0.5 mL) was added Cu(ClO₄)₂·6H₂O (9.8 mg, 26 μ mol) in ethanol (0.5 mL). After stirring for 5 min, resulting precipitate was collected by filtration and washed with ethanol to afford **Ph-111-Cu** as a blue powder (12.0 mg, 14.6 μ mol, 58%).

λ_{max}: 674 nm (CH₃CN), 641 nm (CH₃OH).

HRMS (ESI) m/z: [**Ph-111** + Cu^{II} + ClO₄]⁺ calcd. for C₃₈H₃₃ClCuN₅O₄ 721.15171; found 721.14981.

Ph-333-Cu

To a solution of **Ph-333** (13.6 mg, 24.3 μ mol) in ethanol (0.5 mL) was added Cu(ClO₄)₂·6H₂O (9.9 mg, 27 μ mol) in ethanol (0.5 mL). After stirring for 5 min, resulting precipitate was collected by filtration and washed with ethanol to afford **Ph-333-Cu** as a blue powder (17.4 mg, 21.2 μ mol, 88%).

λ_{max}: 650 nm (CH₃CN), 641 nm (CH₃OH).

HRMS (ESI) *m*/*z*: [**Ph-333** + Cu^{II} + ClO₄]⁺ calcd. for C₃₈H₃₃ClCuN₅O₄ 721.15171; found 721.14920.

Ph-XXX-Cu

To a solution of **Ph-XXX** (14.0 mg, 24.9 μ mol) in ethanol (0.5 mL) was added Cu(ClO₄)₂·6H₂O (9.8 mg, 26 μ mol) in ethanol (0.5 mL). After stirring for 5 min, resulting precipitate was collected by filtration and washed with ethanol to afford **Ph-XXX-Cu** as a yellow green powder (12.2 mg, 14.8 μ mol, 60%).

HRMS (ESI) *m*/*z*: [**Ph-XXX** + Cu^I]⁺ calcd. for C₃₅H₃₀CuN₈ 625.18894; found 625.19341.

Ph-PPQ-Cu

To a solution of **Ph-PPQ** (22.5 mg, 49.0 μ mol) in ethanol (0.5 mL) was added Cu(ClO₄)₂·6H₂O (20.4 mg, 55.1 μ mol) in ethanol (0.5 mL). After stirring for 5 min, resulting precipitate was collected by filtration and washed with ethanol to afford **Ph-PPQ-Cu** as a green powder (23.0 mg, 31.8 μ mol, 64%). Single crystals suitable for X-ray crystallography were obtained by recrystallization from methanol.

λ_{max}: 714 nm (CH₃CN), 645 nm (CH₃OH).

HRMS (ESI) *m*/*z*: [**Ph-PPQ** + Cu¹]⁺ calcd. for C₃₀H₂₉CuN₅ 522.17190; found 522.16860.

Ph-PQP-Cu

To a solution of **Ph-PQP** (22.7 mg, 49.4 μ mol) in ethanol (0.5 mL) was added Cu(ClO₄)₂·6H₂O (20.4 mg, 55.1 μ mol) in ethanol (0.5 mL). After stirring for 5 min, resulting precipitate was collected by filtration and washed with ethanol to afford **Ph-PQP-Cu** as a green powder (23.0 mg, 31.8 μ mol, 64%).

λ_{max}: 638 nm (CH₃CN), 645 nm (CH₃OH).

HRMS (ESI) *m/z*: [**Ph-PQP** + Cu^I]⁺ calcd. for C₃₀H₂₉CuN₅ 522.17190; found 522.16937.

Ph-PQQ-Cu ([Cu(Ph-PQQ)](ClO₄)₂)

To a solution of **Ph-PQQ** (25.5 mg, 50.0 μ mol) in ethanol (0.5 mL) was added Cu(ClO₄)₂·6H₂O (20.4 mg, 55.1 μ mol) in ethanol (0.5 mL). After stirring for 5 min, resulting precipitate was collected by filtration and washed with ethanol to afford **Ph-PQQ-Cu** as green powder (20.1 mg, 26.0 μ mol, 52%). Single crystals suitable for X-ray crystallography were obtained by recrystallization from acetonitrile.

λ_{max}: 742 nm (CH₃CN), 738 nm (CH₃OH).

Anal Calcd. for C₃₄H₃₁Cl₂CuN₅O₈ (**Ph-PQQ-Cu**): C, 52.89; H, 4.05; N, 9.07. Found: C, 52.56; H, 4.06; N, 9.67.

Ph-QQP-Cu ([Cu(Ph-QQP)](ClO₄)₂)

To a solution of **Ph-QQP** (12.7 mg, 25.0 μ mol) in methanol (0.5 mL) was added Cu(ClO₄)₂·6H₂O (10.9 mg, 29 μ mol) in methanol (0.5 mL). The green solution was kept at 4 °C to precipitate the complex, which was collected by filtration. The green powder was recrystallized from acetonitrile (0.6 mL) at 4 °C under ether diffusion conditions to afford **Ph-QQP-Cu** as green crystals suitable for X-ray crystallography (17.7 mg, 22.9 μ mol, 92%).

λ_{max}: 636 nm (CH₃CN), 637 nm (CH₃OH).

Anal Calcd. for C₃₄H₃₁Cl₂CuN₅O₈ (**Ph-QQP-Cu**): C, 52.89; H, 4.05; N, 9.07. Found: C, 53.04; H, 4.10; N, 9.48.

X-ray crystallography

Table S1.Crystallographic data for [Cu(Me-PPP)](ClO₄)₂·CH₃CN (Me-PPP-Cu·CH₃CN) and [Cu(Me-QQQ)](ClO₄)₂·1.75CH₃CN (Me-QQQ-Cu·1.75CH₃CN)

	Me-PPP-Cu ·CH₃CN	Me-QQQ-Cu ·1.75CH₃CN
Formula	C23H28Cl2CuN6O8	C36.5H36.25Cl2CuN6.75O8
FW	650.96	831.91
Crystal system	triclinic	orthorhombic
Space group	P-1	P21212
<i>a</i> , Å	8.300(4)	19.7113(5)
<i>b,</i> Å	11.361(5)	45.9648(14)
<i>c,</i> Å	15.321(6)	8.4267(2)
α, deg	93.883(6)	90
β, deg	96.666(5)	90
γ, deg	105.289(5)	90
<i>V</i> , Å ³	1376.8(10)	7634.8(4)
Ζ	2	8
D_{calc} , g cm ⁻³	1.570	1.447
μ , mm ⁻¹	1.0449	0.772
2θ _{max} , deg	55	50.7
temp, K	153	150
no. reflns collected	10754	28038
no. reflns used	6013	13467
no. of params	390	1160
Rint	0.0219	0.0354
Final R1 ($I > 2\sigma(I)$) ^a	0.0476	0.0484
wR2 (all data) ^b	0.1366	0.1260
GOF	1.043	1.037

 Table
 S2.
 Crystallographic
 data
 for
 [Cu(Me

 333)](ClO₄)₂·CH₃OH·0.5CH₃CN·0.5CHCl₃
 (Me-333-Cu·CH₃OH·0.5CH₃CN·0.5CHCl₃)

 and [Cu(Bn-PPP)](ClO₄)₂ (Bn-PPP-Cu)

		· · · · · · · · · · · · · · · · · · ·
	Me-333-Cu ·CH ₃ OH ·0.5CH ₃ CN·0.5CHCl ₃	Bn-PPP-Cu
Formula	C35.5H37Cl3.5CuN5.5O9	C27H29Cl2CuN5O8
FW	872.32	686.01
Crystal system	monoclinic	orthorhombic
Space group	$P2_{1}/c$	Pbca
<i>a,</i> Å	18.6631(5)	14.5386(19)
<i>b,</i> Å	15.1459(3)	18.525(3)
<i>c,</i> Å	28.2417(9)	21.715(3)
β, deg	105.021(3)	90
<i>V</i> , Å ³	7710.3(4)	5848.4(15)
Ζ	8	8
D_{calc} , g cm ⁻³	1.503	1.558
μ, mm ⁻¹	0.870	0.9877
2θ _{max} , deg	60.3	55
temp, K	150	153
no. reflns collected	55167	45067
no. reflns used	18533	6526
no. of params	1028	388
Rint	0.0450	0.0481
Final $R1$ ($I > 2\sigma(I)$) ^a	0.0706	0.0435
wR2 (all data) ^b	0.2224	0.1122
GOF	1.042	1.052

	Bn-111-Cu·DMF	Bn-333-Cu ·1.25CH₃CN
Formula	$C_{42}H_{42}Cl_2CuN_6O_9$	C41.5H38.75Cl2CuN6.25O8
FW	909.28	887.48
Crystal system	triclinic	triclinic
Space group	<i>P-</i> 1	<i>P-</i> 1
<i>a,</i> Å	11.805(3)	13.425(6)
<i>b,</i> Å	13.196(4)	15.738(7)
<i>c,</i> Å	13.294(4)	19.413(8)
α, deg	86.264(7)	76.205(10)
β, deg	75.769(6)	86.332(9)
γ, deg	88.616(6)	87.694(8)
<i>V</i> , Å ³	2003.0(10)	3974(3)
Ζ	2	4
D_{calc} , g cm ⁻³	1.507	1.483
μ, mm ⁻¹	0.7442	0.747
2θ _{max} , deg	61.5	55
temp, K	153	153
no. reflns collected	24105	40334
no. reflns used	11187	17833
no. of params	389	1187
Rint	0.0242	0.0474
Final <i>R</i> 1 ($I > 2\sigma(I)$) ^{<i>a</i>}	0.0443	0.0635
wR2 (all data) ^b	0.1267	0.2045
GOF	1.072	1.073

Table S3. Crystallographic data for [Cu(**Bn-111**)](ClO₄)₂·DMF (**Bn-111-Cu**·DMF) and [Cu(**Bn-333**)](ClO₄)₂·1.25CH₃CN (**Bn-333-Cu**·1.25CH₃CN)

	Ph-PPP-Cu	Ph-PPP-Cu'
Formula	C26H27Cl2CuN5O8	C26H27ClCuF6N5O4P
FW	671.98	717.49
Crystal system	monoclinic	monoclinic
Space group	$P2_{1}/c$	$P2_{1}/c$
<i>a</i> , Å	20.820(4)	21.039(10)
<i>b,</i> Å	7.9052(15)	7.934(4)
<i>c,</i> Å	18.113(4)	18.056(9)
β, deg	110.212(3)	110.078(7)
<i>V</i> , Å ³	2797.6(10)	2831(2)
Ζ	4	4
D_{calc} , g cm ⁻³	1.595	1.683
μ , mm ⁻¹	1.0306	1.0060
2θ _{max} , deg	55	55
temp, K	153	153
no. reflns collected	20997	18245
no. reflns used	6338	6360
no. of params	403	399
Rint	0.0288	0.0365
Final R1 ($I > 2\sigma(I)$) ^{<i>a</i>}	0.0791	0.0561
wR2 (all data) ^b	0.2397	0.1684
GOF	1.116	1.036

Table S4.Crystallographic data for [Cu(Ph-PPP)(ClO₄)]ClO₄ (Ph-PPP-Cu) and[Cu(Ph-PPP)(ClO₄)]PF₆ (Ph-PPP-Cu')

	Ph-QQQ-Cu ·NaClO₄·CH₃CN	Ph-PQQ-Cu ·0.5CH₃CN
Formula	C40H38Cl3CuN6NaO13	C35H32.5Cl2CuN5.5O8
FW	1003.67	792.60
Crystal system	triclinic	monoclinic
Space group	<i>P</i> -1	I2/a
<i>a</i> , Å	10.7240(19)	9.9174(2)
<i>b</i> , Å	13.815(3)	18.90674)
<i>c,</i> Å	15.435(3)	37.0398(7)
α, deg	84.3269(10)	90
β, deg	74.387(8)	91.504(2)
γ, deg	71.884(6)	90
<i>V</i> , Å ³	2092.9(7)	6942.8(2)
Ζ	2	8
D_{calc} , g cm ⁻³	1.593	1.517
μ, mm ⁻¹	0.7979	0.844
2θ _{max} , deg	55	59
temp, K	153	150
no. reflns collected	17126	26753
no. reflns used	9180	8373
no. of params	578	497
Rint	0.0260	0.0240
Final R1 ($I > 2\sigma(I)$) ^a	0.0546	0.0472
wR2 (all data) ^b	0.1631	0.1402
GOF	1.042	1.066

Table S5. Crystallographic data for [Cu(**Ph-QQQ**)](ClO₄)₂·NaClO₄·CH₃CN (**Ph-QQQ** -**Cu**·NaClO₄·CH₃CN) and [Cu(**Ph-PQQ**)](ClO₄)₂·CH₃CN (**Ph-PQQ-Cu**·0.5CH₃CN)

	Ph-QQP-Cu	Ph-PPQ-Cu ·0.75CH ₃ - OH·0.125H ₂ O
Formula	C34H31Cl2CuN5O8	C30.75H32.25Cl2CuN5O8.875
FW	772.10	748.30
Crystal system	orthorhombic	monoclinic
Space group	Pna21	P21/c
<i>a,</i> Å	14.734(2)	8.1238(2)
<i>b,</i> Å	21.124(3)	37.8829(8)
<i>c,</i> Å	10.5506(16)	41.6362(12)
β, deg	90	92.788(2)
<i>V</i> , Å ³	3283.8(8)	12798.5(6)
Ζ	4	16
$D_{\rm calc}$, g cm ⁻³	1.562	1.553
μ , mm ⁻¹	0.8895	0.912
2θ _{max} , deg	55	50.7
temp, K	153	150
no. reflns collected	26183	23294
no. reflns used	6043	13744
no. of params	451	1879
Rint	0.0391	0.0635
Final <i>R</i> 1 ($I > 2\sigma(I)$) ^{<i>a</i>}	0.0413	0.0572
wR2 (all data) ^b	0.1118	0.1549
GOF	1.042	1.081

 Table S6.
 Crystallographic data for [Cu(Ph-QQP)](ClO₄)₂ (Ph-QQP-Cu) and [Cu(Ph-PPQ)](ClO₄)₂·0.75CH₃OH·0.125H₂O (Ph-PPQ-Cu·0.75CH₃OH·0.125H₂O)

	Me-PPP -Cu	Me-QQ -Cuª	Q Me-333 -Cu ^a	Bn-PPP -Cu	Bn-111 -Cu	Bn-333 -Cu ^a
N1-Cu-N2	87.5	85.3	85.9	87.1	87.2	86.2
N1-Cu-N3	82.6	80.6	82.4	83.5	83.3	82.9
N1-Cu-N4	82.3	81.9	82.5	82.8	83.1	83.1
N1-Cu-N5	168.1	163.3	166.6	167.9	167.1	168.1
N2-Cu-N3	107.2	161.9	104.1	106.7	132.7	103.3
N2-Cu-N4	138.8	98.9	139.7	138.3	107.3	143.4
N2-Cu-N5	82.0	79.1	82.5	82.3	81.2	82.8
N3-Cu-N4	110.8	90.4	112.3	112.2	117.2	109.8
N3-Cu-N5	106.0	113.5	107.2	105.2	100.5	103.3
N4-Cu-N5	101.8	106.1	105.9	101.3	105.7	103.8

Table S7. Selected Bond Angles (°) for Me-PPP-Cu, Me-QQQ-Cu, Me-333-Cu, Bn-PPP-Cu, Bn-111-Cu and Bn-333-Cu

^a Average values for two crystallographically independent complexes.

	Ph-PPP	Ph-PPP	Ph-OOC	Ph-OOP	
	-Cu	-Cu'	-Cu	-Cu	-Cu
N1-Cu-N2	84.7	84.8	85.7	86.5	85.3
N1-Cu-N3	82.6	82.4	81.0	131.5	80.7
N1-Cu-N4	83.4	83.6	81.7	82.6	82.7
N1-Cu-N5	161.0	161.2	163.2	161.0	116.5
N2-Cu-N3	91.0	90.0	161.3	131.5	164.2
N2-Cu-N4	100.4	100.0	98.9	100.5	93.6
N2-Cu-N5	76.8	76.9	79.3	80.9	83.8
N3-Cu-N4	161.0	161.3	92.0	124.4	91.8
N3-Cu-N5	101.8	101.8	111.7	95.0	96.1
N4-Cu-N5	95.7	95.4	107.9	113.6	160.2
O1-Cu-N1	111.1	110.3	_	_	_
O1-Cu-N2	161.7	161.7	_	_	_
O1-Cu-N3	82.3	81.5	_	_	_
O1-Cu-N4	90.9	91.8	_	_	_
O1-Cu-N5	87.9	88.4	-	_	-

Table S8. Selected Bond Angles (°) for Ph-PPP-Cu, Ph-PPP-Cu', Ph-QQQ-Cu, Ph-PQQ-Cu and Ph-QQP-Cu

	Ph-PPQ-	Ph-PPQ-	Ph-PPQ-	Ph-PPQ-	
	Cu-1	Cu-2	Cu-3	Cu-4	
N1-Cu-N2	85.0	85.9	85.9	86.6	
N1-Cu-N3	84.7	84.2	84.4	83.0	
N1-Cu-N4	83.8	84.1	83.5	83.8	
N1-Cu-N5	164.3	164.8	163.9	166.9	
N2-Cu-N3	102.6	104.2	106.3	98.8	
N2-Cu-N4	94.1	64.6	93.0	131.7	
N2-Cu-N5	79.8	79.9	78.9	81.8	
N3-Cu-N4	158.8	157.0	156.4	126.6	
N3-Cu-N5	94.9	94.2	94.7	104.7	
N4-Cu-N5	101.0	102.2	102.4	99.4	

 Table S9.
 Selected Bond Angles (°) for Ph-PPQ-Cu

Fig. S1. Perspective view for **Ph-PPP-Cu'** complex ([Cu(**Ph-PPP**)(ClO₄)]PF₆) in 50% probability, where the occupancy of both PF₆ anion is 0.5. Hydrogen atoms are omitted for clarity.

Fig. S2. Perspective view for **Ph-PPQ-Cu** complex in 50% probability. Non-coordinating counter anions, solvents and hydrogen atoms are omitted for clarity.

Potential / V vs. Fc/Fc⁺

Cyclic voltammetry

Potential / V vs. Fc/Fc⁺

Potential / V vs. Fc/Fc⁺

Fig. S3. Cyclic voltammogram of copper(II) complexes in acetonitrile (1 mM, scan rate 100 mV/s). (a) **Me-PPP-Cu**, (b) **Bn-PPP-Cu**, (c) **Ph-PPP-Cu**, (d) **Me-QQQ-Cu**, (e) **Bn-QQQ-Cu**, (f) **Ph-QQQ-Cu**, (g) **Me-111-Cu**, (h) **Bn-111-Cu**, (i) **Ph-111-Cu**, (j) **Me-333-Cu**, (k) **Bn-333-Cu**, (l) **Ph-333-Cu**, (m) **Me-XXX-Cu**, (n) **Bn-XXX-Cu** and (o) **Ph-XXX-Cu**.

Fig. S4. Cyclic voltammogram of copper(II) complexes in acetonitrile (1 mM, scan rate 100 mV/s). (a) **Ph-PPP-Cu**, (b) **Ph-PQP-Cu**, (c) **Ph-PPQ-Cu**, (d) **Ph-QQP-Cu**, (e) **Ph-PQQ-Cu** and (f) **Ph-QQQ-Cu**.

Fig. S5. Cyclic voltammogram of (a) **Ph-PPP-Cu** and (b) **Ph-QQQ-Cu** in acetonitrile at various scan rates (1 mM, scan rate 25-1000 mV/s) and plot for current *vs.* (scan rate)^{1/2} for (c) **Ph-PPP-Cu** and (d) **Ph-QQQ-Cu**.

Absorption spectrum

Fig. S6. Absorption spectrum of **R-ArArAr-Cu** in acetonitrile (1 mM). (a) **Me-PPP-Cu**, (b) **Bn-PPP-Cu**, (c) **Ph-PPP-Cu**, (d) **Me-QQQ-Cu**, (e) **Bn-QQQ-Cu**, (f) **Ph-QQQ-Cu**, (g) **Me-111-Cu**, (h) **Bn-111-Cu**, (i) **Ph-111-Cu**, (j) **Me-333-Cu**, (k) **Bn-333-Cu**, (l) **Ph-333-Cu**, (m) **Me-XXX-Cu**, (n) **Bn-XXX-Cu** and (o) **Ph-XXX-Cu**.

Fig. S7. Absorption spectrum of **Ph-Ar**¹**Ar**²**Ar**³**-Cu** in acetonitrile (1 mM). (a) **Ph-PPP-Cu**, (b) **Ph-PQP-Cu**, (c) **Ph-PPQ-Cu**, (d) **Ph-QQP-Cu**, (e) **Ph-PQQ-Cu** and (f) **Ph-QQQ-Cu**.

(a) Me-PPP-Cu (b) **Bn-PPP-Cu** (c) Ph-PPP-Cu 0.25 0.4 0.2 Me-PPP-Cu in MeOH Bn-PPP-Cu in MeOH Ph-PPP-Cu in MeOH 0.35 Absorbance Absorbance 0.2 Absorbance 0.3 0.15 0.25 0.15 0.2 0.1 0.1 0.15 0.1 0.0 0.05 0.0 0 L 500 0 L 500 0 └─ 500 550 600 650 700 750 800 850 550 600 650 700 750 800 550 600 650 700 750 800 850 850 Wavelength (nm) Wavelength (nm) Wavelength (nm) (d) Me-QQQ-Cu (e) **Bn-QQQ-Cu** (f) Ph-QQQ-Cu 0.15 0.15 0.3 Me-QQQ-Cu in MeOH Bn-QQQ-Cu in MeOH Ph-QQQ-Cu in MeOH Absorbance Absorbance Absorbance 0.25 0.1 0.1 0.2 0.15 0.05 0.05 0.1 0.05 0 500 0 L 500 0 L 500 550 600 650 700 750 800 850 550 600 650 700 750 800 850 550 600 650 700 750 800 Wavelength (nm) Wavelength (nm) Wavelength (nm) Me-111-Cu Bn-111-Cu Ph-111-Cu (g) (h) (i) 0.3 0.4 0.2 Absorbance Me-111-Cu in MeOH Absorbance Absorbance Ph-111-Cu in MeOH Bn-111-Cu in MeOH 0.35 0.25 0.3 0.15 0.2 0.25 0.15 0.2 0.1 0.15 0.1 0.1 0.05 0.05 0.05 0 ∟ 500 0 500 0 L 500 650 700 750 800 850 800 600 650 700 750 800 850 550 600 550 600 650 700 750 850 550 Wavelength (nm) Wavelength (nm) Wavelength (nm)

S30

Fig. S8. Absorption spectrum of **R-ArArAr-Cu** in methanol (1 mM). (a) **Me-PPP-Cu**, (b) **Bn-PPP-Cu**, (c) **Ph-PPP-Cu**, (d) **Me-QQQ-Cu**, (e) **Bn-QQQ-Cu**, (f) **Ph-QQQ-Cu**, (g) **Me-111-Cu**, (h) **Bn-111-Cu**, (i) **Ph-111-Cu**, (j) **Me-333-Cu**, (k) **Bn-333-Cu**, (l) **Ph-333-Cu**, (m) **Me-XXX-Cu**, (n) **Bn-XXX-Cu** and (o) **Ph-XXX-Cu**.

Fig. S9. Absorption spectrum of **Ph-Ar**¹**Ar**²**Ar**³**-Cu** in methanol (1 mM). (a) **Ph-PPP-Cu**, (b) **Ph-PQP-Cu**, (c) **Ph-PPQ-Cu**, (d) **Ph-QQP-Cu**, (e) **Ph-PQQ-Cu** and (f) **Ph-QQQ-Cu**.

Fig. S10. Plot for absorption maxima of copper complexes measured in acetonitrile against the τ_5 values derived from X-ray crystallography shown in Fig. 2 and 3. The data for **Ph-PPP-Cu** (octahedral geometry) and **Ph-PPQ-Cu** (two geometries with largely different τ_5 values) were not included.

Fig. S11. ¹H/¹³C NMR spectrum of Me-111 in CDCl₃.

Fig. S12. ¹H/¹³C NMR spectrum of Me-333 in CDCl₃.

Fig. S13. ¹H/¹³C NMR spectrum of Me-XXX in CDCl₃.

Bn-QQQ

Fig. S14. ¹H/¹³C NMR spectrum of **Bn-QQQ** in CDCl₃.

Fig. S15. ¹H/¹³C NMR spectrum of **Bn-111** in CDCl₃.

Fig. S16. $^{1}H/^{13}C$ NMR spectrum of Bn-333 in CDCl₃.

Fig. S17. ¹H/¹³C NMR spectrum of **Bn-XXX** in CDCl₃.

Ph-QQQ

Fig. S18. ¹H/¹³C NMR spectrum of **Ph-QQQ** in CDCl₃.

Ph-111

Fig. S19. $^{1}H/^{13}C$ NMR spectrum of Ph-111 in CDCl₃.

Fig. S20. $^{1}H/^{13}C$ NMR spectrum of Ph-333 in CDCl₃.

Fig. S21. ¹H/¹³C NMR spectrum of Ph-XXX in CDCl₃.

N,N-Bis(2-pyridylmethyl)-N'-phenylethylenediamine

Ph-PPH

Fig. S22. ¹H NMR spectrum of Ph-PPH in CDCl₃.

Ph-PPQ

Fig. S23. ¹H/¹³C NMR spectrum of Ph-PPQ in CDCl₃.

N-(2-quinolylmethyl)-N'-phenylethylenediamine

Ph-QHH

Fig. S24. ¹H/¹³C NMR spectrum of **Ph-QHH** in CDCl₃.

Ph-PQP

Fig. S25. ¹H/¹³C NMR spectrum of Ph-PQP in CDCl₃.

N-(2-pyridylmethyl)-N'-phenylethylenediamine

Ph-PHH

Fig. S26. ¹H NMR spectrum of Ph-PHH in CDCl₃.

Fig. S27. ¹H/¹³C NMR spectrum of Ph-PQQ in CDCl₃.

N,N-Bis(2-quinolylmethyl)-N'-phenylethylenediamine

Ph-QQH

Fig. S28. ¹H/¹³C NMR spectrum of Ph-QQH in CDCl₃.

Ph-QQP

Fig. S29. IR spectrum of Ph-QQP in CDCl₃.

Fig. S31. IR spectrum of Me-QQQ.

Fig. S32. IR spectrum of Me-111.

Fig. S33. IR spectrum of Me-333.

Fig. S34. IR spectrum of **Me-XXX**.

Fig. S35. IR spectrum of Bn-PPP.

Fig. S36. IR spectrum of **Bn-QQQ**.

Fig. S37. IR spectrum of Bn-111.

試料名 **Fig. S38.** IR spectrum of **Bn-333**.

Fig. S39. IR spectrum of Bn-XXX.

Fig. S40. IR spectrum of **Ph-PPP**.

[コメント情報] 試料名 **Fig. S42.** IR spectrum of **Ph-111**.

Fig. S43. IR spectrum of Ph-333.

Fig. S45. IR spectrum of Ph-PPQ.

[コメント情報] 試料名 Fig. S46. IR spectrum of Ph-PQP.

Fig. S47. IR spectrum of Ph-PQQ.

Fig. S48. IR spectrum of Ph-QQP.

Fig. S49. IR spectrum of Me-PPP-Cu.

Fig. S50. IR spectrum of Me-QQQ-Cu.

Fig. S51. IR spectrum of Me-111-Cu.

Fig. S52. IR spectrum of Me-333-Cu.

Fig. S53. IR spectrum of Me-XXX-Cu.

Fig. S54. IR spectrum of Bn-PPP-Cu.

Fig. S56. IR spectrum of Bn-111-Cu.

Fig. S57. IR spectrum of Bn-333-Cu.

Fig. S58. IR spectrum of Bn-XXX-Cu.

Fig. S59. IR spectrum of Ph-PPP-Cu.

Fig. S60. IR spectrum of Ph-QQQ-Cu.

Fig. S61. IR spectrum of Ph-111-Cu.

Fig. S62. IR spectrum of Ph-333-Cu.

Fig. S63. IR spectrum of Ph-XXX-Cu.

Fig. S64. IR spectrum of Ph-PPQ-Cu.

Fig. S65. IR spectrum of Ph-PQP-Cu.

Fig. S66. IR spectrum of Ph-PQQ-Cu.

Fig. S67. IR spectrum of Ph-QQP-Cu.

References

- X. Zhang, G.-S. Chen, H.-C. Liu, M.-J. Zhu, M.-Y. Xie, M.-S. Cen, Q.-J. Li, T.-S. Wang and H.-X. Zhang, *Electrochim. Acta*, 2023, 446, 142099.
- V. G. Snider, B. J. Pella and A. Mukherjee, *Inorg. Chim. Acta*, 2018, 469, 447-452.