Engineering the Multifunctionality of Li₃Y₃Te₂O₁₂ Garnet with

Sm³⁺ and Tb³⁺ Activators for Solid-State Lighting and

Luminescence Thermometry

Amrithakrishnan Bindhu, Jawahar I. Naseemabeevi, Subodh Ganesanpotti*

Department of Physics, University of Kerala, Kariavattom Campus, Thiruvananthapuram, Kerala - 695 581, India

E-mail: gsubodh@gmail.com, gsubodh@keralauniversity.ac.in

Supplementary data

Host cation (CN)	Activator ion (CN)	$R_m(\text{\AA})$	R_d (Å)	D _r (%)
Li ⁺ (4)	${ m Sm}^{3+}(8)$	0.59(4)	1.027	-82.8
$Y^{3+}(8)$	${ m Sm}^{3+}(8)$	1.01(9)	1.027	-5.9
$Te^{6+}(6)$	${ m Sm}^{3+}(8)$	0.56(6)	1.027	-92.7

Table S1. The percentage difference of ionic radii (D_r) between host cations and Sm³⁺ ions.

Table S2. Comparison of $T_{1/2}$ of reported Sm³⁺ based phosphors.

Compositions	T _{1/2} (K)	References
Li ₃ Ba ₂ La ₃ (MoO ₄) ₈ : Sm ³⁺	512	[1]
$Li_{6}CaLa_{1.94}Sm_{0.06}Ta_{2}O_{12}$	423	[2]
Ca ₂ MgTeO ₆ :Sm ³⁺	>480	[3]
$Li_{3}Gd_{3}Te_{2}O_{12}:Sm^{3+}$	>480	[4]
$Ca_2Al_2SiO_7{:}Sm^{3+}$	>500	[5]
Sr ₉ In(PO ₄) ₇ : Sm ³⁺	>523	[6]
NaSrLa(MoO ₄)O ₃ : Sm ³⁺	423	[7]
$Li_{3}Y_{3}Te_{2}O_{12}$: Sm ³⁺	500	This work

Table S3. Rietveld refinement and crystallographic data of $Li_3Y_3Te_2O_{12}$: 0.05 Tb³⁺, 0.07 Sm³⁺phosphor.

Formula		$Li_{3}Y_{2.88}$ Tb _{0.05} Sm _{0.07} Te ₂ O ₁₂				
Crystal system		Cubic				
Space group		$Ia^{\overline{3}}d$ (230, O _h ¹⁰)				
Cell Parameters		<i>a</i> = 12.2596(1) <i>a</i>	Å			
Reliability facto	ors	R_{wp} = 3.40 %, R_{μ}	,= 2.63 % an	d GOF= 1.56		
Atom	Site	X	у	Z	Occupancy	B _{iso} (Å ²)
Y ³⁺ /Tb ³⁺ /Sm ³⁺	24c	0.125	0.00	0.25	1	0.007(9)
Te ⁶⁺	16a	0.00	0.00	0.00	1	0.006(9)
Li ³⁺	24d	0.25	0.875	0.00	1	0.018(3)
O ²⁻	96h	0.268(1)	0.110(2)	0.196(8)	1	0.01(1)

Phosphors	Temperature	$S_r(\% K^{-1})$	References
	range (K)		
Ca ₂ TbSn ₂ Al ₃ O ₁₂ :Sm ³⁺	300-500	0.50	[8]
$SrY_2(MoO_4)_4$: Tb^{3+}/Sm^{3+}	290-440	0.9	[9]
$Ca_2LaTaO_6{:}Mn^{2+}\!/Tb^{3+}$	300-450	3.6	[10]
CaGdAlO ₄ :Mn ⁴⁺ , Tb ³⁺	200-600	2.23	[11]
$Y_{3}Al_{5}O_{12}:Dy^{3+}/Cr^{3+}$	293- 573	2.32	[12]
$Na_{3}Sc_{2}P_{3}O_{12}\text{: }Eu^{2+}/\ Mn^{2+}$	293-473	1.556	[13]
Sr ₂ LuTaO ₆ : Tb ³⁺ /Mn ⁴⁺	313–573	1.98	[14]
Ba ₃ (VO ₄) ₂ : Sm ³⁺	303-463	2.24	[15]
$BaGd_2O_4$: Bi^{3+}/Sm^{3+}	293-473	1.11	[16]
LaNbO ₄ : Bi ³⁺ /Eu ³⁺	303-483	1.89	[17]
$Ca_2NaMg_2V_3O_{12}\text{: }Sm^{3+}$	303-503	1.889	[18]
$Sr_2NaMg_2V_3O_{12}\text{: }Sm^{3+}$	300-500	2.01	[19]
LaNbO ₄ : Bi ³⁺ /Tb ³⁺	303-483	2.36	[17]
$Li_{3}Y_{3}Te_{2}O_{12}$: Dy ³⁺	80-300	1.2	[20]
$Li_{3}Y_{3}Te_{2}O_{12}$: Bi^{3+}/Pr^{3+}	300-500	1.8	[21]
$Li_{3}Y_{3}Te_{2}O_{12}$: Sm ³⁺	300-500	1.0	This work
$Li_{3}Y_{3}Te_{2}O_{12}$: Sm ³⁺ /Tb ³⁺	300-500	1.8	This work

Table S4. Comparison of temperature sensing properties of different phosphors.

Fig. S1 SEM images of (a) LYTO, and (b) LYTO: 0.05 Sm³⁺ phosphors.

Fig. S2 Quantum yield of LYTO: Sm^{3+} under 407 nm excitation and 611 nm emission wavelength.

Fig. S3 The log(I/x)-log(x) plot for the transition of Sm^{3+} ions in LYTO: Sm^{3+} phosphor.

Fig. S4 The variation of emission intensity of LYTO: Sm³⁺ with temperature.

Fig. S5 The shift of CIE coordinates of the fabricated LED at higher input bias currents.

Fig. S6 (a) The temperature-dependent decay curves of LYTO: Sm phosphor, (b) the average decay time with temperature, and (c) the dependence of relative sensitivity, Sr Vs. T in LYTO: Sm phosphor determined by decay time method.

Fig. S7 The Rietveld refinement pattern of $Li_3Y_3Te_2O_{12}$: 0.05 Tb³⁺, 0.07 Sm³⁺ phosphor.

Fig. S8 SEM images of LYTO: Sm³⁺, Tb³⁺ phosphors.

References

- F. Baur, A. Katelnikovas, S. Sakirzanovas, R. Petry, T. Jüstel, Synthesis and Optical Properties of Li₃Ba₂La₃(MoO₄)₈: Sm³⁺ Powders for pcLEDs, Zeitschrift Für Naturforschung B 69 (2014) 183–192. https://doi.org/10.5560/znb.2014-3279.
- [2] Y. V. Baklanova, L.G. Maksimova, O.A. Lipina, A.P. Tyutyunnik, V.G. Zubkov, Novel orange-red-emitting Li_{5+x}Ca_xLa_{3-x}Ta₂O₁₂:Sm³⁺ (x = 0; 1) phosphors: Crystal structure, luminescence and thermal quenching studies, J Lumin 224 (2020) 117315. https://doi.org/10.1016/J.JLUMIN.2020.117315.
- [3] L. Zhang, J. Che, Y. Ma, J. Wang, R. Kang, B. Deng, R. Yu, H. Geng, Luminescent and thermal properties of novel orange-red emitting Ca₂MgTeO₆:Sm³⁺ phosphors for white LEDs, J Lumin 225 (2020) 117374. https://doi.org/10.1016/j.jlumin.2020.117374.
- [4] Z. Gao, N. Xue, J.H. Jeong, R. Yu, Spectroscopic properties of a novel garnet-type tellurate orange-red emitting Li₃Gd₃Te₂O₁₂:Sm³⁺ phosphor, Journal of Materials Science: Materials in Electronics 28 (2017) 12640–12645. https://doi.org/10.1007/S10854-017-7088-Y/FIGURES/10.
- [5] N.M. Son, D.T. Tien, N.T.Q. Lien, V.X. Quang, N.N. Trac, T.T. Hong, H. Van Tuyen, Luminescence and Thermal-Quenching Properties of Red-Emitting Ca₂Al₂SiO₇:Sm³⁺ Phosphors, J Electron Mater 49 (2020) 3701–3707. https://doi.org/10.1007/S11664-020-08086-X/METRICS.
- [6] K. Su, Q. Zhang, X. Yang, B. Ma, Crystal structure and luminescence properties of thermally stable Sm³⁺-doped Sr₉In(PO₄)₇ orange-red phosphor, J Phys D Appl Phys 53 (2020) 385101. https://doi.org/10.1088/1361-6463/AB938D.
- J. Xue, M. Song, H.M. Noh, S.H. Park, B.R. Lee, J.H. Kim, J.H. Jeong, Near-ultraviolet light induced red emission in Sm³⁺-activated NaSrLa(MoO₄)O₃ phosphors for solid-state illumination, J Alloys Compd 817 (2020) 152705. https://doi.org/10.1016/J.JALLCOM.2019.152705.
- [8] Z. Zhang, J. Yan, Q. Zhang, G. Tian, W. Jiang, J. Huo, H. Ni, L. Li, J. Li, Enlarging Sensitivity of Fluorescence Intensity Ratio-Type Thermometers by the Interruption of the Energy Transfer from a Sensitizer to an Activator, Inorg Chem 61 (2022) 16484– 16492. https://doi.org/10.1021/acs.inorgchem.2c02756.

- [9] I. Kachou, M. Dammak, S. Auguste, F. Amiard, P. Daniel, A novel optical temperature sensor and energy transfer properties based on Tb ³⁺ /Sm ³⁺ codoped SrY₂(MoO₄)₄ phosphors, Dalton Transactions 52 (2023) 18233–18246. https://doi.org/10.1039/D3DT03410K.
- Y. Chen, G. Li, Y. Ding, Q. Mao, M. Liu, C. Wang, R. Zheng, B.-L. Su, J. Zhong, Antithermal Quenching and Multiparametric Temperature Sensing from Mn²⁺/Tb³⁺
 -Codoped Ca₂LaTaO₆ Phosphor, Adv Photonics Res 4 (2023). https://doi.org/10.1002/adpr.202300106.
- [11] Y. Fang, Y. Zhang, Y. Zhang, J. Hu, Achieving high thermal sensitivity from ratiometric CaGdAlO₄: Mn⁴⁺, Tb ³⁺ thermometers, Dalton Transactions 50 (2021) 13447–13458. https://doi.org/10.1039/D1DT02185K.
- [12] D. Chen, S. Liu, Y. Zhou, Z. Wan, P. Huang, Z. Ji, Dual-activator luminescence of RE/TM:Y₃Al₅O₁₂ (RE = Eu³⁺, Tb³⁺, Dy³⁺; TM = Mn⁴⁺, Cr³⁺) phosphors for selfreferencing optical thermometry, J Mater Chem C Mater 4 (2016) 9044–9051. https://doi.org/10.1039/c6tc02934e.
- [13] X. Zhang, Z. Zhu, Z. Guo, Z. Sun, Y. Chen, A ratiometric optical thermometer with high sensitivity and superior signal discriminability based on Na₃Sc₂P₃O₁₂: Eu²⁺, Mn²⁺ thermochromic phosphor, Chemical Engineering Journal 356 (2019) 413–422. https://doi.org/10.1016/J.CEJ.2018.09.075.
- [14] Y. Zhang, B. Sun, J. Liu, Z. Zhang, H. Liu, Luminescence and energy transfer performances of Tb³⁺/Mn⁴⁺ co-doped Sr₂LuTaO₆ double-perovskite phosphors for a highly sensitive optical thermometer, Dalton Transactions 52 (2023) 13304–13315. https://doi.org/10.1039/D3DT02270F.
- [15] P. Du, Y. Hua, J.S. Yu, Energy transfer from VO_4^{3-} group to Sm^{3+} ions in $Ba_3(VO_4)_2:3xSm^{3+}$ microparticles: A bifunctional platform for simultaneous optical thermometer and safety sign, Chemical Engineering Journal 352 (2018) 352–359. https://doi.org/10.1016/J.CEJ.2018.07.019.
- J. Fu, L. Zhou, Y. Chen, J. Lin, R. Ye, D. Deng, L. Chen, S. Xu, Dual-mode optical thermometry based on Bi³⁺/Sm³⁺ co-activated BaGd2O4 phosphor with tunable sensitivity, J Alloys Compd 897 (2022) 163034. https://doi.org/10.1016/J.JALLCOM.2021.163034.
- [17] J. Xue, Z. Yu, H.M. Noh, B.R. Lee, B.C. Choi, S.H. Park, J.H. Jeong, P. Du, M. Song, Designing multi-mode optical thermometers via the thermochromic LaNbO₄:Bi³⁺/Ln³⁺ (Ln = Eu, Tb, Dy, Sm) phosphors, Chemical Engineering Journal 415 (2021) 128977. https://doi.org/10.1016/J.CEJ.2021.128977.
- [18] H. Zhou, N. Guo, X. Lü, Y. Ding, L. Wang, R. Ouyang, B. Shao, Ratiometric and colorimetric fluorescence temperature sensing properties of trivalent europium or

samarium doped self-activated vanadate dual emitting phosphors, J Lumin 217 (2020) 116758. https://doi.org/10.1016/J.JLUMIN.2019.116758.

- [19] A. Bindhu, J.I. Naseemabeevi, S. Ganesanpotti, Delving into the multifunctionality of Sr₂NaMg₂V₃O₁₂via RE³⁺ substitution for dual-mode temperature sensing, latent fingerprint detection and security inks, Mater Adv 4 (2023) 3796–3812. https://doi.org/10.1039/D3MA00241A.
- [20] A. Bindhu, J.I. Naseemabeevi, S. Ganesanpotti, Insights into the crystal structure and photophysical response of Dy³⁺ doped Li₃Y₃Te₂O₁₂ for ratiometric temperature sensing, Journal of Science: Advanced Materials and Devices 7 (2022) 100444. https://doi.org/10.1016/J.JSAMD.2022.100444.
- [21] A. Bindhu, A.S. Priya, J.I. Naseemabeevi, S. Ganesanpotti, Deciphering crystal structure and photophysical response of Bi³⁺ and Pr³⁺ co-doped Li₃Gd₃Te₂O₁₂ for lighting and ratiometric temperature sensing, J Alloys Compd 893 (2022). https://doi.org/10.1016/j.jallcom.2021.162246.