Supplementary Information

Table of content

NMR Spectra of complexes	2
Table S 1 Table of 1H NMR spectra of the complexes.	2
Fig 1 The temperature-dependent coalescence of the fluoroaromatic and methylene-groups protor in La2F(NO $_3$) $_3$ in acetonitrile	1s 3
Fig 2 The temperature-dependent coalescence of the fluoroaromatic and methylene-groups protor in $Sm2F(NO_3)_3$ in acetonitrile	าร 3
Fig 3 The temperature-dependent coalescence of the fluoroaromatic and methylene-groups protor in $Eu2F(NO_3)_3$ in acetonitrile	าร 4
Fig 4 1H Spectrum of Eu3F(NO3)3 in acetonitrile	4
Fig 5 13C Spectrum of Eu3F(NO3)3 in acetonitrile	5
Fig 6 2D COSY Spectrum of Eu3F(NO3)3 in acetonitrile in aromatic region	5
Fig 7 1H Spectrum of Sm3F(NO3)3 in acetonitrile	6
Fig 8 13C Spectrum of Sm3F(NO3)3 in acetonitrile	6
Fig 9 2D COSY Spectrum of Sm3F(NO3)3 in acetonitrile in aromatic region	7
Fig 10 1H Spectrum of Sm4F(NO3)3 in acetonitrile	7
Fig 11 2D NOESY Spectrum of Sm4F(NO3)3. The aromatic region.	8
Fig 12 13C Spectrum of Sm4F(NO3)3 in acetonitrile	8
Fig 13 19F Spectrum of Sm4F(NO3)3 in acetonitrile	9
Fig 14 1H Spectrum of Eu4F(NO3)3 in acetonitrile	9
Fig 15 2D COSY Spectrum of Eu4F(NO3)3	10
Fig 16 1H Spectrum of Sm2F(NO3)3 in acetonitrile	10
Fig 17 2D COSY Spectrum of Sm2F(NO3)3 in acetonitrile	11
Fig 18 13C Spectrum of Sm2F(NO3)3 in acetonitrile	11
Fig 19 19F Spectrum of Sm2F(NO3)3 in acetonitrile	12
Fig 20 1H Spectrum of La4F(NO3)3 in acetonitrile	12
Fig 21 2D NOESY Spectrum of La4F(NO3)3 in acetonitrile	13
Fig 22 1H Spectrum of Eu2F(NO3)3 in acetonitrile	14
Fig 23 19F Spectrum of Eu2F(NO3)3 in acetonitrile	14
Fig 24 2D COSY Spectrum of Eu2F(NO3)3 in acetonitrile	15
Fig 25 1H Spectrum of Eu2F(NO3)3 in CDCl3	16
Fig 26 2D COSY Spectrum of Eu2F(NO3)3 in CDCl3	17
Fig 27 1H Spectrum of La2F(NO3)3 in acetonitrile	18
Fig 28 2D COSY Spectrum of La2F(NO3)3 (aromatic region) in acetonitrile	19
Fig 29 19F Spectrum of La2F(NO3)3 in acetonitrile	20
X-Ray structures data	20
Table S 2 Crystal data and structure refinements for complexes	20

Table S 3 Results of the SHAPE analysis for the Ln ^{III} ions in complexes21
UV-VIS Titration data
Table S 4 Log β_1 values for the stability of trivalent lanthanides ions with F ligands in acetonitrile with 40 ppm water content
Table S 5 Log β_1 values for the stability of trivalent lanthanides ions with F-ligands in acetonitrile with 400 ppm water content22
Photophysical data22
Fig 30 Absorption spectra of europium complexes with different fluoride-substituted ligands in acetonitrile, C=1·10 ⁻⁵ mol/l22
Fig 31 Normalized phosphorescence spectrum of gadolinium complexes with different fluoride- substituted ligands at 77 K23
Table S 6. Luminescence parameters of lanthanide complexes: the lanthanide resonance energy level (Erez, cm-1), ligand singlet energy level (E(S), cm-1), energy difference between ligand triplet level and lanthanide resonance level (Δ E(Tr-Rez), cm-1), luminescence quantum yield (QY, %) and luminescence lifetime (τ , ms). Data for the complexes with ligands without a substituent (R=H) are presented for comparison

NMR Spectra of complexes

	2FEu		3FFu AFFu		2ESm	3ESm	/FSm	2EL 2	4FLa
	CDCl ₃	CD ₃ CN	JILU	41 LU	21,5111	51511	415111	21 La	41 La
ЗРу	5.27 d 5.12 d	4.65 d 4.63 d	4.05 d	4.22 d	8.31 m	8.39 d	8.33 d	8.21 d 8.19 d	8.22 d
4Py	5.81 t 5.94 t	5.99 t 5.96 t	5.61 t	5.69 t	7.99 m	8.03 t	8.00 t	7.85 t 7.83 t	7.85 t
5Py	4.34 d 3.97 d	4.43 d 4.43 d	3.93 d	3.84 d	7.22 m	7.24 d	7.17 d	7.09 d 7.07 d	7.01 d
2Ar	-	-	7.40 br.s.	7 1 4 +	-	7.19 br.s	7.20	-	7 41 44
6Ar	9.58 t 8.65 t	8.05 br.s 7.51 br.s	7.45 br.s	7.14 (7.32 m	7.45 m	7.38 m	7.48	7.41 UU
3Ar	7.27*	7.14 t 6.95 t	-	7.41	7.56 br.s.	-	7 22 m	7.44 t	7 10 +
5Ar	7.82 t 7.50 d	7.38 t 7.22 t	7.21 t	br.s	7.44 t 7.50 t	7.27 td	7.22 111	7.32 t 7.27 t	7.19 t
4Ar	7.66 br.s 7.56 br.s	7.42 br.s	7.45 br.s	-	7.32 m	7.12 br.s	-	7.24 t 7.17 t	-
CH2	3.46 br.s 3.93 br.s 4.04 br.s 3.82 br.s	2.69 br.s 2.91 br.s 2.60 br.s	2.17 br.s	1.72 q	4.37 dd 4.45 dd	4.41 4.51 br.s	4.51 q	4.15 dq 3.89 dq	4.07 q
СНЗ	1.15 br.s 1.08 br.s	0.64 br.s 0.78 br.s	0.12 br.s	-0.02 t	1.35 t 1.39 t	1.46 t	1.48 t	1.22 - 1.32 m	1.26 t

Table S 1 Table of 1H NMR spectra of the complexes.

*With the solvent signal.

2FLa 355_001001r

Fig 1 The temperature-dependent coalescence of the fluoroaromatic and methylene-groups protons in $La2F(NO_3)_3$ in acetonitrile

Fig 2 The temperature-dependent coalescence of the fluoroaromatic and methylene-groups protons in $Sm2F(NO_3)_3$ in acetonitrile

2FEu 355_001001r

Fig 3 The temperature-dependent coalescence of the fluoroaromatic and methylene-groups protons in Eu2F(NO₃)₃ in acetonitrile

Fig 4 1H Spectrum of Eu3F(NO3)3 in acetonitrile

Fig 6 2D COSY Spectrum of Eu3F(NO3)3 in acetonitrile in aromatic region

Fig 8 13C Spectrum of Sm3F(NO3)3 in acetonitrile

Fig 9 2D COSY Spectrum of Sm3F(NO3)3 in acetonitrile in aromatic region

Fig 10 1H Spectrum of Sm4F(NO3)3 in acetonitrile

Fig 11 2D NOESY Spectrum of Sm4F(NO3)3. The aromatic region.

Fig 12 13C Spectrum of Sm4F(NO3)3 in acetonitrile

Fig 14 1H Spectrum of Eu4F(NO3)3 in acetonitrile

Fig 16 1H Spectrum of Sm2F(NO3)3 in acetonitrile

Fig 17 2D COSY Spectrum of Sm2F(NO3)3 in acetonitrile

Fig 18 13C Spectrum of Sm2F(NO3)3 in acetonitrile

Fig 21 2D NOESY Spectrum of La4F(NO3)3 in acetonitrile

Fig 23 19F Spectrum of Eu2F(NO3)3 in acetonitrile

Fig 24 2D COSY Spectrum of Eu2F(NO3)3 in acetonitrile

Fig 25 1H Spectrum of Eu2F(NO3)3 in CDCl3

Fig 26 2D COSY Spectrum of Eu2F(NO3)3 in CDCl3

Fig 27 1H Spectrum of La2F(NO3)3 in acetonitrile

2FLa.003.001.2rr.esp

Fig 28 2D COSY Spectrum of La2F(NO3)3 (aromatic region) in acetonitrile

Fig 29 19F Spectrum of La2F(NO3)3 in acetonitrile

X-Ray structures data

Table S 2 Crystal data and structure refinements for complexes

Identification code Empirical	Eu 3F (NO ₃) ₃ C28H24EuF2N7O11	Gd 3F (NO ₃) ₃ C28H24F2GdN7O11	Eu 4F (NO ₃) ₃ C28H24F2EuN7O11	Sm 4F (NO ₃) ₃ C28H24F2SmN7O11	La 4F (NO ₃) ₃ (H ₂ O)∙MeC N C30H29F2LaN8O12
Formula weight	824.50	829.79	824.50	822.89	870.52
Temperature		120(2) K		110(2) K	120(2) K
Wavelength			0.71073 Å		
Crystal system			Monoclinic		
Space group	C	2/c	P2	P21/c	
	a = 43.8733(16) Å	a = 43.8591(16) Å	a = 23.6077(19) Å	a = 23.577(4) Å	a = 12.2480(11) Å
	α= 90°	α = 90°	α = 90°	α = 90°	α= 90°
Unit cell	b = 8.4215(3) Å	b = 8.4260(3) Å	b = 8.6548(7) Å	b = 8.6260(16) Å	b = 10.8097(12) Å
dimensions	β= 106.3450(10)°	β = 106.2959(6)°	β = 97.558(2)°	β = 97.645(6)°	β= 93.008(3)°
	c = 17.8839(6) Å	c = 17.8675(7) Å	c = 15.7258(13) Å	c = 15.710(3) Å	c = 27.309(2) Å
	γ = 90°				
Volume	6340.7(4) Å ³	6337.8(4) Å ³	3185.2(4) Å ³	3166.6(10) Å ³	3610.6(6) Å ³
z		8		4	4
Density (calculated)	1.727 Mg/m ³	1.739 Mg/m ³	1.719 Mg/m ³	1.726 Mg/m ³	1.601 Mg/m ³

Absorption coefficient	2.061 mm ⁻¹	2.175 mm ⁻¹	2.051 mm ⁻¹	1.937 mm ⁻¹	1.264 mm ⁻¹		
F(000)	3280	3288	1640	1636	1744		
Crystal size, mm ³	0.202 x 0.143 x 0.113	0.211 x 0.163 x 0.129	0.188 x 0.143 x 0.012	0.102 x 0.095 x 0.089	0.133 x 0.121 x 0.086		
Theta range for data collection	1.935 to	9 30.000°.	2.509 to 29.999°	2.517 to 30.000°	2.03 to 30.000°		
	-61<=h<=60,	-61<=h<=61,	-33<=h<=33,	-32<=h<=33,	-17<=h<=16,		
Index ranges	-11<=k<=11,	-11<=k<=11,	-9<=k<=9,	-12<=k<=12,	-15<=k<=15,		
	-21<=l<=25	-25<=l<=25	-22<=l<=22	-22<=l<=22	-36<=l<=36		
Reflections collected	24832	39918	34478	32653	38328		
Independent	9211	9245	9285	9221	10499		
reflections	[R(int) = 0.0226]	[R(int) = 0.0246]	[R(int) = 0.0766]	[R(int) = 0.0758]	[R(int) = 0.0606]		
Completeness to		99	9.9 %		99.8 %		
theta = 25.242°							
Absorption		Se	emi-empirical from equival	ents			
correction							
Max. and min. transmission	0.815 and 0.670	0.815 and 0.670 0.778 and 0.642 0.982 and 0.681 0.6478 and 0.5576					
Refinement method		F	-ull-matrix least-squares or	n F ²			
Data / restraints / parameters	9211 / 0 / 454	9245 / 0 / 454	9285 / 0 / 444	9221 / 6 / 444	10499 / 0 / 489		
Goodness-of-fit on F ²	1.040	1.058	1.013	0.993	1.029		
Final R indices	R1 = 0.0214,	R1 = 0.0196,	R1 = 0.0439,	R1 = 0.0436,	R1 = 0.0342,		
[I>2sigma(I)]	wR2 = 0.0460	wR2 = 0.0430	wR2 = 0.0839	wR2 = 0.0899	wR2 = 0.0680		
R indices (all	R1 = 0.0270,	R1 = 0.0234,	R1 = 0.0762,	R1 = 0.0630,	R1 = 0.0513,		
data)	wR2 = 0.0486	wR2 = 0.0447	wR2 = 0.0962	wR2 = 0.0977	wR2 = 0.0730		
Extinction							
coefficient			n/a				
Largest diff.	0.447 and -0.408	0.591 and -0.517	1.423 and -2.062	1.655 and -1.296	0.500 and -0.529		
peak and hole,	e/Å ⁻³	e/Å ³	e/Å ⁻³	e/Å ⁻³	e/Å ⁻³		

Table S 3 Results of the SHAPE analysis for the Ln^{III} ions in complexes

Complex	Bicapped cube, D4h	Bicapped square antiprism, D4d	Metabidiminished icosahedron, C2v	Sphenocorona, C2v	Staggered dodecahedron, D2	Tetradecahedron, C2v	Hexadecaheron, D4h
Sm 4F (NO ₃) ₃	11.222	4.530	8.340	3.137	3.379	3.433	8.486
Eu 4F (NO ₃) ₃	11.027	4.259	8.219	3.104	3.470	3.532	8.780

Eu 3F (NO ₃) ₃	8.169	4.305	6.631	3.986	4.287	3.265	5.478
Gd 3F (NO ₃) ₃	8.279	4.216	6.822	3.838	4.351	3.365	5.627

UV-VIS Titration data

Table S 4 Log β_1 values for the stability of trivalent lanthanides ions with F ligands in acetonitrile with 40 ppm water content

Ln ³⁺	La	Ce	Pr	Nd	Sm	Eu	Gd	Tb	Dy	Но	Er	Tm	Yb	Lu
Ligand														
2 5	6.31	6.61	6.84	7.25	7.05	6.95	6.78	6.64	6.95	7.18	7.31	7.20	7.38	7.54
2-F	±0.04	±0.07	±0.10	±0.08	±0.11	±0.07	±0.04	±0.05	±0.05	±0.06	±0.08	±0.07	±0.07	±0.12
2 E	5.67	7.07	7.60	8.10	7.82	7.49	7.31	7.05	7.58	7.78	7.93	8.03	8.24	7.77
э-г	±0.03	±0.06	±0.06	±0.10	±0.09	±0.06	±0.05	±0.03	±0.05	±0.16	±0.11	±0.15	±0.08	±0.05
4 5	5.47	6.60	7.26	7.46	7.37	7.25	6.58	6.73	7.15	7.31	7.75	7.69	7.03	6.46
4-r	±0.02	±0.02	±0.06	±0.06	±0.04	±0.03	±0.01	±0.01	±0.03	±0.03	±0.12	±0.13	±0.03	±0.02
Table S	$5 \text{ Log } \beta_1$	values for	or the sta	ability of	trivalent	: lanthan	ides ions	with F-l	igands in	acetonit	rile with	400 ppn	n water	

content

Ln ³⁺	La	Ce	Pr	Nd	Sm	Eu	Gd	Tb	Dy	Но	Er
Ligand											
2 5	5.93	5.61	5.60		6.30	6.15	6.01	6.33		6.68	
2-F	±0.03	±0.03	±0.03		±0.04	±0.05	±0.05	±0.04		±0.05	
2 E	4.90	6.18	6.54				6.16	6.83			
э-г	±0.03	±0.03	±0.03				±0.03	±0.05			
4-F		4.76	5.63	5.66	5.40		5.63	5.17	5.31		5.80
		±0.10	±0.02	±0.02	±0.02		±0.02	±0.03	±0.02		±0.01

Photophysical data

Fig 30 Absorption spectra of europium complexes with different fluoride-substituted ligands in acetonitrile, C=1·10⁻⁵ mol/l.

Fig 31 Normalized phosphorescence spectrum of gadolinium complexes with different fluoride-substituted ligands at 77 K.

Table S 6. Luminescence parameters of lanthanide complexes: the lanthanide resonance energy level (Erez, cm-1), ligand singlet energy level (E(S), cm-1), energy difference between ligand triplet level and lanthanide resonance level (ΔE(Tr-Rez), cm-1), luminescence quantum yield (QY, %) and luminescence lifetime (τ, ms). Data for the complexes with ligands without a substituent (R=H) are presented for comparison.

Parameter\Ln ³⁺	Sm ³⁺	Eu ³⁺	Gd ³⁺	Tb ³⁺	Dy ³⁺								
E cm ⁻¹	⁴ G _{5/2}	⁵ D ₀	⁸ S _{7/2}	⁵ D ₄	⁴ F _{9/2}								
L _{Rez} , CIII	17760±10	17170±15	32080[1]	20340±80	20770±90								
R=H													
- / - > _ /		E(Tr)=21300	cm ⁻¹ [2,3]										
E(S), cm ⁻¹	30960±190	30960±190	30960±190	30960±190	30960±190								
ΔE(Tr-Rez), cm ⁻¹	3540±200	4130±200	-10780±200	960±220	530±220								
QY, %	< 0.01	8±2[3]	< 0.01	0.08±0.01	0.08±0.01								
τ, ms	0.16±0.01	1.70±0.02[2]	n/a	0.41±0.02[2]	0.16±0.03								
		R=21	F										
		E(Tr)=1905	50 cm⁻¹										
E(S), cm ⁻¹	31060±190	31250±200	31250±200	31380±210	31280±210								
ΔE(Tr-Rez), cm⁻¹	1290±150	1880±150	-13030±150	-1290±180	-1720±180								
QY, %	< 0.01	0.81±0.06	< 0.01	0.11±0.01	0.02±0.01								
τ, ms	0.13±0.01	1.63 ± 0.01	n/a	1.09 ± 0.01	0.13±0.02								
		R=31	F										
		E(Tr)=1988	30 cm⁻¹										
E(S), cm ⁻¹	31150±190	30960±190	31130±190	31150±190	31250±200								
ΔE(Tr-Rez), cm⁻¹	2120±130	2710±130	-12200±130	-460±150	-890±160								
QY, %	0.20±0.02	12±2	< 0.01	0.05±0.01	< 0.01								
τ, ms	0.12±0.02	1.52±0.03	n/a	0.90±0.01	0.17±0.02								
		R=41											
- / - > _ /		E(Tr)=1887	70 cm ⁻¹										
E(S), cm ⁻¹	30990±200	30960±190	30990±200	30990±200	30960±190								
ΔE(Tr-Rez), cm ⁻¹	1110±120	1700±120	-13210±120	-1470±150	-1900±150								
QY, %	< 0.01	2.4±0.6	< 0.01	< 0.01	< 0.01								
τ, ms	0.13±0.01	1.60±0.05	n/a	1.20±0.01	0.17±0.02								

- 1. Daoud, M.; Zambon, D.; Mahiou, R.; Ammar, A.; Tanouti, B. Spectroscopic Properties of Trivalent Gadolinium in Diphosphate CsYP2O7. *Mater. Res. Bull.* **1998**, *33*, 597–603, doi:10.1016/S0025-5408(98)00012-9.
- Borisova, N.E.; Kostin, A.A.; Eroshkina, E.A.; Reshetova, M.D.; Lyssenko, K.A.; Spodine, E.N.; Puntus, L.N. Lanthanide Complexes with Tetradentate N,N',O,O'-Dipyridyl-Based Ligands: Structure, Stability, and Photophysical Properties. *Eur. J. Inorg. Chem.* 2014, 2219–2229, doi:10.1002/ejic.201301271.
- Borisova, N.E.; Sumyanova, T.B.; Kharcheva, A. V.; Matveev, P.I.; Ivanov, A. V.; Razumova, E.A.; Patsaeva, S. V. The Lanthanide Complexes of 2,2'-Bipyridyl-6,6'-Dicarboxylic Dimethylanilides: The Influence of a Secondary Coordination Sphere on the Stability, Structure, Luminescence and f-Element Extraction. *Dalt. Trans.* 2018, 47, 16755–16765, doi:10.1039/c8dt03734e.