UV-VIS Titration Data for paper

Bipyridyldicarboxamides and f-metals: Electron effects influence the structure, stability, separation properties, and photophysics

Nataliya E. Borisova,*^a Anastasia V. Kharcheva,^{a, b} Tsagana B. Sumyanova,^a Victoria Gontcharenko,^a Pert I. Matveev,^a Leonid Starostin^a, Alexander Trigub^a, Alexey V. Ivanov,^a and Svetlana V. Patsaeva^b

UV-vis Titr	ration Data in "dry" CH ₃ CN	.3
2-F ligar	nd with trivalent lanthanide ions	.3
2-F w	/ith La(NO₃)₃·6H₂O	.3
2-F w	/ith Ce(NO₃)₃·6H₂O	.3
2-F w	/ith Pr(NO₃)₃·6H₂O	.3
2-F w	/ith Nd(NO ₃)₃·6H₂O	.4
2-F w	/ith Sm(NO₃)₃·6H₂O	.4
2-F w	/ith Eu(NO₃)₃·6H₂O	.4
2-F w	/ith Gd(NO₃)₃·6H₂O	.5
2-F w	/ith Tb(NO ₃) ₃ ·5H ₂ O	.5
2-F w	/ith Dy(NO₃)₃·5H₂O	.5
2-F w	/ith Ho(NO₃)₃·5H₂O	.6
2-F w	/ith Er(NO₃)₃·5H₂O	.6
2-F w	/ith Tm(NO ₃) ₃ ·5H ₂ O	.6
2-F w	/ith Yb(NO ₃) ₃ ·5H ₂ O	.7
2-F w	/ith Lu(NO₃)₃·4H₂O	.7
3-F ligar	nd with trivalent lanthanide ions	.7
3-F w	/ith La(NO₃)₃·6H₂O	.7
3-F w	/ith Ce(NO₃)₃·6H₂O	.8
3-F w	/ith Pr(NO₃)₃·6H₂O	.8
3-F w	/ith Nd(NO₃)₃·6H₂O	.8
3-F w	/ith Sm(NO₃)₃·6H₂O	.9
3-F w	/ith Eu(NO₃)₃·6H₂O	.9
3-F w	/ith Gd(NO₃)₃·6H₂O	.9
3-F w	/ith Tb(NO ₃) ₃ ·5H ₂ O1	0
3-F w	/ith Dy(NO₃)₃·5H₂O1	0
3-F w	/ith Ho(NO₃)₃·5H₂O1	0
3-F w	/ith Er(NO₃)₃·5H₂O1	1

3-F with $Tm(NO_3)_3$ ·5H ₂ O	
3-F with $Yb(NO_3)_3$ ·5H ₂ O	11
3-F with $Lu(NO_3)_3$ ·4H ₂ O	12
4-F ligand with trivalent lanthanide ions	
4-F with $La(NO_3)_3$ ·6H ₂ O	12
4-F with $Ce(NO_3)_3 \cdot 6H_2O$	12
4-F with $Pr(NO_3)_3 \cdot 6H_2O$	
4-F with Nd(NO₃)₃·6H₂O	
4-F with $Sm(NO_3)_3$ ·6H ₂ O	
4-F with $Eu(NO_3)_3 \cdot 6H_2O$	14
4-F with Gd(NO₃)₃·6H₂O	14
4-F with $Tb(NO_3)_3 \cdot 5H_2O$	14
4-F with $Dy(NO_3)_3 \cdot 5H_2O$	15
4-F with Ho(NO ₃) ₃ ·5H ₂ O	15
4-F with $Er(NO_3)_3 \cdot 5H_2O$	15
4-F with $Tm(NO_3)_3$ ·5H ₂ O	16
4-F with Yb(NO ₃) ₃ ·5H ₂ O	16
4-F with $Lu(NO_3)_3$ ·4H ₂ O	16
UV-vis Titration Data in "wet" CH_3CN	17
2-F ligand with trivalent lanthanide ions	
2-F with $La(NO_3)_3$ ·6H ₂ O	17
2-F with Ce(NO ₃) ₃ ·6H ₂ O	17
2-F with $Pr(NO_3)_3$ ·6H ₂ O	17
2-F with $Sm(NO_3)_3$ ·6H ₂ O	
2-F with $Eu(NO_3)_3 \cdot 6H_2O$	
2-F with Gd(NO ₃) ₃ ·6H ₂ O	
2-F with $Tb(NO_3)_3 \cdot 5H_2O$	
2-F with Ho(NO ₃) ₃ ·5H ₂ O	
3-F ligand with trivalent lanthanide ions	
3-F with $La(NO_3)_3$ ·6H ₂ O	
3-F with $Ce(NO_3)_3 \cdot 6H_2O$	
3-F with $Pr(NO_3)_3 \cdot 6H_2O$	20
3-F with $Gd(NO_3)_3 \cdot 6H_2O$	20
3-F with $Tb(NO_3)_3 \cdot 5H_2O$	20
4-F ligand with trivalent lanthanide ions	21
4-F with $Ce(NO_3)_3 \cdot 6H_2O$	21
4-F with $Pr(NO_3)_3 \cdot 6H_2O$	21
4-F with Nd(NO ₃) ₃ ·6H ₂ O	21
4-F with Sm(NO ₃) ₃ ·6H ₂ O	22

4-F with $Gd(NO_3)_3 \cdot 6H_2O$	22
4-F with $Tb(NO_3)_3 \cdot 5H_2O$	22
4-F with Tb(NO ₃) ₃ ·5H ₂ O	22
4-F with Dy(NO ₃) ₃ ·5H ₂ O	23
4-F with $Er(NO_3)_3 \cdot 5H_2O$	23

UV-vis Titration Data in "dry" CH₃CN

2-F ligand with trivalent lanthanide ions

Spectrophotometric titration in "dry" CH₃CN solution: 1 μ l of 3.22 mM titrant solution La(NO₃)₃·6H₂O was added to 2 ml of 1.97·10⁻² mM 2-F: a) spectrophotometric data, where red line – 2-F spectrum, blue dashed lines – aliquots of La(NO₃)₃·6H₂O and blue line – complex [La2-F](NO₃)₃; b) titration curve at 316 nm; c) the method of continuous variation for 0,094 mM 2-F with 0,094 mM La(NO₃)₃·6H₂O at 316 nm.

Spectrophotometric titration in "dry" CH₃CN solution: 1 μ l of 3.79 mM titrant solution Ce(NO₃)₃·6H₂O was added to 2 ml of 2.08·10⁻² mM 2-F: a) spectrophotometric data, where red line – 2-F spectrum, blue dashed lines – aliquots of Ce(NO₃)₃·6H₂O and blue line – complex [Ce2-F](NO₃)₃; b) titration curve at 317 nm; c) the method of continuous variation for 0,099 mM 2-F with 0,099 mM Ce(NO₃)₃·6H₂O at 317 nm.

Spectrophotometric titration in "dry" CH₃CN solution: 1 μ l of 3.76 mM titrant solution Pr(NO₃)₃·6H₂O was added to 2 ml of 2.00·10⁻² mM 2-F: a) spectrophotometric data, where red line – 2-F spectrum, blue dashed lines – aliquots of Pr(NO₃)₃·6H₂O and blue line – complex [Pr2-F](NO₃)₃; b) titration curve at 318 nm; c) the method of continuous variation for 0,093 mM 2-F with 0,093 mM Pr(NO₃)₃·6H₂O at 318 nm.

Spectrophotometric titration in "dry" CH₃CN solution: 1 μ l of 3.69 mM titrant solution Nd(NO₃)₃·6H₂O was added to 2 ml of 2.02·10⁻² mM 2-F: a) spectrophotometric data, where red line – 2-F spectrum, blue dashed lines – aliquots of Nd(NO₃)₃·6H₂O and blue line – complex [Nd2-F](NO₃)₃; b) titration curve at 318 nm; c) the method of continuous variation for 0,108 mM 2-F with 0,108 mM Nd(NO₃)₃·6H₂O at 318 nm.

Spectrophotometric titration in "dry" CH₃CN solution: 1 μ l of 3.13 mM titrant solution Sm(NO₃)₃·6H₂O was added to 2 ml of 1.95·10⁻² mM 2-F: a) spectrophotometric data, where red line – 2-F spectrum, blue dashed lines – aliquots of Sm(NO₃)₃·6H₂O and blue line – complex [Sm2-F](NO₃)₃; b) titration curve at 318 nm; c) the method of continuous variation for 0,098 mM 2-F with 0,098 mM Sm(NO₃)₃·6H₂O at 318 nm.

Spectrophotometric titration in "dry" CH₃CN solution: 1 μ l of 3.66 mM titrant solution Eu(NO₃)₃·6H₂O was added to 2 ml of 1.99·10⁻² mM 2-F: a) spectrophotometric data, where red line – 2-F spectrum, blue dashed lines – aliquots of Eu(NO₃)₃·6H₂O and blue line – complex [Eu2-F](NO₃)₃; b) titration curve at 319 nm; c) the method of continuous variation for 0,108 mM 2-F with 0,108 mM Eu(NO₃)₃·6H₂O at 319 nm.

2-F with Gd(NO₃)₃·6H₂O

Spectrophotometric titration in "dry" CH₃CN solution: 1 μ l of 3.23 mM titrant solution Gd(NO₃)₃·6H₂O was added to 2 ml of 2.01·10⁻² mM 2-F: a) spectrophotometric data, where red line – 2-F spectrum, blue dashed lines – aliquots of Gd(NO₃)₃·6H₂O and blue line – complex [Gd2-F](NO₃)₃; b) titration curve at 319 nm; c) the method of continuous variation for 0,098 mM 2-F with 0,098 mM Gd(NO₃)₃·6H₂O at 319 nm.

Spectrophotometric titration in "dry" CH₃CN solution: 1 μ l of 3.34 mM titrant solution Tb(NO₃)₃·5H₂O was added to 2 ml of 2.01·10⁻² mM 2-F: a) spectrophotometric data, where red line – 2-F spectrum, blue dashed lines – aliquots of Tb(NO₃)₃·5H₂O and blue line – complex [Tb2-F](NO₃)₃; b) titration curve at 320 nm; c) the method of continuous variation for 0,098 mM 2-F with 0,098 mM Tb(NO₃)₃·5H₂O at 320 nm.

Spectrophotometric titration in "dry" CH₃CN solution: 1 μ l of 3.69 mM titrant solution Dy(NO₃)₃·5H₂O was added to 2 ml of 2.01·10⁻² mM 2-F: a) spectrophotometric data, where red line – 2-F spectrum, blue dashed lines – aliquots of Dy(NO₃)₃·5H₂O and blue line – complex [Dy2-F](NO₃)₃; b) titration curve at 320 nm; c) the method of continuous variation for 0,104 mM 2-F with 0,104 mM Dy(NO₃)₃·5H₂O at 320 nm.

Spectrophotometric titration in "dry" CH₃CN solution: 1 μ l of 3.38 mM titrant solution Ho(NO₃)₃·5H₂O was added to 2 ml of 1.99·10⁻² mM 2-F: a) spectrophotometric data, where red line – 2-F spectrum, blue dashed lines – aliquots of Ho(NO₃)₃·5H₂O and blue line – complex [Ho2-F](NO₃)₃; b) titration curve at 320 nm; c) the method of continuous variation for 0,096 mM 2-F with 0,096 mM Ho(NO₃)₃·5H₂O at 320 nm.

Spectrophotometric titration in "dry" CH₃CN solution: 1 μ l of 3.25 mM titrant solution Er(NO₃)₃·5H₂O was added to 2 ml of 2.00·10⁻² mM 2-F: a) spectrophotometric data, where red line – 2-F spectrum, blue dashed lines – aliquots of Er(NO₃)₃·5H₂O and blue line – complex [Er2-F](NO₃)₃; b) titration curve at 320 nm; c) the method of continuous variation for 0,106 mM 2-F with 0,106 mM Er(NO₃)₃·5H₂O at 320 nm.

Spectrophotometric titration in "dry" CH₃CN solution: 1 μ l of 3.19 mM titrant solution Tm(NO₃)₃·5H₂O was added to 2 ml of 1.91·10⁻² mM 2-F: a) spectrophotometric data, where red line – 2-F spectrum, blue dashed lines – aliquots of Tm(NO₃)₃·5H₂O and blue line – complex [Tm2-F](NO₃)₃; b) titration curve at 320 nm; c) the method of continuous variation for 0,094 mM 2-F with 0,094 mM Tm(NO₃)₃·5H₂O at 320 nm.

Spectrophotometric titration in "dry" CH₃CN solution: 1 μ l of 2.95 mM titrant solution Yb(NO₃)₃·5H₂O was added to 2 ml of 1.91·10⁻² mM 2-F: a) spectrophotometric data, where red line – 2-F spectrum, blue dashed lines – aliquots of Yb(NO₃)₃·5H₂O and blue line – complex [Yb2-F](NO₃)₃; b) titration curve at 320 nm; c) the method of continuous variation for 0,094 mM 2-F with 0,094 mM Yb(NO₃)₃·5H₂O at 320 nm.

Spectrophotometric titration in "dry" CH₃CN solution: 1 μ l of 3.27 mM titrant solution Lu(NO₃)₃·5H₂O was added to 2 ml of 1.98·10⁻² mM 2-F: a) spectrophotometric data, where red line – 2-F spectrum, blue dashed lines – aliquots of Lu(NO₃)₃·5H₂O and blue line – complex [Lu2-F](NO₃)₃; b) titration curve at 320 nm; c) the method of continuous variation for 0,097 mM 2-F with 0,097 mM Lu(NO₃)₃·5H₂O at 320 nm.

3-F ligand with trivalent lanthanide ions

Spectrophotometric titration in "dry" CH₃CN solution: 1 μ l of 3.37 mM titrant solution La(NO₃)₃·6H₂O was added to 2 ml of 2.03·10⁻² mM 3-F: a) spectrophotometric data, where red line – 3-F spectrum, blue dashed lines – aliquots of La(NO₃)₃·6H₂O and blue line – complex [La3-F](NO₃)₃; b) titration curve at 319 nm; c) the method of continuous variation for 0,122 mM 3-F with 0,127 mM La(NO₃)₃·6H₂O at 319 nm.

Spectrophotometric titration in "dry" CH₃CN solution: 1 μ l of 3.36 mM titrant solution Ce(NO₃)₃·6H₂O was added to 2 ml of 2.10·10⁻² mM 3-F: a) spectrophotometric data, where red line – 3-F spectrum, blue dashed lines – aliquots of Ce(NO₃)₃·6H₂O and blue line – complex [Ce3-F](NO₃)₃; b) titration curve at 320 nm; c) the method of continuous variation for 0,117 mM 3-F with 0,117 mM Ce(NO₃)₃·6H₂O at 320 nm.

Spectrophotometric titration in "dry" CH₃CN solution: 1 μ l of 3.35 mM titrant solution Pr(NO₃)₃·6H₂O was added to 2 ml of 2.00·10⁻² mM 3-F: a) spectrophotometric data, where red line – 3-F spectrum, blue dashed lines – aliquots of Pr(NO₃)₃·6H₂O and blue line – complex [Pr3-F](NO₃)₃; b) titration curve at 321 nm; c) the method of continuous variation for 0,101 mM 3-F with 0,101 mM Pr(NO₃)₃·6H₂O at 321 nm.

Spectrophotometric titration in "dry" CH₃CN solution: 1 μ l of 3.35 mM titrant solution Nd(NO₃)₃·6H₂O was added to 2 ml of 1.98·10⁻² mM 3-F: a) spectrophotometric data, where red line – 3-F spectrum, blue dashed lines – aliquots of Nd(NO₃)₃·6H₂O and blue line – complex [Nd3-F](NO₃)₃; b) titration curve at 322 nm; c) the method of continuous variation for 0,097 mM 3-F with 0,097 mM Nd(NO₃)₃·6H₂O at 322 nm.

Spectrophotometric titration in "dry" CH₃CN solution: 1 μ l of 3.00 mM titrant solution Sm(NO₃)₃·6H₂O was added to 2 ml of 2.01·10⁻² mM 3-F: a) spectrophotometric data, where red line – 3-F spectrum, blue dashed lines – aliquots of Sm(NO₃)₃·6H₂O and blue line – complex [Sm3-F](NO₃)₃; b) titration curve at 322 nm; c) the method of continuous variation for 0,109 mM 3-F with 0,109 mM Sm(NO₃)₃·6H₂O at 322 nm.

0.8

1.0

Spectrophotometric titration in "dry" CH₃CN solution: 1 μ l of 3.34 mM titrant solution Eu(NO₃)₃·6H₂O was added to 2 ml of 2.03·10⁻² mM 3-F: a) spectrophotometric data, where red line – 3-F spectrum, blue dashed lines – aliquots of Eu(NO₃)₃·6H₂O and blue line – complex [Eu3-F](NO₃)₃; b) titration curve at 322 nm; c) the method of continuous variation for 0,109 mM 3-F with 0,109 mM Eu(NO₃)₃·6H₂O at 322 nm.

Spectrophotometric titration in "dry" CH₃CN solution: 1 μ l of 3.35 mM titrant solution Gd(NO₃)₃·6H₂O was added to 2 ml of 2.04·10⁻² mM 3-F: a) spectrophotometric data, where red line – 3-F spectrum, blue dashed lines – aliquots of Gd(NO₃)₃·6H₂O and blue line – complex [Gd3-F](NO₃)₃; b) titration curve at 322 nm; c) the method of continuous variation for 0,097 mM 3-F with 0,097 mM Gd(NO₃)₃·6H₂O at 322 nm.

Spectrophotometric titration in "dry" CH₃CN solution: 1 μ l of 3.35 mM titrant solution Tb(NO₃)₃·5H₂O was added to 2 ml of 2.04·10⁻² mM 3-F: a) spectrophotometric data, where red line – 3-F spectrum, blue dashed lines – aliquots of Tb(NO₃)₃·5H₂O and blue line – complex [Tb3-F](NO₃)₃; b) titration curve at 322 nm; c) the method of continuous variation for 0,094 mM 3-F with 0,094 mM Tb(NO₃)₃·5H₂O at 322 nm.

Spectrophotometric titration in "dry" CH₃CN solution: 1 μ l of 3.39 mM titrant solution Dy(NO₃)₃·5H₂O was added to 2 ml of 2.03·10⁻² mM 3-F: a) spectrophotometric data, where red line – 3-F spectrum, blue dashed lines – aliquots of Dy(NO₃)₃·5H₂O and blue line – complex [Dy3-F](NO₃)₃; b) titration curve at 322 nm; c) the method of continuous variation for 0,100 mM 3-F with 0,100 mM Dy(NO₃)₃·5H₂O at 322 nm.

Spectrophotometric titration in "dry" CH₃CN solution: 1 μ l of 3.34 mM titrant solution Ho(NO₃)₃·5H₂O was added to 2 ml of 2.19·10⁻² mM 3-F: a) spectrophotometric data, where red line – 3-F spectrum, blue dashed lines – aliquots of Ho(NO₃)₃·5H₂O and blue line – complex [Ho3-F](NO₃)₃; b) titration curve at 322 nm; c) the method of continuous variation for 0,106 mM 3-F with 0,106 mM Ho(NO₃)₃·5H₂O at 322 nm.

Spectrophotometric titration in "dry" CH₃CN solution: 1 μ l of 3.46 mM titrant solution Er(NO₃)₃·5H₂O was added to 2 ml of 2.21·10⁻² mM 3-F: a) spectrophotometric data, where red line – 3-F spectrum, blue dashed lines – aliquots of Er(NO₃)₃·5H₂O and blue line – complex [Er3-F](NO₃)₃; b) titration curve at 322 nm; c) the method of continuous variation for 0,107 mM 3-F with 0,106 mM Er(NO₃)₃·5H₂O at 322 nm.

Spectrophotometric titration in "dry" CH₃CN solution: 1 μ l of 3.11 mM titrant solution Tm(NO₃)₃·5H₂O was added to 2 ml of 1.99·10⁻² mM 3-F: a) spectrophotometric data, where red line – 3-F spectrum, blue dashed lines – aliquots of Tm(NO₃)₃·5H₂O and blue line – complex [Tm3-F](NO₃)₃; b) titration curve at 322 nm; c) the method of continuous variation for 0,110 mM 3-F with 0,110 mM Tm(NO₃)₃·5H₂O at 322 nm.

Spectrophotometric titration in "dry" CH₃CN solution: 2.316 μ l of 1.23 mM titrant solution Yb(NO₃)₃·5H₂O was added to 2 ml of 1.83·10⁻² mM 3-F: a) spectrophotometric data, where red line – 3-F spectrum, blue dashed lines – aliquots of Yb(NO₃)₃·5H₂O and blue line – complex [Yb3-F](NO₃)₃; b) titration curve at 322 nm; c) the method of continuous variation for 0,101 mM 3-F with 0,101 mM Yb(NO₃)₃·5H₂O at 322 nm.

Spectrophotometric titration in "dry" CH₃CN solution: 1.91 μ l of 1.49 mM titrant solution Lu(NO₃)₃·4H₂O was added to 2 ml of 1.83·10⁻² mM 3-F: a) spectrophotometric data, where red line – 3-F spectrum, blue dashed lines – aliquots of Lu(NO₃)₃·4H₂O and blue line – complex [Lu3-F](NO₃)₃; b) titration curve at 322 nm; c) the method of continuous variation for 0,099 mM 3-F with 0,099 mM Lu(NO₃)₃·4H₂O at 322 nm.

4-F ligand with trivalent lanthanide ions

Spectrophotometric titration in "dry" CH₃CN solution: 1 μ l of 3.44 mM titrant solution La(NO₃)₃·6H₂O was added to 2 ml of 2.10·10⁻² mM 4-F: a) spectrophotometric data, where red line – 4-F spectrum, blue dashed lines – aliquots of La(NO₃)₃·6H₂O and blue line – complex [La4-F](NO₃)₃; b) titration curve at 319 nm; c) the method of continuous variation for 0,110 mM 4-F with 0,112 mM La(NO₃)₃·6H₂O at 319 nm.

Spectrophotometric titration in "dry" CH₃CN solution: 1 μ l of 3.36 mM titrant solution Ce(NO₃)₃·6H₂O was added to 2 ml of 2.10·10⁻² mM 4-F: a) spectrophotometric data, where red line – 4-F spectrum, blue dashed lines – aliquots of Ce(NO₃)₃·6H₂O and blue line – complex [Ce4-F](NO₃)₃; b) titration curve at 321 nm; c) the method of continuous variation for 0,110 mM 4-F with 0,110 mM Ce(NO₃)₃·6H₂O at 321 nm.

Spectrophotometric titration in "dry" CH₃CN solution: 1 μ l of 3.13 mM titrant solution Pr(NO₃)₃·6H₂O was added to 2 ml of 2.03·10⁻² mM 4-F: a) spectrophotometric data, where red line – 4-F spectrum, blue dashed lines – aliquots of Pr(NO₃)₃·6H₂O and blue line – complex [Pr4-F](NO₃)₃; b) titration curve at 322 nm; c) the method of continuous variation for 0,111 mM 4-F with 0,111 mM Pr(NO₃)₃·6H₂O at 322 nm.

Spectrophotometric titration in "dry" CH₃CN solution: 1 μ l of 3.37 mM titrant solution Nd(NO₃)₃·6H₂O was added to 2 ml of 2.10·10⁻² mM 4-F: a) spectrophotometric data, where red line – 4-F spectrum, blue dashed lines – aliquots of Nd(NO₃)₃·6H₂O and blue line – complex [Nd4-F](NO₃)₃; b) titration curve at 322 nm; c) the method of continuous variation for 0,102 mM 4-F with 0,102 mM Nd(NO₃)₃·6H₂O at 322 nm.

Spectrophotometric titration in "dry" CH₃CN solution: 1 μ l of 2.76 mM titrant solution Sm(NO₃)₃·6H₂O was added to 2 ml of 2.10·10⁻² mM 4-F: a) spectrophotometric data, where red line – 4-F spectrum, blue dashed lines – aliquots of Sm(NO₃)₃·6H₂O and blue line – complex [Sm4-F](NO₃)₃; b) titration curve at 323 nm; c) the method of continuous variation for 0,086 mM 4-F with 0,086 mM Sm(NO₃)₃·6H₂O at 323 nm.

Spectrophotometric titration in "dry" CH₃CN solution: 1 μ l of 3.38 mM titrant solution Eu(NO₃)₃·6H₂O was added to 2 ml of 2.12·10⁻² mM 4-F: a) spectrophotometric data, where red line – 4-F spectrum, blue dashed lines – aliquots of Eu(NO₃)₃·6H₂O and blue line – complex [Eu4-F](NO₃)₃; b) titration curve at 323 nm; c) the method of continuous variation for 0,108 mM 4-F with 0,108 mM Eu(NO₃)₃·6H₂O at 323 nm.

Spectrophotometric titration in "dry" CH₃CN solution: 1 μ l of 3.62 mM titrant solution Gd(NO₃)₃·6H₂O was added to 2 ml of 2.10·10⁻² mM 4-F: a) spectrophotometric data, where red line – 4-F spectrum, blue dashed lines – aliquots of Gd(NO₃)₃·6H₂O and blue line – complex [Gd4-F](NO₃)₃; b) titration curve at 323 nm; c) the method of continuous variation for 0,100 mM 4-F with 0,100 mM Gd(NO₃)₃·6H₂O at 323 nm.

Spectrophotometric titration in "dry" CH₃CN solution: 1 μ l of 3.36 mM titrant solution Tb(NO₃)₃·5H₂O was added to 2 ml of 2.14·10⁻² mM 4-F: a) spectrophotometric data, where red line – 4-F spectrum, blue dashed lines – aliquots of Tb(NO₃)₃·5H₂O and blue line – complex [Tb4-F](NO₃)₃; b) titration curve at 323 nm; c) the method of continuous variation for 0,091 mM 4-F with 0,091 mM Tb(NO₃)₃·5H₂O at 323 nm.

Spectrophotometric titration in "dry" CH₃CN solution: 1 μ l of 3.08 mM titrant solution Dy(NO₃)₃·5H₂O was added to 2 ml of 2.04·10⁻² mM 4-F: a) spectrophotometric data, where red line – 4-F spectrum, blue dashed lines – aliquots of Dy(NO₃)₃·5H₂O and blue line – complex [Dy4-F](NO₃)₃; b) titration curve at 323 nm; c) the method of continuous variation for 0,091 mM 4-F with 0,091 mM Dy(NO₃)₃·5H₂O at 323 nm.

Spectrophotometric titration in "dry" CH₃CN solution: 1 μ l of 3.14 mM titrant solution Ho(NO₃)₃·5H₂O was added to 2 ml of 2.14·10⁻² mM 4-F: a) spectrophotometric data, where red line – 4-F spectrum, blue dashed lines – aliquots of Ho(NO₃)₃·5H₂O and blue line – complex [Ho4-F](NO₃)₃; b) titration curve at 323 nm; c) the method of continuous variation for 0,110 mM 4-F with 0,110 mM Ho(NO₃)₃·5H₂O at 323 nm.

Spectrophotometric titration in "dry" CH₃CN solution: 1 μ l of 3.74 mM titrant solution Er(NO₃)₃·5H₂O was added to 2 ml of 2.13·10⁻² mM 4-F: a) spectrophotometric data, where red line – 4-F spectrum, blue dashed lines – aliquots of Er(NO₃)₃·5H₂O and blue line – complex [Er4-F](NO₃)₃; b) titration curve at 323 nm; c) the method of continuous variation for 0,083 mM 4-F with 0,083 mM Er(NO₃)₃·5H₂O at 323 nm.

Spectrophotometric titration in "dry" CH₃CN solution: 1 μ l of 3.41 mM titrant solution Tm(NO₃)₃·5H₂O was added to 2 ml of 2.03·10⁻² mM 4-F: a) spectrophotometric data, where red line – 4-F spectrum, blue dashed lines – aliquots of Tm(NO₃)₃·5H₂O and blue line – complex [Tm4-F](NO₃)₃; b) titration curve at 323 nm; c) the method of continuous variation for 0,107 mM 4-F with 0,107 mM Tm(NO₃)₃·5H₂O at 323 nm.

Spectrophotometric titration in "dry" CH₃CN solution: 1 μ l of 3.72 mM titrant solution Yb(NO₃)₃·5H₂O was added to 2 ml of 2.10·10⁻² mM 4-F: a) spectrophotometric data, where red line – 4-F spectrum, blue dashed lines – aliquots of Yb(NO₃)₃·5H₂O and blue line – complex [Yb4-F](NO₃)₃; b) titration curve at 323 nm; c) the method of continuous variation for 0,093 mM 4-F with 0,093 mM Yb(NO₃)₃·5H₂O at 323 nm.

Spectrophotometric titration in "dry" CH₃CN solution: 1 μ l of 3.42 mM titrant solution Lu(NO₃)₃·5H₂O was added to 2 ml of 2.04·10⁻² mM 4-F: a) spectrophotometric data, where red line – 4-F spectrum, blue dashed lines – aliquots of Lu(NO₃)₃·5H₂O and blue line – complex [Lu4-F](NO₃)₃; b) titration curve at 323 nm; c) the method of continuous variation for 0,113 mM 4-F with 0,122 mM Lu(NO₃)₃·5H₂O at 323 nm.

UV-vis Titration Data in "wet" CH₃CN

2-F ligand with trivalent lanthanide ions

Spectrophotometric titration in "wet" CH₃CN solution: 1 μ l of 4.58 mM titrant solution La(NO₃)₃·6H₂O was added to 2 ml of 4.60·10⁻² mM 2-F: a) spectrophotometric data, where red line – 2-F spectrum, blue dashed lines – aliquots of La(NO₃)₃·6H₂O and blue line – complex [La2-F](NO₃)₃; b) titration curve at 316 nm.

Spectrophotometric titration in "wet" CH₃CN solution: 1 μ l of 4.65 mM titrant solution Ce(NO₃)₃·6H₂O was added to 2 ml of 4.42·10⁻² mM 2-F: a) spectrophotometric data, where red line – 2-F spectrum, blue dashed lines – aliquots of Ce(NO₃)₃·6H₂O and blue line – complex [Ce2-F](NO₃)₃; b) titration curve at 317 nm.

Spectrophotometric titration in "wet" CH₃CN solution: 1 μ l of 4.48 mM titrant solution Pr(NO₃)₃·6H₂O was added to 2 ml of 4.65·10⁻² mM 2-F: a) spectrophotometric data, where red line – 2-F spectrum, blue dashed lines – aliquots of Pr(NO₃)₃·6H₂O and blue line – complex [Pr2-F](NO₃)₃; b) titration curve at 317 nm.

Spectrophotometric titration in "wet" CH₃CN solution: 1 μ l of 4.18 mM titrant solution Sm(NO₃)₃·6H₂O was added to 2 ml of 4.50·10⁻² mM 2-F: a) spectrophotometric data, where red line – 2-F spectrum, blue dashed lines – aliquots of Sm(NO₃)₃·6H₂O and blue line – complex [Sm2-F](NO₃)₃; b) titration curve at 317 nm.

Spectrophotometric titration in "wet" CH₃CN solution: 1 μ l of 4.52 mM titrant solution Eu(NO₃)₃·6H₂O was added to 2 ml of 4.54·10⁻² mM 2-F: a) spectrophotometric data, where red line – 2-F spectrum, blue dashed lines – aliquots of Eu(NO₃)₃·6H₂O and blue line – complex [Eu2-F](NO₃)₃; b) titration curve at 317 nm.

Spectrophotometric titration in "wet" CH₃CN solution: 1 μ l of 4.29 mM titrant solution Gd(NO₃)₃·6H₂O was added to 2 ml of 4.53·10⁻² mM 2-F: a) spectrophotometric data, where red line – 2-F spectrum, blue dashed lines – aliquots of Gd(NO₃)₃·6H₂O and blue line – complex [Gd2-F](NO₃)₃; b) titration curve at 319 nm.

Spectrophotometric titration in "wet" CH₃CN solution: 1 μ l of 4.26 mM titrant solution Tb(NO₃)₃·5H₂O was added to 2 ml of 4.68·10⁻² mM 2-F: a) spectrophotometric data, where red line – 2-F spectrum, blue dashed lines – aliquots of Tb(NO₃)₃·5H₂O and blue line – complex [Tb2-F](NO₃)₃; b) titration curve at 319 nm.

Spectrophotometric titration in "wet" CH₃CN solution: 1 μ l of 4.39 mM titrant solution Ho(NO₃)₃·5H₂O was added to 2 ml of 4.53·10⁻² mM 2-F: a) spectrophotometric data, where red line – 2-F spectrum, blue dashed lines – aliquots of Ho(NO₃)₃·5H₂O and blue line – complex [Ho2-F](NO₃)₃; b) titration curve at 319 nm.

3-F ligand with trivalent lanthanide ions

Spectrophotometric titration in "wet" CH₃CN solution: 1 μ l of 4.31 mM titrant solution La(NO₃)₃·6H₂O was added to 2 ml of 5.59·10⁻² mM 3-F: a) spectrophotometric data, where red line – 3-F spectrum, blue dashed lines – aliquots of La(NO₃)₃·6H₂O and blue line – complex [La3-F](NO₃)₃; b) titration curve at 317 nm.

Spectrophotometric titration in "wet" CH₃CN solution: 1 µl of 4.36 mM titrant solution Ce(NO₃)₃·6H₂O was added to 2 ml of $5.24 \cdot 10^{-2}$ mM 3-F: a) spectrophotometric data, where red line – 3-F spectrum, blue dashed lines – aliquots of Ce(NO₃)₃·6H₂O and blue line – complex $[Ce3-F](NO_3)_3$; b) titration curve at 320 nm.

3-F with $Pr(NO_3)_3$ ·6H₂O

Spectrophotometric titration in "wet" CH₃CN solution: 1 µl of 4.84 mM titrant solution $Pr(NO_3)_3 \cdot 6H_2O$ was added to 2 ml of 4.60 $\cdot 10^{-2}$ mM 3-F: a) spectrophotometric data, where red line – 3-F spectrum, blue dashed lines – aliquots of Pr(NO₃)₃·6H₂O and blue line – complex [Pr3- $F](NO_3)_3$; b) titration curve at 320 nm.

Spectrophotometric titration in "wet" CH₃CN solution: 1 μ l of 4.44 mM titrant solution $Gd(NO_3)_3 \cdot 6H_2O$ was added to 2 ml of 5.40 $\cdot 10^{-2}$ mM 3-F: a) spectrophotometric data, where red line – 3-F spectrum, blue dashed lines – aliquots of Gd(NO₃)₃·6H₂O and blue line – complex [Gd3-F](NO₃)₃; b) titration curve at 320 nm.

3-F with $Tb(NO_3)_3$.5H₂O

Spectrophotometric titration in "wet" CH₃CN solution: 1 μ l of 4.68 mM titrant solution Tb(NO₃)₃·5H₂O was added to 2 ml of 5.33·10⁻² mM 3-F: a) spectrophotometric data, where red line – 3-F spectrum, blue dashed lines – aliquots of Tb(NO₃)₃·5H₂O and blue line – complex [Tb3-F](NO₃)₃; b) titration curve at 321 nm.

4-F ligand with trivalent lanthanide ions

Spectrophotometric titration in "wet" CH₃CN solution: 1 μ l of 6.54 mM titrant solution Ce(NO₃)₃·6H₂O was added to 2 ml of 4.32·10⁻² mM 4-F: a) spectrophotometric data, where red line – 4-F spectrum, blue dashed lines – aliquots of Ce(NO₃)₃·6H₂O and blue line – complex [Ce4-F](NO₃)₃; b) titration curve at 321 nm.

4-F with Pr(NO₃)₃·6H₂O

Spectrophotometric titration in "wet" CH₃CN solution: 1 μ l of 5.56 mM titrant solution Pr(NO₃)₃·6H₂O was added to 2 ml of 4.31·10⁻² mM 4-F: a) spectrophotometric data, where red line – 4-F spectrum, blue dashed lines – aliquots of Pr(NO₃)₃·6H₂O and blue line – complex [Pr4-F](NO₃)₃; b) titration curve at 321 nm.

4-F with Nd(NO₃)₃.6H₂O

Spectrophotometric titration in "wet" CH₃CN solution: 1 μ l of 4.58 mM titrant solution Nd(NO₃)₃·6H₂O was added to 2 ml of 4.34·10⁻² mM 4-F: a) spectrophotometric data, where red line – 4-F spectrum, blue dashed lines – aliquots of Nd(NO₃)₃·6H₂O and blue line – complex [Nd4-F](NO₃)₃; b) titration curve at 321 nm.

Spectrophotometric titration in "wet" CH₃CN solution: 1 μ l of 5.85 mM titrant solution Sm(NO₃)₃·6H₂O was added to 2 ml of 4.37·10⁻² mM 4-F: a) spectrophotometric data, where red line – 4-F spectrum, blue dashed lines – aliquots of Sm(NO₃)₃·6H₂O and blue line – complex [Sm4-F](NO₃)₃; b) titration curve at 322 nm.

4-F with Gd(NO₃)₃·6H₂O

Spectrophotometric titration in "wet" CH₃CN solution: 1 μ l of 5.56 mM titrant solution Gd(NO₃)₃·6H₂O was added to 2 ml of 4.29·10⁻² mM 4-F: a) spectrophotometric data, where red line – 4-F spectrum, blue dashed lines – aliquots of Gd(NO₃)₃·6H₂O and blue line – complex [Gd4-F](NO₃)₃; b) titration curve at 323 nm.

Spectrophotometric titration in "wet" CH₃CN solution: 1 μ l of 5.97 mM titrant solution Tb(NO₃)₃·5H₂O was added to 2 ml of 4.34·10⁻² mM 4-F: a) spectrophotometric data, where red line – 4-F spectrum, blue dashed lines – aliquots of Tb(NO₃)₃·5H₂O and blue line – complex [Tb4-F](NO₃)₃; b) titration curve at 322 nm.

Spectrophotometric titration in "wet" CH₃CN solution: 1 μ l of 5.97 mM titrant solution Tb(NO₃)₃·5H₂O was added to 2 ml of 4.34·10⁻² mM 4-F: a) spectrophotometric data, where red line – 4-F spectrum, blue dashed lines – aliquots of Tb(NO₃)₃·5H₂O and blue line – complex [Tb4-F](NO₃)₃; b) titration curve at 322 nm.

Spectrophotometric titration in "wet" CH₃CN solution: 1 μ l of 4.66 mM titrant solution Dy(NO₃)₃·5H₂O was added to 2 ml of 4.30·10⁻² mM 4-F: a) spectrophotometric data, where red line – 4-F spectrum, blue dashed lines – aliquots of Dy(NO₃)₃·5H₂O and blue line – complex [Dy4-F](NO₃)₃; b) titration curve at 322 nm.

Spectrophotometric titration in "wet" CH₃CN solution: 1 μ l of 6.75 mM titrant solution Er(NO₃)₃·5H₂O was added to 2 ml of 4.39·10⁻² mM 4-F: a) spectrophotometric data, where red line – 4-F spectrum, blue dashed lines – aliquots of Er(NO₃)₃·5H₂O and blue line – complex [Er4-F](NO₃)₃; b) titration curve at 324 nm.