Metal organic framework derived Se blended ZrO₂ at a nitrogen-doped carbon heterostructure for electrocatalytic overall water splitting

Krishnendu M Nair, Pavithra Shankar, Selvaraju Thangavelu*

Department of Chemistry, Bharathiar University, Coimbatore-641 046.

Email: veluselvaraju@gmail.com; selvaraju@buc.edu.in

XRD Calculations

The average crystallite size of the composite can be calculated using the Debye-Scherer equation:

$$D = \frac{K\lambda}{\beta Cos\theta} \tag{1}$$

Where D is the crystallite size, K denoted the Scherrer constant (0.98), λ represents the wavelength (1.54), and the β represents the full width at half maximum (FWHM).

Fig. S1 (a) Elemental mapping of Se-ZrO₂@NC-500 composite; (b-f) individual elemental mapping of Zr, Se, C, N and O respectively and (g) elemental composition.

Fig. S2 CV profile of (a) Zr-MOF; (c) Se-ZrO₂@NC-300 and (e) Se-ZrO₂@NC-400 at nonfaradic region at different scan rates (5 to 50 mV/s) in 1 M KOH, plot of current density as a function of scan rate of (b) Zr-MOF; (d) Se-ZrO₂@NC-300 and (f) Se-ZrO₂@NC-400.

Fig. S3 HER activity of Se-ZrO₂@NC-600 and Se-ZrO₂@NC-700 loaded electrode in 1.0 M KOH. (a) LSV polarization curves at 2 mV/s; (b) the corresponding Tafel plot and (c) Nyquist plots.

Fig. S4 OER activity of Se-ZrO₂@NC-600 and Se-ZrO₂@NC-700 loaded electrode in 1.0 M KOH. (a) LSV polarization curves at 2 mV/s; (b) the corresponding Tafel plot and (c) Nyquist plots.

Fig. S5 ECSA normalized LSV curve and corresponding overpotential at 1 mA cm⁻² current density of Zr-MOF, Se-ZrO₂@NC-300, Se-ZrO₂@NC-400 and Se-ZrO₂@NC-500 for (a, b) HER and (c, d) OER activity.

Fig. S6 (a) Chronoamperometric i–t curves for Se-ZrO₂@NC-500 loaded electrode showing HER and OER stability for 24 h; LSV curves for before and after chronoamperometric studies (b) HER and (c) OER activity.

Fig. S7 Nyquist plots for overall water splitting reactions of Zr-MOF, Se-ZrO₂@NC-300, Se-ZrO₂@NC-400 and Se-ZrO₂@NC-500 in 1 M KOH. Inset shows the equivalent circuit fitted for loaded electrode.

Fig. S8 (a) XPS survey spectra studied before and after stability for Se-ZrO₂@NC-500 composite and (b–f) the corresponding high-resolution XPS of C 1s, N 1s, O 1s, Se 3d and Zr 3d, respectively.

Elements	Atomic weight %		
Zr	15.1		
Se	6.3		
С	41.2		
Ν	4.4		
Ο	33.0		

Table S1. Chemical composition of Se-ZrO₂@NC-500 obtained from XPS spectra

S.No.	Electrocatalyst	HER		OER		Overall water splitting	
		$\operatorname{Rs}\left(\Omega\right)$	Rct (Ω)	$\operatorname{Rs}(\Omega)$	$\operatorname{Ret}\left(\Omega\right)$	Rs (Ω)	Rct (Ω)
1	Zr-MOF	1.03	73.59	1.65	60.50	2.80	5.84
2	Se-ZrO ₂ @NC-300	0.90	31.98	1.18	24.53	1.20	3.63
3	Se-ZrO ₂ @NC-400	0.94	49.29	1.35	28.50	1.63	4.13
4	Se-ZrO ₂ @NC-600	0.84	19.69	1.13	18.69	-	-
5	Se-ZrO ₂ @NC-700	0.71	11.3	1.13	17.31	-	-
6	Se-ZrO ₂ @NC-500	0.59	10.61	1.12	17.12	1.20	1.30

Table S2. Electrochemical impedance spectroscopy for HER, OER and overall water splitting

 of different composites as electrocatalyst.

Elements	Atomic weight %			
	Before stability	After stability		
Zr	3.5	3.2		
Se	1.2	1.1		
С	69.8	72.8		
Ν	5.1	4.0		
Ο	20.4	19.0		

Table S3. Chemical composition of Se-ZrO2@N-500 composites at the electrode surface forbefore and after the chronoamperometric stability study obtained from XPS spectra.

S. No	Electrocatalyst	Electrolyte	OER, η(mV)@10 mA cm ⁻²	HER, η(mV)@10 mA cm ⁻²	Cell voltage (V)	Reference
1	NiCoSe/C	1 M KOH	249.00	143.00	1.68	1
2	CoWSe2@PANI	1 M KOH	360.00	308.00	1.87	2
3	CC/MOF- CoSe2@MoSe2	1 M KOH	183.81	109.87	1.53	3
4	MZU-Co _{2.5} Zr ₁	1 M KOH	252.00	172.00	1.56	4
5	Co _{0.9} Fe _{0.1} -Se/NF	1 M KOH	246.00	125.00	1.55	5
6	Mo2C/UiO-66 hybrid	1 M KOH	180 @20 mA cm ⁻²	174.00	1.33	6
7	$Zn_{0.1}Co_{0.9}Se_2$	1 M KOH	340.00	140.00 in 0.5 M KOH	-	7
8	Se:CoS _{2-X} core- shell nanotubes	1 M KOH	1.32 V	0.28 V	-	8
9	MOF-D CoSe ₂	1 М КОН	320.00	195.00 in 0.5 M KOH	-	9
10	$Zr_{0.8}Ni_{0.2}B_2$	1 M KOH	350.00	420.00	-	10
11	CoSe/MoSe ₂₋₁	1 M KOH	240.00	110.00	1.56	11
12	Co-Ni-Se/C/NF	1 M KOH	275.00 @10 mA cm ⁻²	90.00	1.60	12
13	Fe _{0.2} Ni _{0.8} Se	1 M KOH	255.00	124.00	-	13
14	MnS _X Se _{1-X} @N,F- CQDs	1 M KOH	209.00	87.00	1.55	14
15	Se-ZrO ₂ @NC-500	1 M KOH	251.00	48 in 0.5 M H ₂ SO ₄	1.58	This work

 Table S4. Comparative electrocatalytic performances of as-prepared electrocatalysts with

 similar state-of-the-art materials.

References

- 1 Z. Chen, B. Xu, X. Yang, H. Zhang and C. Li, *Int. J. Hydrogen Energy*, 2019, 44, 5983–5989.
- 2 S. Cogal, G. Celik Cogal, M. Mičušík, M. Kotlár and M. Omastová, Int. J. Hydrogen Energy, 2024, 49, 689–700.
- 3 S. J. Patil, N. R. Chodankar, S. K. Hwang, P. A. Shinde, G. Seeta Rama Raju, K. Shanmugam Ranjith, Y. S. Huh and Y. K. Han, *Chem. Eng. J.*, 2022, **429**, 132379.
- 4 P. Chen, M. Wang, G. Li, H. Jiang, A. Rezaeifard, M. Jafarpour, G. Wu and B. Rao, *Inorg. Chem.*, 2022, 61, 18424–18433.
- 5 H. Ren, L. Yu, L. Yang, Z. H. Huang, F. Kang and R. Lv, J. Energy Chem., 2021, 60, 194–201.
- 6 M. Ali, E. Pervaiz and O. Rabi, *ACS Omega*, 2021, **6**, 34219–34228.
- X. Wang, F. Li, W. Li, W. Gao, Y. Tang and R. Li, J. Mater. Chem. A, 2017, 5, 17982–17989.
- 8 Z. Shi, X. Qi, Z. Zhang, Y. Song, J. Zhang, C. Guo, W. Xu, K. Liu and Z. Zhu, *Nanoscale*, 2021, **13**, 6890–6901.
- 9 N. Sahu, J. K. Das and J. N. Behera, *Sustain. Energy Fuels*, 2021, **5**, 4992–5000.
- B. Mete, N. S. Peighambardoust, S. Aydin, E. Sadeghi and U. Aydemir, *Electrochim.* Acta, 2021, 389, 138789.
- M. Hassan, M. M. Baig, K. H. Shah, A. Hussain, S. A. Hassan and A. Ali, *J. Phys. Chem. Solids*, 2022, 167, 110780.
- 12 F. Ming, H. Liang, H. Shi, X. Xu, G. Mei and Z. Wang, J. Mater. Chem. A, 2016, 4,

15148-15155.

- 13 J. He, T. Qian, C. Cai, X. Xiang, S. Li and X. Zu, *Nanomaterials*, 2022, **12**, 1–11.
- 14 B. Sun, G. Dong, J. Ye, D. feng Chai, X. Yang, S. Fu, M. Zhao, W. Zhang and J. Li, *Chem. Eng. J.*, 2023, **459**, 141610.