Crystalline bilayer formation in homoleptic low-spin Fe(II) compounds with alkyl chain substituents

Blaise L. Geoghegan,^{ab*} Spyridon Koutsoukos,^b Wasinee Phonsri,^c Keith S. Murray,^c Peter J. Cragg,^a Marcus K. Dymond^a and Ian A. Gass^{ad*}

 ^aSchool of Pharmacy and Biomolecular Sciences, University of Brighton, Brighton BN2 4GJ, UK.
 ^bDepartment of Chemistry, Imperial College London, Molecular Sciences Research Hub, White City Campus, W12 0BZ, London, UK
 ^cSchool of Chemistry, Monash University, Clayton, Victoria 3800, Australia.
 ^dDepartment of Chemistry, School of Physics, Chemistry & Earth Sciences, University of Adelaide, Adelaide, SA 5005, Australia.

E-mail: b.geoghegan@imperial.ac.uk; ian.gass@adelaide.edu.au

Supporting Information

Contents

Experimental1
Synthesis of N-(di(pyridin-2-yl)methyl)alkyl-1-amine ligands (LC ₄ -C ₁₆)
Synthesis of 1C ₄ -C ₁₆
Single Crystal X-ray Diffraction6
Variable temperature magnetic susceptibility studies18
Differential scanning calorimetry22
¹ H NMR of 1C ₄ -1C ₁₆ in DMSO-d627
¹ H NMR of $1C_4$ - $1C_{16}$ in acetonitrile-d3
¹ H NMR of $1C_4$ - $1C_{16}$ acetone-d6
¹ H NMR of $1C_4$ - $1C_{16}$ in DMSO-d6 (Evans Method)33
UV-vis spectra
Infrared Spectroscopy42
NMR studies on LC_4 to LC_{16} 43
Mass spectrometry51
Density Functional Theory
Example Orca Input Files
Geometry Optimization
Vibrational spectroscopy
UV-vis spectroscopy59
Optimised XYZ Coordinates for Orca Calculations60
References81

Experimental

Synthesis of N-(di(pyridin-2-yl)methyl)alkyl-1-amine ligands (LC₄-C₁₆)

Synthesis of ligands LC₄-LC₁₆ was achieved via a modified literature procedure.¹

N-(Di(pyridin-2-yl)methyl)butan-1-amine (LC₄): Di(2-pyridyl) ketone (1.0136 g, 5.5 mmol), acetic acid (5 drops) and butylamine (1.6090 g, 22.0 mmol) were dissolved in 30 mL of MeOH and refluxed with stirring for 24 hours. The solution was cooled to room temperature and the methanol was evaporated under reduced pressure. The orange residue was dissolved in 50 mL of diethyl ether and washed with 3 x 50 mL of deionised water. The organic layer was then concentrated under reduced pressure and the orange-yellow residue dissolved in 50 mL of dichloromethane, which was washed with 2 x 50 mL water. The organic phase was dried over anhydrous magnesium sulphate and the solution filtered. The dichloromethane was evaporated, affording a yellow-orange residue as the pure imine. The imine precursor was dissolved in 30 mL of methanol then cooled to 0°C. To this solution was added 2.5 eq. of NaBH₄ and the reaction stirred for 2.5 hours. The methanol was evaporated and the orange residue was dissolved in 50 mL of diethyl ether and washed with 3 x 50 mL deionised water. The organic layer was then concentrated under reduced pressure and the residue dissolved in 50 mL of CH₂Cl₂. The solution was then washed with 2 x 50 mL of water and 50 mL of aq. NaCl (10% w/v). The organic phase was dried over anhydrous magnesium sulphate, filtered and the solvent evaporated, affording pure LC_4 . Yield = 1.018 g, 75.9%. ¹H NMR (CDCl₃, 400 MHz) δ : 8.55 (ddd, J = 1.0, 1.8, 5.0 Hz, 2H), 7.56 (td, J = 1.7, 7.7 Hz, 2H), 7.42 (d, J = 8.0 Hz, 2H), 7.12 (ddd, J = 1.0, 4.8, 7.5 Hz, 2H), 5.09 (s, 1H), 2.60 (t, J = 7.2 Hz, 2H), 1.55 (quin, J = 7.2, 7.7 Hz, 2H), 1.35 (sext, J = 7.2, 7.7, 2H), 0.88 (t, J = 7.2 Hz, 3H). ¹³C NMR (CDCl₃, 100 MHz) δ: 161.6, 149.1, 136.5, 122.6, 122.3, 69.5, 47.8, 32.3, 20.4, 13.9. MS (ESI⁺) (MeOH): m/z calcd for C₁₅H₁₉N₃ [*M*]⁺, 241.34; found, 264.15 [*M* + Na]⁺, 169.08 [*M* - C₄H₉NH]⁺.

N-(Di(pyridin-2-yl)methyl)hexan-1-amine (LC₆): Preparation of LC₆ was done via the same procedure as L1C₄, using hexylamine (0.5565 g, 5.5 mmol). Yield = 1.356 g, 91.5%. ¹H NMR (CDCl₃, 400 MHz) δ: 8.55 (ddd, J = 0.8, 2.0, 4.8 Hz, 2H), 7.60 (td, J = 1.8, 7.7 Hz, 2H), 7.41 (d, J = 7.8 Hz, 2H), 7.12 (ddd, J = 1.0, 4.9, 7.5 Hz, 2H), 5.09 (s, 1H), 2.97 (br, 1H), 2.60 (t, J = 7.3 Hz, 2H), 1.56 (quin, J = 6.9, 7.2 Hz, 2H), 1.29 (m, J = 7.6, 6H), 0.86 (t, J = 6.8 Hz, 3H). ¹³C NMR (CDCl₃, 100 MHz) δ: 161.7, 149.2, 136.5, 122.4, 122.1, 69.6, 48.1, 31.8, 30.2, 27.0, 22.6, 14.0.

MS (ESI⁺) (MeOH): *m*/*z* calcd for C₁₇H₂₃N₃ [*M*]⁺, 269.39; found, 292.18 [*M* + Na]⁺, 169.08 [*M* - C₆H₁₃NH]⁺.

N-(Di(pyridin-2-yl)methyl)octan-1-amine (LC₈): Preparation of LC₈ was done via the same procedure as LC₆, using octylamine (0.7108 g, 5.5 mmol). Yield = 1.008 g, 61.6%. ¹H NMR (CDCl₃, 400 MHz) δ: 8.56 (d, *J* = 4.1 Hz, 2H), 7.62 (t, *J* = 7.7 Hz, 2H), 7.42 (d, *J* = 7.9 Hz, 2H), 7.13 (t, *J* = 6.1 Hz, 2H), 5.1 (s, 1H), 2.82 (br, 1H), 2.60 (t, *J* = 7.4 Hz, 2H), 1.58 (quin, *J* = 6.7, 7.2 Hz, 2H), 1.25 (m, 10H), 0.87 (t, *J* = 6.9 Hz, 3H). ¹³C NMR (CDCl₃, 100 MHz) δ: 161.3, 149.3, 136.7, 122.4, 122.2, 69.4, 48.0, 31.9, 30.1, 29.5, 29.3, 27.4, 22.7, 14.1. MS (ESI⁺) (MeOH): m/z calcd for C₁₉H₂₇N₃ [*M*]⁺, 297.45; found, 320.21 [*M* + Na]⁺, 298.23 [*M* + H]⁺, 169.08 [*M* - C₈H₁₇NH]⁺.

N-(Di(pyridin-2-yl)methyl)decan-1-amine (LC₁₀): Preparation of LC₁₀ was done via the same procedure as LC₆, using decylamine (1.0136 g, 5.5 mmol). Yield = 1.253 g, 70.0%. ¹H NMR (CDCl₃, 400 MHz) δ: 8.55 (ddd, *J* = 1.0, 1.8, 5.1 Hz, 2H), 7.61 (td, *J* = 1.8, 7.7 Hz, 2H), 7.42 (d, *J* = 7.9 Hz, 2H), 7.13 (ddd, *J* = 1.1, 4.8, 7.5 Hz, 2H), 5.11 (s, 1H), 2.62 (t, *J* = 7.3 Hz, 2H), 1.58 (quin, *J* = 7.1, 7.5 Hz, 2H), 1.24 (m, 14H), 0.86 (t, *J* = 7.1 Hz, 3H). ¹³C NMR (CDCl₃, 100 MHz) δ: 161.3, 149.3, 136.6, 122.4, 122.2, 69.3, 48.0, 31.9, 30.1, 29.6, 29.5, 29.3, 29.3, 27.3, 22.7, 14.1. MS (ESI⁺) (MeOH): *m/z* calcd for C₂₁H₃₁N₃ [*M*]⁺, 325.50; found, 348.3 [*M* + Na]⁺, 326.24 [*M* + H]⁺, 169.08 [*M* - C₁₀H₂₁NH]⁺.

N-(Di(pyridin-2-yl)methyl)dodecan-1-amine (LC₁₂): Preparation of LC₁₂ was done via the same procedure as LC₆, using dodecylamine (1.0194 g, 5.5 mmol). Yield = 1.478 g, 76.0%. ¹H NMR (CDCl₃, 400 MHz) δ: 8.60 (ddd, J = 0.7, 1.8, 4.9 Hz, 2H), 7.65 (td, J = 1.8, 7.6 Hz, 2H), 7.46 (d, J = 7.9 Hz, 2H), 7.17 (ddd, J = 1.0, 4.9, 7.5 Hz, 2H), 5.15 (s, 1H), 2.63 (t, J = 7.3 Hz, 2H), 1.60 (quin, J = 7.2, 7.4 Hz, 2H), 1.24 (m, 18H), 0.88 (t, J = 7.0 Hz, 3H). ¹³C NMR (CDCl₃, 100 MHz) δ: 161.7, 149.2, 136.6, 122.3, 122.1, 69.6, 48.1, 31.9, 30.3, 29.7, 29.7, 29.6, 29.6, 29.4, 27.4, 22.7, 14.1. MS (ESI⁺) (MeOH): m/z calcd for C₂₃H₃₅N₃ [M]⁺, 353.55; found, 376.28 [M + Na]⁺, 354.30 [M + H]⁺, 184.10 [M - C₁₂H₂₅]⁺.

N-(Di(pyridin-2-yl)methyl)tetradecan-1-amine (LC₁₄): Preparation of LC₁₄ was done via the same procedure as LC₆, using tetradecylamine (1.1737 g, 5.5 mmol). Yield = 1.049 g, 50.0%. ¹H NMR (CDCl₃, 400 MHz) δ: 8.56 (ddd, *J* = 0.8, 1.8, 5.0 Hz, 2H), 7.61 (td, *J* = 1.8, 7.7 Hz, 2H), 7.42 (d, *J* = 7.9 Hz, 2H), 7.13 (ddd, *J* = 1.0, 4.8, 7.5 Hz, 2H), 5.10 (s, 1H), 2.60 (t, *J* = 7.2 Hz, 2H), 1.57 (quin, *J* = 6.8, 7.8 Hz, 2H), 1.24 (m, 22H), 0.88 (t, *J* = 7.0 Hz, 3H). ¹³C NMR (CDCl₃, 100 MHz) δ: 161.3, 149.3, 136.7, 122.4, 122.2, 69.4, 48.0, 31.9, 30.2, 30.1, 29.5, 29.3, 29.6, 27.4, 22.7, 14.1. MS (ESI⁺) (MeOH): *m/z* calcd for C₂₅H₃₉N₃ [*M*]⁺, 381.61; found, 381.80 [*M*]⁺.

N-(Di(pyridin-2-yl)methyl)hexadecan-1-amine (LC₁₆): Preparation of LC₁₆ was done via the same procedure as LC₆, using hexadecylamine (1.3280 g, 5.5 mmol). Yield = 1.0081 g, 45%. ¹H NMR (CDCl₃, 400 MHz) δ: 8.55 (ddd, *J* = 0.8, 1.9, 4.8 Hz, 2H), 7.60 (td, *J* = 1.9, 7.7 Hz, 2H), 7.41 (d, *J* = 7.9 Hz, 2H), 7.12 (dd, *J* = 1.0, 4.9, 7.5 Hz, 2H), 5.07 (s, 1H), 2.60 (t, *J* = 7.3 Hz, 2H), 1.55 (quin, *J* = 6.9, 7.4 Hz, 2H), 1.25 (m, 26H), 0.88 (t, *J* = 7.2 Hz, 3H). ¹³C NMR (CDCl₃, 100 MHz) δ: 161.8, 149.2, 136.5, 122.3, 122.0, 69.6, 48.1, 31.9, 30.3, 29.7, 29.6, 29.6, 29.5, 29.3, 27.4, 22.7, 14.0. MS (ESI⁺) (MeOH): *m/z* calcd for C₂₇H₄₃N₃ [*M*]⁺, 409.66; found, 409.04 [*M*]⁺.

Synthesis of 1C₄-C₁₆

[Fe^{II}(LC₄)₂](BF₄)₂ (1C₄): Fe(BF₄)₂·6H₂O (33.8 mg, 0.1 mmol) and LC₄ (48.2 mg, 0.2 mmol) were dissolved in 8 mL of methanol and stirred for 30 minutes. The resulting orange solution was filtered and the methanol was allowed to slowly evaporate, affording orange X-ray quality single crystals of the compound **1C**₄. Yield = 53.4 mg, 75%. MS (ESI⁺) (MeOH): *m/z* calcd for $C_{30}H_{38}B_2F_8FeN_6[M]^+$, 712.13; found, 538.30 [*M* - 2BF₄]⁺, 316.10 [*M* - LC₄ - 2BF₄ + F]⁺. Elemental analysis (air-dried crystals) found: C, 50.52; H, 5.54; N, 11.69. Calc. for $C_{32}H_{38}B_2F_8FeN_6$ (solvate free): C, 50.60; H, 5.38; N, 11.80 %. FTIR (v_{max} / cm⁻¹): 3251w, 3180vw, 2964w, 2927w, 2865w, 1612w, 1562vw, 1466m, 1444m, 1378w, 1341w, 1282w, 1213vw, 1163w, 1033vs, 983s, 939m, 874vw, 842vw, 788w, 771s, 755m, 699w, 649w.

[Fe^{II}(LC₆)₂](CF₃SO₃)₂ (1C₆): FeCl₂·4H₂O (19.9 mg, 0.1 mmol), NaCF₃SO₃ (34.4 mg, 0.2 mmol) and LC₆ (53.8 mg, 0.2 mmol) were dissolved in 8 mL of ethanol and stirred for 30 minutes. The resulting dark orange solution was filtered and the ethanol was allowed to slowly evaporate, affording X-ray quality, orange single crystals of the compound 1C₆. Yield = 63.4 mg, 71%. MS (ESI⁺) (MeOH): m/z calcd for C₃₆H₄₆F₆FeN₆O₆S₂ [M]⁺, 892.76; found, 540.20 [2LC₆ + H]⁺, 297.12 [M - 2CF₃SO₃]²⁺. Elemental analysis (air-dried crystals) found: C, 48.26; H, 4.98; N, 9.51. Calc. for C₃₆H₄₆F₆FeN₆O₆S₂ (solvate free): C, 47.95; H, 5.25; N, 9.32 %. FTIR (v_{max} / cm⁻¹): 3480br w, 3238w, 3187w, 3074vw, 2926m, 2852w, 1606w, 1480w sh, 1470m, 1447m, 1282s, 1263vs, 1252vs sh, 1223s, 1149vs, 1063w, 1031 vs, 974vw, 939vw, 792w, 777m, 763s, 753m, 727vw, 656w.

[Fe^{II}(LC₈)₂](CF₃SO₃)₂ (1C₈): 1C₈ was prepared via the same method as 1C₆, using FeCl₂·4H₂O (19.9 mg, 0.1 mmol), NaCF₃SO₃ (34.4 mg, 0.2 mmol) and LC₈ (59.40 mg, 0.2 mmol). Single crystals were determined to be anhydrous when in the presence of remnant ethanol. Bulk samples of air-dried crystals isolated as the monohydrate. Yield = 67.7 mg, 70%. MS (ESI⁺)

(MeOH): *m/z* calcd for C₄₀H₅₄F₆FeN₆O₆S₂ [*M*]⁺, 948.86; found, 971.30 [*M* + Na]⁺, 799.40 [*M* - CF₃SO₃]⁺, 325.22 [*M* - 2CF₃SO₃]²⁺. Elemental analysis (air-dried crystals) found: C, 49.72; H, 5.67; N, 8.54. Calc. for C₄₀H₅₆F₆FeN₆O₇S₂ (monohydrate): C, 49.69; H, 5.84; N 8.69 %. FTIR (*v*_{max} / cm⁻¹): 3480br w, 3238w, 3185w br, 3074vw, 2926m, 2852w, 1606w, 1556vw, 1528vw, 1480w sh, 1470m, 1447m, 1282s, 1263vs, 1252vs sh, 1223s, 1149vs, 1063w, 1031 vs, 974vw, 939vw, 792w, 777m, 763s, 753m, 727vw, 656w.

[Fe"(LC₁₀)₂](CF₃SO₃)₂ (1C₁₀): 1C₁₀ was prepared via the same method as 1C₆, using FeCl₂·4H₂O (19.9 mg, 0.1 mmol), NaCF₃SO₃ (34.4 mg, 0.2 mmol) and LC₁₀ (65.00 mg, 0.2 mmol). The resulting dark orange solution was filtered and the ethanol was allowed to slowly evaporate, affording X-ray quality, orange single crystals of compound 1C₁₀ which were determined to be anhydrous when in the presence of remnant ethanol. Bulk samples of air-dried crystals were characterised as monohydrated and were used for further characterisation. Yield = 61.4 mg, 60%. MS (ESI⁺) (MeOH): *m/z* **calcd for C₄₄H₆₂F₆FeN₆O₆S₂[***M***]⁺, 1004.97; found, 1027.40 [***M* **+ Na]⁺, 855.40 [***M* **- CF₃SO₃]⁺, 353.22 [***M* **- 2CF₃SO₃]²⁺. Elemental analysis (air-dried crystals) found, C, 51.85; H, 5.82; N, 8.04. Calc. for C₄₄H₆₄F₆FeN₆O₇S₂ (monohydrate): C, 51.66; H, 6.31; N, 8.22 %. FTIR (v_{max} / cm⁻¹): 3480br w, 3238w, 3187w, 3074vw, 2926m, 2852w, 1606w, 1480w sh, 1470m, 1447m, 1282s, 1263vs, 1252vs sh, 1223s, 1149vs, 1063w, 1031 vs, 974vw, 939vw, 792w, 777m, 763s, 753m, 727vw, 656w.**

[Fe^{II}(LC₁₂)₂](CF₃SO₃)₂ (1C₁₂): 1C₁₂ was prepared via the same method as 1C₆, using FeCl₂·4H₂O (19.9 mg, 0.1 mmol), NaCF₃SO₃ (34.4 mg, 0.2 mmol) and LC₁₂ (70.60 mg, 0.2 mmol). The resulting dark orange solution was filtered and the ethanol was allowed to slowly evaporate, affording X-ray quality, orange single crystals of compound 1C₁₂ which were determined to be anhydrous when in the presence of remnant ethanol. Bulk samples of air-dried crystals were characterised via elemental analysis, which matched the anhydrous single crystal formula and were used for further characterisation. Yield = 65.8 mg, 62%. MS (ESI⁺) (MeOH): m/z calcd for C₄₈H₇₀F₆FeN₆O₆S₂ [*M*]⁺, 1061.08; found, 911.50 [*M* - CF₃SO₃ + H]⁺, 354.30 [LC₁₂ + H]⁺. Elemental analysis (air-dried crystals) found, C, 54.42; H, 6.42; N, 7.81. Calc. for C₄₈H₇₀F₆FeN₆O₆S₂ (solvate-free): C, 54.33; H, 6.65; N, 7.92 %. FTIR (v_{max} / cm⁻¹): 3480br w, 3238w, 3187w, 3074vw, 2926m, 2852w, 1606w, 1480w sh, 1470m, 1447m, 1282s, 1263vs, 1252vs sh, 1223s, 1149vs, 1063w, 1031 vs, 974vw, 939vw, 792w, 777m, 763s, 753m, 727vw, 656w.

 $[Fe^{II}(LC_{14})_2](BF_4)_2 \cdot 0.5H_2O \cdot 0.5MeOH (1C_{14})$: 1C₁₄ was prepared via the same method as 1C₄, using $Fe(BF_4)_2 \cdot 6H_2O$ (33.8 mg, 0.1 mmol) and LC_{14} (76.2 mg, 0.2 mmol). The resulting dark orange solution was filtered and the methanol was allowed to slowly evaporate, affording Xray quality, orange single crystals of compound $1C_{14}$ which were determined to be solvated by 0.5 water and 0.5 MeOH molecules per formula unit. Bulk samples of air-dried crystals were characterised as representative of the single crystal formula and were used for further characterisation. Powder samples, for use in the PXRD studies, of $1C_{14}$ were obtained by performing the reaction at concentrations 10 times higher than stated above. The powders precipitated after 10 min stirring and were collected via vacuum filtration before being dried under vacuum for 5 hours. The elemental analysis of the powder reflected that of the bulk crystal sample and was used for powder X-ray diffraction studies. Yield = 71.6 mg, 70.4%. MS (ESI⁺) (MeOH): *m*/*z* calcd for C₅₀H₇₈B₂F₈FeN₆ [*M*]⁺, 992.67; found, 905.7 [*M* - BF₄]⁺, 409.30 [*M* - 2BF₄]²⁺. Elemental analysis (air-dried crystals) found: C, 59.74; H, 7.66; N, 8.19; (powder) found: C, 60.10; H, 7.99; N, 8.28 Calc. for C_{50.5}H₈₁B₂F₈FeN₆O (includes 0.5 H₂O and 0.5 MeOH solvates): C, 59.60; H, 8.02; N 8.26 %. FTIR (v_{max} / cm⁻¹): 3624w, 3542w, 3251w, 3180vw, 3168w, 2964w, 2927vs, 2865s, 1612w, 1562vw, 1466m, 1444m, 1378w, 1341w, 1282w, 1213vw, 1163w, 1033vs, 983s, 939m, 874vw, 842vw, 788w, 771s, 755m, 699w, 649w.

[Fe^{II}(LC₁₆)₂](CF₃SO₃)₂·H₂O (1C₁₆): 1C₁₆ was prepared via the same method as 1C₆, using FeCl₂·4H₂O (19.9 mg, 0.1 mmol), NaCF₃SO₃ (81.8 mg, 0.2 mmol) and LC₁₂ (70.60 mg, 0.2 mmol. The resulting dark orange solution was filtered and the ethanol was allowed to slowly evaporate, affording X-ray quality, orange single crystals of compound 1C₁₆ which were anhydrous according to X-ray diffraction studies (see below). However, bulk samples of airdried crystals were characterised as monohydrated and were used for further characterisation. Yield = 53.1 mg, 51%. MS (ESI⁺) (MeOH): m/z calcd for C₅₆H₈₆F₆FeN₆O₆S₂ [*M*]⁺, 1173.30; found, 1195.70 [*M* + Na]⁺, 1023.60 [*M* - CF₃SO₃]⁺, 410.40 [*M* - 2CF₃SO₃]²⁺. Elemental analysis (air-dried crystals) found: C, 56.47; H, 7.50; N, 7.09. Calc. for C₅₆H₈₈F₆FeN₆O₇S₂ (monohydrate): C, 56.46; H, 7.45; N 7.05 %. FTIR (v_{max} / cm⁻¹): 3480br w, 3238w, 3187w, 3074vw, 2926m, 2852w, 1606w, 1480w sh, 1470m, 1447m, 1282s, 1263vs, 1252vs sh, 1223s, 1149vs, 1063w, 1031 vs, 974vw, 939vw, 792w, 777m, 763s, 753m, 727vw, 656w.

Single Crystal X-ray Diffraction

Parameters	1C ₄	1C ₆	1C ₈
Formula	$C_{30}H_{38}B_2F_8FeN_6$	$C_{36}H_{46}F_6FeN_6O_6S_2$	$C_{40}H_{54}F_6FeN_6O_6S_2$
M _r	712.16	892.77	948.88
Cryst syst	monoclinic	monoclinic	monoclinic
Space group	P21/n	P21/c	P2 ₁ /c
a / Å	9.6481(3)	20.8837(3)	23.8910(6)
<i>b</i> / Å	18.3359(4)	10.45420(10)	10.3579(2)
c / Å	18.2408(5)	19.3400(3)	19.4682(5)
α/°	90.000	90.000	90.000
6/°	95.377(3)	108.114(2)	110.978(3)
γ/°	90.000	90.000	90.000
V/Å ³	3212.72(15)	4013.09(10)	4498.30(2)
Т/К	100	100	100
Z	4	4	4
$ ho_{ m calcd}$ / g.cm ⁻³	1.4722	1.4775	1.4010
λ/Å	0.71073	0.71073	1.54178
No. of indep reflns	7315	9179	8188
No. refins with $l > 2\sigma(l)$	5769	7983	6741
No. of params	444	516	552
No. of restraints	0	0	0
Final R1 ^{<i>a</i>} , wR2 ^{<i>b</i>} , ($I > 2\sigma(I)$)	0.0459, 0.1019	0.0383, 0.0945	0.0667, 0.1808
R1 ^a , wR2 ^b (all data)	0.0661, 0.1102	0.0460, 0.0990	0.0781, 0.1932
Goodness of fit	1.0449	1.0220	1.0393
Largest residuals / e Å ⁻³	0.9091	1.3350	0.8888

Table S1 Single crystal X-ray diffraction details and parameters for compounds 1C₄-1C₈.

 $\overline{{}^{a}\mathsf{R1} = \Sigma[|F_{0}| - |F_{c}|]/\Sigma[|F_{0}|, {}^{b}\mathsf{wR2} = [\Sigma w(F_{0}^{2} - F_{c}^{2})/\Sigma wF_{0}^{4}]]^{1/2}}$

Table S2 Single crystal X-ray diffraction details and parameters for comp	ounds 1C₁₀-1C₁₆ .

Parameters	1C ₁₀	1C ₁₂	1C ₁₄	1C ₁₆
Formula	$C_{44}H_{62}F_6FeN_6O_6S_2$	$C_{48}H_{70}F_{6}FeN_{6}O_{6}S_{2}$	C _{50.5} H _{80.5} B ₂ F ₈ FeN ₆ O	$C_{56}H_{86}F_6FeN_6O_6S_2$
M _r	1004.96	1061.10	1017.68	1173.27
Cryst syst	monoclinic	monoclinic	triclinic	monoclinic
Space group	P2 ₁ /c	P2 ₁ /c	\overline{P}_1	C2/c
a / Å	25.8831(6)	27.5740(7)	10.5737(2)	60.5410(2)
b / Å	10.2810(2)	10.1229(2)	17.0941(3)	10.3428(5)
c / Å	19.4228(4)	19.4863(3)	29.4514(4)	19.2128(10)
α / deg	90.000	90.000	88.860(1)	90.000
<i>θ</i> / deg	111.103(2)	104.208(2)	86.862(1)	98.330(4)
γ/deg	90.000	90.000	89.547(2)	90.000
V / Å ³	4821.860(19)	5272.81(19)	5314.12(16)	11903.40(10)
Т/К	100	100	100	100
Z	4	4	4	8
$ ho_{calcd}$ / g.cm ⁻³	1.384	1.3366	1.2720	1.3090
λ/Å	0.71073	1.54178	0.71073	1.54178
No. of indep reflns	11060	9879	24353	10876
No. refins with $l > 2\sigma(l)$	9357	7089	19406	8122
No. of params	588	669	1261	723
No. of restraints	0	0	0	0
Final R1 ^{<i>a</i>} , wR2 ^{<i>b</i>} , ($I > 2\sigma(I)$)	0.0584, 0.1373	0.0570, 0.1438	0.0715, 0.1634	0.0898, 0.2274
R1ª, wR2 ^b (all data)	0.0712, 0.1438	0.0829, 0.1627	0.0917, 0.1729	0.1123, 0.2477
Goodness of fit	1.0924	1.0043	1.0970	1.0490
Largest residuals / e Å ⁻³	1.3400	0.5981	2.1890	0.8340

 $\overline{{}^{a}\mathsf{R1} = \Sigma[|F_{0}| - |F_{c}|]/\Sigma[|F_{0}|, {}^{b}\mathsf{wR2} = [\Sigma w(F_{0}^{2} - F_{c}^{2})/\Sigma wF_{0}^{4}]^{1/2}}$

Figure S1 Asymmetric unit of $\mathbf{1C}_4$ at 100 K. Disorder on the BF₄ anion was modelled with a part A:B chemical occupancy ratio of 0.72:0.28. Hydrogen atoms omitted for clarity. Legend: iron, turquoise; nitrogen, blue; carbon, grey; boron, yellow; fluorine, green.

Figure S2 Asymmetric unit of $\mathbf{1C}_6$ at 100 K with selected atom labels. Hydrogen atoms omitted for clarity. Legend: iron, turquoise; nitrogen, blue; carbon, grey; sulphur, yellow; oxygen, red.

Figure S3 Asymmetric unit of $\mathbf{1C}_8$ at 100 K with selected atom labels. Hydrogen atoms omitted for clarity. Legend: iron, turquoise; nitrogen, blue; carbon, grey; sulphur, yellow; oxygen, red.

Figure S4 Asymmetric unit of $\mathbf{1C}_{10}$ at 100 K with selected atom labels. Hydrogen atoms omitted for clarity. Legend: iron, turquoise; nitrogen, blue; carbon, grey; sulphur, yellow; oxygen, red.

Figure S5 Asymmetric unit of $1C_{12}$ at 100 K with selected atom labels. Hydrogen atoms omitted for clarity. Legend: iron, turquoise; nitrogen, blue; carbon, grey; sulphur, yellow; oxygen, red.

Figure S6 Asymmetric unit of $\mathbf{1C}_{14}$ at 100 K with selected atom labels. Only part 1 shown. Hydrogen atoms omitted for clarity. Legend: iron, turquoise; nitrogen, blue; carbon, grey; sulphur, yellow; oxygen, red.

Figure S7 Asymmetric unit of $\mathbf{1C}_{16}$ at 100 K with selected atom labels. Only part 1 shown. Hydrogen atoms omitted for clarity. Legend: iron, turquoise; nitrogen, blue; carbon, grey; sulphur, yellow; oxygen, red.

Figure S8 Unit cell of 1C₄ at 100 K as viewed along the *a* axis.

Figure S9 Unit cell of $1C_6$ at 100 K as viewed along the *b* axis.

Figure S10 Unit cell of $1C_8$ at 100 K as viewed along the *b* axis.

Figure S11 Unit cell of $1C_{10}$ at 100 K as viewed along the *b* axis.

Figure S12 Unit cell of $1C_{12}$ at 100 K as viewed along the *b* axis.

Figure S13 Unit cell of $1C_{14}$ at 100 K as viewed along the b axis.

Figure S14 Unit cell of $1C_{16}$ at 100 K as viewed along the *b* axis.

Figure S15 Packing of $1C_4$ at 100 K as viewed down the *c* axis.

Figure S16 Packing of $1C_6$ at 100 K as viewed down the c axis.

Figure S17 Packing of $1C_8$ at 100 K as viewed down the c axis.

Figure S18 Packing of $1C_{10}$ at 100 K as viewed down the *c* axis.

Figure S19 Packing of $1C_{12}$ at 100 K as viewed down the c axis.

Figure S20 Packing of $1C_{14}$ at 100 K as viewed down the *b* axis.

Figure S21 Packing of 1C₁₆ at 100 K as viewed down the *c* axis.

Figure S22 One of the dications of $1C_{14}$ at 100 K with boxes highlighting the non-uniform *anti/gauche* arrangements of the alkyl chain tails in order to extend the chains in a parallel direction.

Variable temperature magnetic susceptibility studies

Figure S23 $\chi_{M}T$ vs. T data for 1C₄.

Figure S24 $\chi_{M}T$ vs. T data for 1C₆.

Figure S25 $\chi_{M}T$ vs. T data for 1C₈.

Figure S26 $\chi_{M}T$ vs. T data for 1C₁₀.

Figure S27 $\chi_{M}T$ vs. *T* data for **1C**₁₂.

Figure S28 $\chi_{\rm M}$ T vs. T data for 1C₁₄.

Figure S29 $\chi_{M}T$ vs. T data for 1C₁₆.

Differential scanning calorimetry

	Т (К)	∆ <i>H</i> (kJ mol⁻¹) ^a	ΔS (J mol ⁻¹ K ⁻¹) ^b	Mode	Cycle and Temperatur	re Range
1C ₆	389	10.58	27.22	Heating	Cycle 3 193 – 473 K	
	376	8.86	23.58	Cooling	Cycle 3 193 – 473 K	
1C ₈	263	6.66	25.24	Cooling	Cycle 3 193 – 473 K	
	268	5.49	20.47	Heating	Cycle 3 193 – 473 K	
	433	2.15	4.96	Heating	Cycle 3 193 – 473 K	
	415	2.36	5.69	Cooling	Cycle 3 193 – 473 K	
1C ₁₀	328	9.23	28.17	Heating	Cycle 3 193 – 473 K	
	403	4.16	10.32	Heating	Cycle 3 193 – 473 K	
	401	3.77	9.40	Cooling	Cycle 3 193 – 473 K	
	303	7.70	25.43	Cooling	Cycle 3 193 – 473 K	
1C ₁₂	414	14.86	35.92	Heating	Cycle 3 193 – 473 K	
	412	14.83	36.02	Cooling	Cycle 3 193 – 473 K	
1C ₁₆	407	29.23	71.82	Heating	Cycle 3 193 – 473 K	
	410	28.80	70.17	Cooling	Cycle 3 193 – 473 K	
	204	1.06	5.19	Cooling	Cycle 3 193 – 473 K	
	210	1.20	5.70	Heating	Cycle 3 193 – 473 K	
	dH	dT	dH			_c dT

Table S3 Thermodynamic parameters from DSC measurements. Apart from for $1C_{14}$, all transitions occur in all three thermal cycles.

 $\frac{dH}{dt} = C_p \frac{dT}{dt} + f(T,t), \text{ where } \frac{dH}{dt} \text{ is the total heat flow from linear heating rates, } C_p \frac{dT}{dt} \text{ is the reversing heat flow component of the total hear flow and } f(T,t) \text{ is the kinetic component of the total heat flow. } b \text{ Obtained from } \Delta H/T.$

Figure S30 Modulated DSC thermograms of $\mathbf{1C}_6$ in heating (top) and cooling modes (bottom).

Figure S31 DSC thermogram of $1C_8$ from cycle 3.

Figure S32 DSC thermogram of $1C_{10}$ during cycle 3. Inset graph shows small hysteretic peaks at low temperature from the same cycle.

Figure S33 Cyclic DSC thermogram of $1C_{12}$ from cycle 2.

Figure S34 Cyclic DSC thermogram of $\mathbf{1C}_{16}$ from cycle 2.

Figure S35 Isothermal TGA graphs for 1C₄-1C₁₆ at 423 K.

Compound	Relative mass loss after 60 min at 423 K [%]
1C ₄	3.2
1C ₆	0.1
1C ₈	1.5
1C ₁₀	2.1
1C ₁₂	0.3
1C ₁₄	7.7
1C ₁₆	0.3

Table S4 Summary table of relative mass loss after 60 min at 423 K for $1C_4-1C_{16}$.

¹H NMR of 1C₄-1C₁₆ in DMSO-d6

Figure S36 ¹H NMR spectrum of $1C_4$ (9.4 mg cm⁻³) at 303 K in DMSO-d6 with TMS internal reference.

Figure S37 ¹H NMR spectrum of $1C_6$ (10.2 mg cm⁻³) at 303 K in DMSO-d6 with TMS internal reference.

Figure S38 ¹H NMR spectrum of $1C_8$ (10.2 mg cm⁻³) at 303 K in DMSO-d6 with TMS internal reference.

Figure S39 ¹H NMR spectrum of $1C_{10}$ (10.6 mg cm⁻³) at 303 K in DMSO-d6 with TMS internal reference.

Figure S40 ¹H NMR spectrum of $1C_{12}$ (11.2 mg cm⁻³) at 303 K in DMSO-d6 with TMS internal reference.

Figure S41 ¹H NMR spectrum of **1C**₁₄ (10.2 mg cm⁻³) at 303 K in DMSO-d6 with TMS internal reference.

Figure S42 ¹H NMR spectrum of $1C_{16}$ (10.6 mg cm⁻³) at 303 K in DMSO-d6 with TMS internal reference.

¹H NMR of 1C₄-1C₁₆ in acetonitrile-d3

Figure S43 ¹H NMR spectrum of $1C_4$ - $1C_{16}$ at 303 K in acetonitrile-d3 with TMS internal reference. Concentrations of $1C_4$ - $1C_{16}$ (in order) were 10.1, 9.4, 10.1, 18.4, 14.2, 12.2 and 9.8 mg cm⁻³.

Figure S44 Partial (aromatic region) ¹H NMR spectrum of $1C_4$ - $1C_{16}$ at 303 K in acetonitrile-d3 with TMS internal reference. Concentrations of $1C_4$ - $1C_{16}$ (in order) were 10.1, 9.4, 10.1, 18.4, 14.2, 12.2 and 9.8 mg cm⁻³.

¹H NMR of 1C₄-1C₁₆ acetone-d6

Figure S45 ¹H NMR spectrum of $1C_4$ - $1C_{16}$ at 303 K in acetone-d6 with TMS internal reference. Concentrations of $1C_4$ - $1C_{16}$ (in order) were 6.4, 9.4, 14.4, 10.6, 10.4, 8.8 and 11.2 mg cm⁻³.

Figure S46 Partial (aromatic region) ¹H NMR spectrum of $1C_4$ - $1C_{16}$ at 303 K in acetone-d6 with TMS internal reference. Concentrations of $1C_4$ - $1C_{16}$ (in order) were 6.4, 9.4, 14.4, 10.6, 10.4, 8.8 and 11.2 mg cm⁻³.

¹H NMR of 1C₄-1C₁₆ in DMSO-d6 (Evans Method)

$$\chi_{\rm M} = \frac{\chi_0 \, m_{\rm r}^{\rm para}}{m_{\rm r}^{\rm solvent}} + 3000 \frac{\Delta v}{4\pi \, v_0 \, C} \tag{1}$$

Where χ_0 is the molar susceptibility of the solvent, m_r^{para} is the molecular mass of the metal species, m_r^{solvent} is the molecular mass of the solvent, Δv is the relative shift of the TMS signals in Hertz, v_0 is the spectrometer frequency in Hertz and *C* is the concentration of metal species in solution in mol dm⁻³

Figure S47 ¹H NMR overlay spectrum of $\mathbf{1C}_4$ (10.2 mg cm⁻³) showing only the TMS peaks from sample solution (red asterisk) and control solution (blue asterisk) from the Evans method measured between 303-363 K in DMSO-d6 with TMS internal reference.

Figure S48 ¹H NMR overlay spectrum of $\mathbf{1C}_{6}$ (10.2 mg cm⁻³) showing only the TMS peaks from sample solution (red asterisk) and control solution (blue asterisk) from the Evans method measured between 303-363 K in DMSO-d6 with TMS internal reference.

Figure S49 ¹H NMR overlay spectrum of $\mathbf{1C}_8$ (10.2 mg cm⁻³) showing only the TMS peaks from sample solution (red asterisk) and control solution (blue asterisk) from the Evans method measured between 303-363 K in DMSO-d6 with TMS internal reference.

Figure S50 ¹H NMR overlay spectrum of $1C_{10}$ (10.6 mg cm⁻³) showing only the TMS peaks from sample solution (red asterisk) and control solution (blue asterisk) from the Evans method measured between 303-363 K in DMSO-d6 with TMS internal reference.

Figure S51 ¹H NMR overlay spectrum of $1C_{12}$ (11.2 mg cm⁻³) showing only the TMS peaks from sample solution (red asterisk) and control solution (blue asterisk) from the Evans method measured between 303-363 K in DMSO-d6 with TMS internal reference.

Figure S52 1H NMR overlay spectrum of $1C_{14}$ (10.2 mg cm⁻³) showing only the TMS peaks from sample solution (red asterisk) and control solution (blue asterisk) from the Evans method measured between 303-363 K in DMSO-d6 with TMS internal reference.

Figure S53 ¹H NMR overlay spectrum of $\mathbf{1C}_{16}$ (10.6 mg cm⁻³) showing only the TMS peaks from sample solution (red asterisk) and control solution (blue asterisk) from the Evans method measured between 303-363 K in DMSO-d6 with TMS internal reference.

Figure S54 $\chi_{\rm M}T$ vs. *T* plot for some transition metal standard solutions as determined by the Evans method. NiCl₂·6H₂O and CuSO₄·5H₂O were measured in D₂O at concentrations of 17.6 and 16.6 mg cm⁻³, respectively. ZnSO₄·6H₂O was measured in DMSO-d6 at a concentration of

13.0 mg cm⁻³.

Figure S55 Partial ¹H NMR overlay spectrum of $\mathbf{1C}_4$ (10.2 mg cm⁻³) from the Evans method in DMSO-d6 with TMS internal reference. * mark the TMS peak from the paramagnetic solution of $\mathbf{1C}_4$ and * marks the TMS peak from the internal blank solution of DMSO-d6 and TMS.

Cooling from 363 K introduces water from condensation into the solution which affects the position of TMS. Applicable to $1C_4-1C_{16}$.

Figure S56 Partial ¹H NMR overlay spectrum of $\mathbf{1C}_4$ (10.2 mg cm⁻³) via the Evans method in DMSO-d6 with TMS internal reference. Isotropic shift increases with temperature and is proportional to number of HS Fe(II) centres. Original spectrum at 303 K is reproduced after heating and cooling back to 303 K. Applicable to $\mathbf{1C}_4$ - $\mathbf{1C}_{16}$.

	able 35 various solvent parameters used in the in with studies.				
Solvent	${}^{a}E_{N}{}^{T}$	^b DN	^c SB	dβ	^е Р′
DMSO-d6	0.444	29.8	0.647	0.76	7.2
acetonitrile-d3	0.460	14.1	0.286	0.31	5.8
acetone-d6	0.355	17.0	0.475	0.48	5.1

Table S5 Various solvent parameters used in the ¹H NMR studies

^aReichardt's E_N^T parameter is a widely-used indicator of solvent polarity.² ^bThe Gutman donor number (*DN*) is a measure of Lewis basicity of a solvent.^{3,4} ^cCatalan's *SB* parameter⁵ describes the solvent's Brønsted basicity. ^dKamlet and Taft's β is a measure of the hydrogen bond accepting character of the solvent.⁶ ^eSolvent polarity index.⁷

UV-vis spectra

Figure S57 A) UV-vis spectra for the LC_n ligands (2 eq.) added to solutions of $Fe(BF_4)_2 \cdot 6H_2O$ and $FeCl_3 \cdot 6H_2O$ in dimethyl sulfoxide (top), acetone (middle) and acetonitrile (bottom). **B**) TD-DFT calculated UV-vis spectra for LS and HS $[Fe(LC_4)]^{2/3+}$ in DMSO. Gaussian line broadening of 1000 cm⁻¹ was used for TD-DFT generated spectra.

Figure S58 A) TD-DFT calculated UV-vis spectra for LS and HS $[Fe(LC_4)]^{2+}$ in DMSO with the LC₄ ligands in either the *cis* or *trans* conformation (coordinated secondary amine 90 or 180° from each other in the first coordination sphere). **B**) DFT optimized structures for the *cis* and *trans* adducts of $[Fe(LC_4)]^{2+}$. Gaussian line broadening of 1000 cm⁻¹ was used for TD-DFT generated spectra.

Figure S59 TD-DFT (B3LYP/ZORA/ZORA-def2-TZVP) calculated UV-vis spectra for **A** the LC₄ ligand and **B** the **1C**₄ complex in various solvents from the BP86/def2-TZVP/D3BJ/CPCM(solvent) optimised geometries. A 1500 cm⁻¹ Gaussian line broadening function was applied to the generated spectra. Molecular orbitals are plotted with an isosurface value of 0.05 a.u. Blue corresponds to positive electron density and pink corresponds to negative.

Infrared Spectroscopy

Figure S60 IR spectra for tetrafluoroborate salts $1C_4$ and $1C_{14}$ (top) and trifluoromethanesulfonate salts $1C_6-1C_{12}$ and $1C_{16}$ (bottom).

NMR studies on LC₄ to LC₁₆

Figure S61 ^1H NMR spectrum of LC_4 in CDCl_3 with TMS internal reference.

Figure S62 13 C NMR spectrum of LC₄ in CDCl₃ with TMS internal reference.

Figure S63 COSY NMR of LC_4 in CDCl₃. ¹H environments that are coupled through bond are marked with colour corresponding asterisks. COSY assignments for the LC_4 ligand are the same as those for the LC_6 - LC_{16} ligands.

Figure S64 HSQC NMR of LC_4 in $CDCl_3$. HSQC assignments for the LC_4 ligand are the same as those for the LC_6 - LC_{16} ligands.

Figure S66 $^{\rm 13}{\rm C}$ NMR spectrum of ${\rm LC}_6$ in ${\rm CDCI}_3$ with TMS internal reference.

Figure S67 ¹H NMR spectrum of LC_8 in $CDCl_3$ with TMS internal reference.

Figure S68 $^{\rm 13}{\rm C}$ NMR spectrum of ${\rm LC}_8$ in ${\rm CDCI}_3$ with TMS internal reference.

Figure S70 $^{\rm 13}\text{C}$ NMR spectrum of LC_{10} in CDCl3 with TMS internal reference.

Figure S72 $^{\rm 13}\text{C}$ NMR spectrum of LC_{12} in CDCl_3 with TMS internal reference.

Figure S73 ^1H NMR spectrum of LC_{14} in CDCI_3 with TMS internal reference.

Figure S74 $^{\rm 13}{\rm C}$ NMR spectrum of ${\rm LC}_{\rm 14}$ in CDCl3 with TMS internal reference.

Figure S75 ¹H NMR spectrum of LC_{16} in $CDCI_3$ with TMS internal reference.

Figure S76 $^{\rm 13}{\rm C}$ NMR spectrum of ${\rm LC}_{\rm 16}$ in CDCl3 with TMS internal reference.

Mass spectrometry

Figure S77 Mass spectrum for LC₄ in MeOH (ESI⁺).

Figure S78 Mass spectrum for LC_6 in MeOH (ESI⁺).

Figure S79 Mass spectrum for LC₈ in MeOH (ESI⁺).

Figure S80 Mass spectrum for LC₁₀ in MeOH (ESI⁺).

Figure S81 Mass spectrum for LC₁₂ in MeOH (ESI⁺).

Figure S82 Mass spectrum for LC₁₄ in MeOH (ESI⁺).

Figure S83 Mass spectrum for LC₁₆ in MeOH (ESI⁺).

Figure S84 Mass spectrum for 1C₄ in MeOH (ESI⁺).

Figure S85 Mass spectrum for 1C₆ in MeOH (ESI⁺).

Figure S86 Mass spectrum for 1C₈ in MeOH (ESI⁺).

Figure S87 Mass spectrum for 1C₁₀ in MeOH (ESI⁺).

Figure S88 Mass spectrum for $\mathbf{1C}_{12}$ in MeOH (ESI⁺).

Figure S89 Mass spectrum for 1C₁₄ in MeOH (ESI⁺).

Figure S90 Mass spectrum for 1C₁₆ in MeOH (ESI⁺).

Density Functional Theory

Bond(s)	1C ₄	
	Exp.	DFT
Lengths (Å)		
Fe1-N1	1.967(18)	1.925
Fe1-N2	1.982(19)	1.958
Fe1-N3	2.045(18)	2.051
Fe1-N4	1.953(18)	1.925
Fe1-N5	1.985(18)	1.960
Fe1-N6	2.066(18)	2.047
Fe-N av.	1.999	1.978
Angles (°)		
N1-Fe1-N4	100.11(8)	99.97
N2-Fe1-N5	179.04(7)	178.95
N1-Fe1-N2	86.82(7)	87.80
N2-Fe1-N3	81.03(7)	80.97
N3-Fe1-N6	97.61(7)	95.81
$\sum^{a} (^{\circ})$	82.92	76.21

Table S6 Selected bond lengths and parameters for $1C_4$ determined by X-ray crystallography at 100 K and DFT geometry optimization (BP86/def2-TZVP).

^{*a*} Octahedral distortion parameter derived from the equation: Σ , (= N-Fe-N) where perfect octahedrons produce a value $\Sigma = 0^{\circ}$ and deviation from this value coincides with structural deformation of the coordination polyhedron.

Example Orca Input Files

Geometry Optimization

! UKS RIJK B3LYP def2-TZVP AutoAux D3BJ Opt TightSCF DefGrid2 SlowConv NormalPrint Pal8 ! CPCM(solvent_code)

%maxcore 3000

%scf MaxIter 700 End

*xyzfile charge spin-multiplicity xyz_filename.xyz

Vibrational spectroscopy

! UKS RIJCOSX B3LYP ZORA ZORA-def2-TZVP NumFreq AutoAux DefGrid2 SlowConv TightSCF Pal8 ! LargePrint CPCM(solvent_code)

%scf MaxIter 700 end

%maxcore 3000

%elprop Polar 1 end

*xyzfile charge spin_multiplicity xyz_filename.xyz

UV-vis spectroscopy

! UKS RIJCOSX B3LYP ZORA ZORA-def2-TZVP AutoAux DefGrid2 SlowConv ! TightSCF Pal8 NormalPrint UNO CPCM(solvent_code)

%scf MaxIter 700 end

%maxcore 3000

%tddft NRoots 60 MaxDim 5 end

*xyzfile charge spin_multiplicity xyz_filename.xyz

Optimised XYZ Coordinates for Orca Calculations

LC₄ (acetone)

Charge =	0,	Spin	Multip	licity	=	1
----------	----	------	--------	--------	---	---

Ν	-0.12609812708998	1.98677222982502	-0.02119291165896
Ν	-0.15744108426452	-0.71340961305141	-2.15889779383406
Ν	-1.95093060394499	-0.28702760932997	-0.10827988473683
Н	-2.04032065293161	-1.21079451559141	-0.53911895295100
С	0.40228699833939	3.13785955990470	0.42439093764803
Н	1.37572983549051	3.06178037682080	0.91781844683439
С	-0.22056783275050	4.38087338818241	0.28219944660243
Н	0.25820380824074	5.28357788143272	0.66284673929488
С	-1.46085456715755	4.42830925521003	-0.35453701942639
Н	-1.98682246443636	5.37565490984337	-0.48269460439769
С	-2.02076915633071	3.23706116787131	-0.81834005885933
Н	-2.99395098245587	3.22764200548859	-1.31188637333734
С	-1.32378754523644	2.03846878853227	-0.63126907331746
С	-1.89664813172324	0.71979717792821	-1.15965694607329
Н	-2.90739082554871	0.95969010472128	-1.55397496896107
С	-1.06322540093950	0.25995483432990	-2.35024378406965
С	-1.25000662729055	0.87914981426391	-3.59456024732705
н	-2.00786655502580	1.65653572203253	-3.70570760748767
С	-0.46073544162332	0.48730637911294	-4.67251553005802
Н	-0.58731206733623	0.95379778346475	-5.65066979607708
С	0.48937600455778	-0.51912323977141	-4.47824833652002
н	1.12958118310501	-0.86050263573435	-5.29219057890577
С	0.59528346783745	-1.08890962983513	-3.21008777568155
Н	1.31839533215302	-1.88739911126245	-3.02059155927160
С	-3.04648119043915	-0.05359355503282	0.83292892562241
н	-2.89025389597349	0.93759539697394	1.28856069179695
Н	-4.03404006357329	-0.00791921417280	0.32101286827306
С	-3.08447008176522	-1.13193516721505	1.91277343336417
Н	-3.17436011698256	-2.11658363082369	1.42233741774576
н	-2.11973822986813	-1.13377700248255	2.44791928795058
С	-4.23535541014591	-0.95994985115729	2.91199727231009

Н	-5.19409651881404	-0.96639873952285	2.36562194808711
Н	-4.25638089670336	-1.83740469773448	3.57805523430758
С	-4.13707443385259	0.31202148352236	3.76082643495048
Н	-4.21455062362321	1.22085935447119	3.14647053914925
Н	-4.94049511711679	0.34985909179930	4.51089080697952
Н	-3.17506760878024	0.35228366998612	4.29550778003513

LC₄ (DMSO)

Cha	arge = 0, Spin Multiplic	ity = 1	
Ν	-0.07298305539911	2.20468267524045	-0.29711829032912
Ν	-0.79484954626806	-1.07441232043612	-2.39505332318982
Ν	-1.82921471189767	-0.19484350783673	-0.06649893032884
Н	-1.81522561890545	-1.13294499600383	-0.48068910326728
С	0.37580898444987	3.39030612082551	0.14252767811410
Н	1.42425868737147	3.42434215800639	0.45311125535951
С	-0.41667082693867	4.54065797438582	0.21217162534499
н	0.00450272510164	5.47688657370850	0.57949008623781
С	-1.74617293142375	4.45265414079344	-0.19873653044932
Н	-2.40230395286717	5.32350756102121	-0.15976714658004
С	-2.22339603247451	3.22372177187525	-0.66046319705687
Н	-3.25664355752427	3.10871170012340	-0.99168481538360
С	-1.35877087839187	2.12596677953885	-0.69318517100435
С	-1.84578328244528	0.76424542632111	-1.16844090459993
Н	-2.88160552428676	0.91265811582538	-1.55107759181383
С	-1.03062412805770	0.24673353614315	-2.34917129821020
С	-0.60560946157051	1.11744890349081	-3.36255455863286
Н	-0.81441290993854	2.18541029737265	-3.29006983335805
С	0.08523491364576	0.59876772876380	-4.45468330339409
Н	0.42541740111953	1.25678210266137	-5.25571135256474
С	0.33679343327735	-0.77570166405554	-4.50402330063646
Н	0.87679206360870	-1.22556205384811	-5.33742894844983
С	-0.12317994777834	-1.56666461564573	-3.45281683403929
н	0.05122022172629	-2.64616831984358	-3.45161570079800
С	-2.96710762782914	-0.04311179894686	0.84106433681365

Н	-2.92707896325317	0.97104100925125	1.27027182819886
Н	-3.93797394438312	-0.11659530100372	0.30237371024567
С	-2.92250530307553	-1.08775624426236	1.95381408854930
Н	-2.87735397712717	-2.08952679658837	1.49302437405747
Н	-1.98740517371536	-0.96092425760258	2.52544697048688
С	-4.12439253013441	-1.02265934046187	2.90497493880154
Н	-5.05345442936522	-1.15722683674410	2.32491351889652
Н	-4.07026253055872	-1.87668161759486	3.59908862296919
С	-4.20622676645420	0.27698381380925	3.71210468351784
Н	-4.34762788503943	1.15283905895096	3.06219867589204
Н	-5.04667455345322	0.25158661073007	4.42106421030742
Н	-3.28275400374422	0.43696777503571	4.29064393829370

LC₄ (acetonitrile)

Charge = 0, Spin Multiplicity = 1

Ν	-0.06895079067409	2.20218910697738	-0.29887369087938
Ν	-0.79250895400779	-1.07342723060965	-2.39221941519823
Ν	-1.83156854694608	-0.19335489465825	-0.06727944714994
Н	-1.81570820575330	-1.13184606870772	-0.48028752259934
С	0.38278207560175	3.38637730458661	0.14155062289278
Н	1.43184584098476	3.41790360314792	0.45032476524269
С	-0.40754905429683	4.53801163749153	0.21435054445666
Н	0.01615500861433	5.47312297333280	0.58161601177869
С	-1.73809767130764	4.45274696542663	-0.19369047405217
Н	-2.39273896015182	5.32459892491539	-0.15197041287240
С	-2.21834532783048	3.22525594964730	-0.65613701376126
Н	-3.25262199474335	3.11262336352980	-0.98499117085850
С	-1.35550217825234	2.12621008698036	-0.69251289875035
С	-1.84613532604657	0.76565337877832	-1.16852450238713
Н	-2.88145921667163	0.91760402485396	-1.55135006326621
С	-1.03150326693166	0.24727150401989	-2.34913340661493
С	-0.60992302458843	1.11666918279894	-3.36499410497359
Н	-0.82133783686868	2.18428687882041	-3.29436560740144
С	0.08069991751884	0.59726043298363	-4.45686168254800

Н	0.41817535728959	1.25407036625052	-5.26002266254062
С	0.33559802848763	-0.77666759853903	-4.50338509480714
Н	0.87563722441926	-1.22692990635254	-5.33655061797043
С	-0.12095150420155	-1.56635988220178	-3.44971220529406
Н	0.05609262850700	-2.64543117942541	-3.44603553546994
С	-2.96984626179457	-0.04180273713741	0.83992526653654
Н	-2.93052983900969	0.97277644565380	1.26809140857017
Н	-3.94031875317842	-0.11673975891008	0.30072267826827
С	-2.92463201589210	-1.08585504326655	1.95313695188468
Н	-2.87712069119608	-2.08763929046857	1.49265845266652
Н	-1.99052859856259	-0.95702028044184	2.52591495149119
С	-4.12762743586622	-1.02265068750344	2.90304840636975
Н	-5.05599407975959	-1.16008152043957	2.32255950276418
Н	-4.07200344280206	-1.87603954938093	3.59787918774286
С	-4.21274960994180	0.27722103769311	3.70940271695477
Н	-4.35285072932293	1.15287775878502	3.05893311334021
Н	-5.05521476622953	0.25139878952328	4.41593799413707
н	-3.29090362259521	0.43783807484614	4.29033936229802

[1C₄]²⁺ (acetone, low-spin)

Charge = 2+, Spin Multiplicity = 1

Fe	-0.00275056688370	-0.00031475420174	0.00555486835053
Ν	0.02539506889496	1.89581654777562	-0.32744727741677
Ν	1.95327484901598	0.03256513951454	-0.08533644867743
Ν	0.22879895246675	-0.08837926405194	-2.02952384392522
Η	0.69298888081006	-0.97813029835316	-2.25090991340546
Ν	-0.00670240477960	0.00063317178388	1.93027810522090
Ν	-1.95920079207457	-0.06170262736089	0.07469009138573
Ν	-0.26102326956902	-2.01643823431507	0.26991704287405
Η	-0.75041233545055	-2.37817076077230	-0.55838360213209
С	-0.54776974852264	2.88392671801925	0.39498559133607
Н	-1.06190721742002	2.58305747566708	1.30681566679087
С	-0.49305620721666	4.21216818577772	-0.01357546865911
Н	-0.96669304694853	4.97796690603493	0.59954346230557

С	0.16218459259078	4.53871491805591	-1.20398381681225
Н	0.20878877457401	5.57224863292109	-1.54665345695853
С	0.74899751302689	3.51694795545376	-1.95543197201247
Н	1.26217383571804	3.72072477388910	-2.89504247329180
С	0.66081382915352	2.21334192781694	-1.48843040665335
С	1.26181534107732	0.99218586560072	-2.14088034349323
Н	1.57992421631735	1.18486769680125	-3.17466278592463
С	2.40065535353161	0.54466728053615	-1.26356228338459
С	3.74980869420467	0.66539899244825	-1.56755542715942
Н	4.05102702851479	1.07133455288805	-2.53290860145554
С	4.68792579876991	0.26056314913863	-0.61573105228887
Н	5.75510750121455	0.33563330783976	-0.82357526696598
С	4.23232664405294	-0.23815515140211	0.60676710381063
Н	4.92721173572250	-0.55598716245479	1.38285054589180
С	2.86551705393975	-0.34009329198915	0.83912059583786
Н	2.48438195734934	-0.72843051783327	1.78045638414366
С	-0.87506198769225	0.07843503977098	-3.01131553631980
Н	-1.46762855229863	0.95765241798564	-2.72565342988575
Н	-0.42806795861005	0.29609652611857	-3.99425307921458
С	-1.74994040060482	-1.16651566606926	-3.08614796382770
Н	-1.14847690932232	-2.00796905244735	-3.47057879842243
Н	-2.07831912840985	-1.44466256238193	-2.07460741389980
С	-2.99273142699235	-0.96665940151541	-3.96343625669443
Н	-3.61405793604485	-1.87229094042620	-3.88747685456002
Н	-3.59420930508117	-0.14384190190688	-3.54183322010864
С	-2.68248699028376	-0.68338281857333	-5.43583719034360
Н	-2.13571550303847	0.26193861457790	-5.56460091567931
Н	-2.06813622027589	-1.48759134941730	-5.86953087768882
Н	-3.60802574916883	-0.61202403643901	-6.02464963719441
С	0.59113555498907	0.87428233286473	2.77062673564172
Н	1.10695258990157	1.71638381586891	2.31098355756256
С	0.55937681686404	0.69862331135010	4.14983939125472
Н	1.05384135277085	1.42765307546057	4.79070435506471
С	-0.09908550480988	-0.41078687710852	4.68674630949124

Н	-0.12781259549133	-0.57199239856590	5.76420407898233
С	-0.71263470848107	-1.31818338934619	3.81875352130721
Н	-1.22970557776031	-2.20343951980615	4.18836658245111
С	-0.64527378750934	-1.08144962611750	2.45308485289964
С	-1.27426674003771	-1.92554819939001	1.37232562872761
Н	-1.59971476330320	-2.90667406755918	1.74398956198353
С	-2.41113688677239	-1.12482622439283	0.79296364860331
С	-3.76195010856959	-1.39168820792973	0.97094853644972
Н	-4.06865790372778	-2.26464508974208	1.54657142537043
С	-4.69529334606860	-0.52564479256718	0.39734593752362
Н	-5.76340695498274	-0.71054856723252	0.50995041360545
С	-4.23453346248928	0.58155395493643	-0.31884508633556
Н	-4.92652098804620	1.28925803385017	-0.77351273924921
С	-2.86662970719704	0.78593004198443	-0.45850607510636
Н	-2.48027820953718	1.64233268435082	-1.00620409166313
С	0.82962156105556	-2.98161492703304	0.56927951870288
Н	1.43797407942047	-2.57576962420480	1.38673524890470
Н	0.37142288461650	-3.91472270151820	0.93998982407868
С	1.65944028472623	-3.28278118552651	-0.67306382920040
Н	0.97457427377995	-3.58364211782299	-1.48385794620542
Н	2.17949121323044	-2.37403155244517	-1.01327271135509
С	2.69167768505202	-4.39409021759840	-0.44151839596916
Η	2.17331343885073	-5.30067684573698	-0.08712482218767
Η	3.13981477715730	-4.65403961959881	-1.41297501834696
С	3.80165338817735	-4.01083026506522	0.54106034485784
Н	3.40512475397417	-3.79514947323156	1.54407761250628
Н	4.53424554179645	-4.82406511909801	0.64246946442760
н	4.33655278216374	-3.11442595653329	0.19367429973049

[1C₄]²⁺ (DMSO, low-spin)

Charge = 2+, Spin Multiplicity = 1					
Fe -0.00271815397271	-0.00100860432675	0.00495609235322			
N 0.02515161051844	1.89502566640111	-0.32786484200685			
N 1.95316921145284	0.03219940376655	-0.08619946270876			

Ν	0.22815947206332	-0.08876584246977	-2.03014123697502
Н	0.69193809030373	-0.97851315126494	-2.25232753046079
Ν	-0.00648354473987	0.00012954654973	1.92955757958751
Ν	-1.95895005759889	-0.06261628445012	0.07421712013964
Ν	-0.26027254227314	-2.01711857924967	0.26978236289552
Н	-0.74907844966903	-2.37998551335882	-0.55834736525197
С	-0.54803924582528	2.88292217673496	0.39479575057479
Н	-1.06221864414708	2.58191105646410	1.30654568371146
С	-0.49340487540104	4.21120832002118	-0.01362031735537
Н	-0.96717930203924	4.97679541101991	0.59966627777429
С	0.16174951195680	4.53796561662343	-1.20403653323947
Н	0.20817976025358	5.57155060236968	-1.54662544976183
С	0.74857823843055	3.51636849291161	-1.95568402455811
Н	1.26165726528173	3.71990952300423	-2.89539288113133
С	0.66047655201247	2.21271113854758	-1.48883035946340
С	1.26121354535271	0.99167308950836	-2.14165468183867
Н	1.57916402241962	1.18442218924947	-3.17543129904516
С	2.40015996416538	0.54437219508955	-1.26449749578748
С	3.74921382392818	0.66536724115293	-1.56883320587234
Н	4.04976580273108	1.07123361714175	-2.53441482342400
С	4.68758606746168	0.26078004127734	-0.61718387839640
Н	5.75472079471773	0.33594428453345	-0.82531181250189
С	4.23233989680471	-0.23788111570293	0.60548636158707
Н	4.92733895082631	-0.55558633365370	1.38152351764085
С	2.86560927093431	-0.34011157010740	0.83818139679517
Н	2.48491766115395	-0.72853957537035	1.77963969223094
С	-0.87557388056593	0.07914825907629	-3.01186281972428
Н	-1.46786993207960	0.95841477348466	-2.72583359664403
Н	-0.42801554549562	0.29733421190181	-3.99440949023644
С	-1.75102409438538	-1.16531015056167	-3.08793091679687
Н	-1.15007118607115	-2.00652733927033	-3.47351828914590
Н	-2.07910259126297	-1.44490056729165	-2.07676867845223
С	-2.99408238703552	-0.96325441858396	-3.96426767642787
н	-3.61646605977553	-1.86825767457770	-3.88892574816116

Н	-3.59420698694547	-0.14002703554869	-3.54155026956479
С	-2.68424797730729	-0.67880262221069	-5.43659108539904
Н	-2.13550209080459	0.26553801773926	-5.56415586645933
Н	-2.07142449846824	-1.48363636753539	-5.87135766644508
Н	-3.60998529672980	-0.60490823310308	-6.02491914044239
С	0.59142946055876	0.87393828580096	2.76964727325199
Н	1.10729229179463	1.71592124422327	2.30985966821313
С	0.55972373349424	0.69846508564701	4.14888164599737
Н	1.05437412232197	1.42760018155348	4.78949294094523
С	-0.09874869956207	-0.41085255928242	4.68601103801223
Н	-0.12732854691311	-0.57194465471227	5.76350558967348
С	-0.71237297930516	-1.31838633869750	3.81823316786724
Н	-1.22942671773753	-2.20372672888213	4.18764982731713
С	-0.64506052761092	-1.08184055502600	2.45253664573405
С	-1.27373191846838	-1.92630938019932	1.37193673352450
Н	-1.59910856489541	-2.90739215038837	1.74364947624128
С	-2.41060607964823	-1.12571907260376	0.79262397847995
С	-3.76135044251941	-1.39279143687853	0.97083150784711
Н	-4.06747617139134	-2.26589397595628	1.54652894195124
С	-4.69486003686470	-0.52691158155688	0.39730578945907
Н	-5.76294603148393	-0.71202666704910	0.50997379331946
С	-4.23434315850277	0.58035861526056	-0.31896288561442
Н	-4.92636278583321	1.28798337853097	-0.77371092951464
С	-2.86649580208386	0.78497973545110	-0.45882328572578
Н	-2.48052851475387	1.64144823034015	-1.00666078167539
С	0.83032275353136	-2.98189050893902	0.57067684728074
Н	1.43775433303573	-2.57562189579757	1.38859256545877
Н	0.37159472394843	-3.91472545169824	0.94139408174697
С	1.66116265114257	-3.28394664000225	-0.67071612515878
Н	0.97689100411916	-3.58501739282393	-1.48184914897203
Н	2.18176335608194	-2.37576429917997	-1.01138505595234
С	2.69287305384904	-4.39530632656106	-0.43727273402065
Н	2.17404797339579	-5.30112508052262	-0.08147567502122
н	3.14128512594517	-4.65680983823721	-1.40823940242286
С	3.80270560040594	-4.01083522256373	0.54510405152254
---	------------------	-------------------	------------------
Н	3.40552830526851	-3.79264437167134	1.54730746894436
Н	4.53491821660187	-4.82426036616247	0.64855517248696
Н	4.33796379990307	-3.11522946734682	0.19620840519109

[1C₄]²⁺ (DMSO, high-spin)

Cha	Charge = 2+, Spin Multiplicity = 5			
Fe	-0.02234724164911	-0.02022527773309	0.00853641088570	
Ν	2.11460011730239	-0.14833023979082	0.00240522950196	
Ν	0.14496201314293	-0.05245531240473	2.15627053244789	
Ν	0.35940309585888	-2.16815477883325	0.47667156435490	
Н	-0.45239577484518	-2.54734134511184	0.97769268826775	
Ν	-0.51143259885355	2.06074811525880	-0.10367960471921	
Ν	-0.21565048527570	-0.02203575737907	-2.13821064104323	
Ν	-2.22833753009026	-0.04150629791232	-0.32941799341170	
Н	-2.47426103132798	-0.93827867641453	-0.76448567413083	
С	2.99884638954571	0.64867414600256	-0.62260633607396	
Н	2.58138432570369	1.45372288064115	-1.22941181456549	
С	4.37216381744195	0.45396100091591	-0.50329394995110	
Н	5.06136784786981	1.11765440482339	-1.02393384986326	
С	4.83581173014938	-0.60402714385152	0.28274160602870	
Н	5.90558363937623	-0.78730906764704	0.38697683879660	
С	3.91465554540678	-1.43086653657317	0.92995801370932	
Н	4.23595876175982	-2.26868411480439	1.54870078354390	
С	2.55839016556865	-1.17014587984249	0.76541611386903	
С	1.45364328229244	-1.95316530184634	1.45842884990251	
Н	1.85397675322729	-2.89541641684366	1.86112901224409	
С	0.90172614552607	-1.09105699379445	2.57877300242043	
С	1.17383072751662	-1.31473606261084	3.92448552825617	
Н	1.78571515332659	-2.16739529271889	4.21903702825804	
С	0.64627363114710	-0.43205016584534	4.86969898327076	
Н	0.83739550912142	-0.58375979107565	5.93223422007430	
С	-0.12935061887273	0.64416016699136	4.43285449877807	
н	-0.55786508023246	1.35653310695321	5.13687374070521	

С	-0.35765586677395	0.79994460115372	3.06873413541482
Н	-0.96053663182941	1.62297026622211	2.68422639777427
С	0.72811689133125	-3.11354727576640	-0.60390937656027
Н	1.51221286739254	-2.64166088757653	-1.21455590347602
Н	1.16454625781971	-4.02498832508001	-0.16220726548231
С	-0.48536039458684	-3.45065287913271	-1.46128520849821
Н	-1.22222954410260	-3.99541485397266	-0.84654162145719
Н	-0.96666386468217	-2.51367904642933	-1.77789438441471
С	-0.13083345630515	-4.27401031317894	-2.70519119419255
Н	-1.04091268109489	-4.38558506791258	-3.31511636726530
Н	0.58355377589961	-3.70049200483386	-3.31977879327730
С	0.44600956890511	-5.65905295951796	-2.39728610140745
Н	1.40959396127447	-5.59378676778833	-1.87120756545317
Н	-0.24309541608109	-6.23799940146179	-1.76286049135373
Н	0.61293619941048	-6.22997605115321	-3.32210487174964
С	0.15903725095190	3.10955180925430	0.40456925036558
Н	1.06016278637647	2.87900085348360	0.97515362594548
С	-0.27648479511963	4.41836022917978	0.21584849909627
Н	0.29001209672706	5.24535570571735	0.64216849479397
С	-1.44608290052132	4.63950576506866	-0.51579745496957
Н	-1.81759430307865	5.65281181482582	-0.67107612630402
С	-2.13999812198881	3.54790985924828	-1.04268073077790
Н	-3.05731889662283	3.67736708240445	-1.61700061630115
С	-1.63904203027226	2.27028698448758	-0.81623061040561
С	-2.26176064078059	1.00493141898221	-1.38404076069959
Н	-3.28145965714150	1.21411081491934	-1.74078272652011
С	-1.39364866330120	0.51668857323043	-2.52887968783837
С	-1.75588865458404	0.62322639846072	-3.86749911732082
Н	-2.71790878438761	1.06001496505338	-4.13573090644485
С	-0.87046033740796	0.15324823007847	-4.84003801833204
Н	-1.12973181081344	0.21532432761003	-5.89717356685761
С	0.34749235824313	-0.39931956184779	-4.43720350269992
Н	1.06672799838990	-0.77616755232061	-5.16352526470770
С	0.63973414182975	-0.46675660303958	-3.07797068790264

Н	1.57925428573407	-0.88834036143308	-2.72020510334287
С	-3.18347413011713	0.21109063299454	0.77337678925946
н	-2.85730866617597	1.11728472507611	1.30235640297330
Н	-4.18548003568626	0.41892522803895	0.35607137572178
С	-3.25010896512625	-0.98965654951730	1.71091548075137
Н	-3.46599267914348	-1.88849642872887	1.10938579906483
Н	-2.26472599618646	-1.14835794772748	2.17635281040366
С	-4.31849946517385	-0.83703414815654	2.80071990056699
Н	-5.29770516415072	-0.66486346523880	2.32283192864046
Н	-4.40268143440183	-1.79358872332578	3.33987904127674
С	-4.02726650666560	0.28299132266122	3.80350121329335
Н	-3.97638249295102	1.26733025798609	3.31547993492926
Н	-4.81011915308021	0.33468616781676	4.57383556808631
Н	-3.06570673808744	0.11383025763335	4.31105124909820

[1C₄]²⁺ (acetonitrile, low-spin)

Charge = 2+, Spin Multiplicity = 1

Fe	-0.00272558101375	-0.00085239914388	0.00509100846130
Ν	0.02520616834171	1.89520368005929	-0.32777297122170
Ν	1.95319294114018	0.03228178747542	-0.08600418081547
Ν	0.22830407947207	-0.08868034411655	-2.03000227333796
Н	0.69217499408654	-0.97842900171806	-2.25200691107410
Ν	-0.00653278922571	0.00024339642248	1.92972019915291
Ν	-1.95900711175898	-0.06241173950464	0.07432453521852
Ν	-0.26044128647136	-2.01696560381363	0.26981244819364
Н	-0.74937981399542	-2.37957647851255	-0.55835529448624
С	-0.54797978480798	2.88314898692218	0.39483456988312
Н	-1.06215012189677	2.58217083134536	1.30660270379726
С	-0.49332831529253	4.21142446390443	-0.01361611263721
Н	-0.96707229642338	4.97706013427850	0.59963108197027
С	0.16184595330423	4.53813286527258	-1.20403064353427
Н	0.20831500338713	5.57170575831226	-1.54663916937404
С	0.74867236208298	3.51649681484000	-1.95563138356959
Н	1.26177380688801	3.72009114381986	-2.89531776671231

С	0.66055286436881	2.21285178911357	-1.48874253604255
С	1.26135027129104	0.99178654717516	-2.14148069428891
Н	1.57933690754310	1.18451965071579	-3.17525866606678
С	2.40027214939619	0.54443685271920	-1.26428655348979
С	3.74934854495546	0.66537192304229	-1.56854454051982
Н	4.05005232307861	1.07125339449753	-2.53407442323650
С	4.68766274039907	0.26072888641653	-0.61685512696833
Н	5.75480812361615	0.33587160627361	-0.82491858211192
С	4.23233647972216	-0.23794380701388	0.60577664231212
Н	4.92730987097819	-0.55567658863630	1.38182459341905
С	2.86558801320594	-0.34010706180213	0.83839462060203
Н	2.48479592376878	-0.72851322094996	1.77982567843718
С	-0.87545781209543	0.07898680855891	-3.01173978152560
Н	-1.46781339692647	0.95824343137315	-2.72579395256151
Н	-0.42802675534102	0.29705307490092	-3.99437502958678
С	-1.75078235710494	-1.16558060399369	-3.08752797828916
Н	-1.14971719543631	-2.00685336979108	-3.47285442641582
Н	-2.07892984343872	-1.44484316989780	-2.07627987661012
С	-2.99378032872997	-0.96401809948942	-3.96407951436931
Н	-3.61592672495857	-1.86916246656459	-3.88859949357100
Н	-3.59420947013384	-0.14088287681813	-3.54161241241656
С	-2.68385356625450	-0.67983018328005	-5.43642018604309
Н	-2.13555290797965	0.26473226717760	-5.56425458957675
Н	-2.07068565034260	-1.48452288724914	-5.87094559518394
Н	-3.60954640342494	-0.60650741991383	-6.02485764748442
С	0.59136290706890	0.87401673859902	2.76986778785783
Н	1.10721388897020	1.71602729774536	2.31011259295859
С	0.55964685094963	0.69850119249844	4.14909720942585
Н	1.05425482240085	1.42761281770365	4.78976568665267
С	-0.09882135263215	-0.41083826703805	4.68617666527566
Н	-0.12743321721180	-0.57195617595620	5.76366283437707
С	-0.71242861350319	-1.31834164901311	3.81835073516326
Н	-1.22948475682683	-2.20366333091979	4.18781295911300
С	-0.64510685735507	-1.08175294205664	2.45266061387758

С	-1.27385108512438	-1.92613866972983	1.37202521667007
Н	-1.59924279361117	-2.90723129522940	1.74372760655504
С	-2.41072520403585	-1.12551927275328	0.79270201728304
С	-3.76148478183201	-1.39254466718991	0.97086004494845
Н	-4.06774224264235	-2.26561367269542	1.54654150537008
С	-4.69495745506360	-0.52662844489986	0.39731693745095
Н	-5.76304947006178	-0.71169591742189	0.50997161083699
С	-4.23438677256846	0.58062532011377	-0.31893528499108
Н	-4.92640006079856	1.28826727291200	-0.77366479887185
С	-2.86652689194463	0.78519170855251	-0.45875150232952
Н	-2.48047321342409	1.64164516834216	-1.00655815274830
С	0.83016659108911	-2.98182765047748	0.57035933529721
Н	1.43780354025319	-2.57565659360096	1.38817419807179
Н	0.37155971811509	-3.91472683683966	0.94107066271368
С	1.66078011625570	-3.28367589573718	-0.67124761206697
Н	0.97637734775088	-3.58469404106186	-1.48230869921716
Н	2.18125924435588	-2.37536395847291	-1.01180472648386
С	2.69260784211785	-4.39502661261075	-0.43823557327293
Н	2.17388387600215	-5.30102339488742	-0.08277099487985
Н	3.14096772201045	-4.65616767733436	-1.40931155989456
С	3.80246230569164	-4.01084024392608	0.54420279238722
Н	3.40542100007714	-3.79323044682003	1.54658953756184
Н	4.53476044005725	-4.82422331062987	0.64718891002041
Н	4.33764224549648	-3.11504863157230	0.19566565456195

[1C₄]³⁺ (DMSO, low-spin)

Cha	Charge = 3+, Spin Multiplicity = 2			
Fe	-0.01335775523439	0.01735735510606	0.02006750927002	
Ν	0.02278755060980	1.94077886688130	-0.32009382098107	
Ν	1.96638410677577	0.06558323478481	-0.08462617619178	
Ν	0.22472911907118	-0.07616062157795	-2.00171724993875	
Н	0.69032344797925	-0.96924757226607	-2.21090834438318	
Ν	-0.00884601086649	-0.00466420813360	1.97357575828477	
Ν	-1.99181877003724	-0.03723646099326	0.11944201036724	

Ν	-0.29456485483302	-1.98769901565311	0.26005771781447
Н	-0.79383785331918	-2.33338566382153	-0.57094810418953
С	-0.54661614887682	2.91949029395091	0.41229997116719
Н	-1.06406126388341	2.62033178329306	1.32268731948025
С	-0.47633235358784	4.24623422811172	0.00516667869103
Н	-0.93610145334463	5.01740442456339	0.62107436115177
С	0.17318792629133	4.56033490379438	-1.19093376463545
Н	0.22689418494382	5.59370955555855	-1.53337778443113
С	0.74491759168832	3.53837850026198	-1.95400939136693
Н	1.24930140676446	3.73950597121546	-2.89829749410311
С	0.65294282502358	2.23802498142228	-1.48490602905306
С	1.24981596575296	1.01189211501271	-2.13321528834162
Н	1.54655126671501	1.18831779732841	-3.17451100777586
С	2.39896465774159	0.57416617239524	-1.26549050411081
С	3.74456805643708	0.69425759550250	-1.57546341561020
Н	4.04206324123942	1.10362620988729	-2.53996661833142
С	4.68338463301439	0.28153139621795	-0.62735160905829
Н	5.74946581519807	0.35636604208747	-0.84040710942445
С	4.23733671597326	-0.22277757455756	0.59379335378366
Н	4.93497415691780	-0.54691263977699	1.36419212871573
С	2.87138819316724	-0.31951762455902	0.83736346037393
Н	2.49768080992465	-0.71302596515990	1.77915167655974
С	-0.89258825706982	0.06310927749269	-2.98336212521629
Н	-1.48230867913835	0.95200214747518	-2.72667425390647
Н	-0.42712865062161	0.25682750328949	-3.96171668223823
С	-1.75966256994675	-1.18622739725954	-3.04487297353869
Н	-1.13496517428797	-2.04308376536583	-3.34932329768699
Н	-2.16069603704805	-1.41741321713778	-2.04795104758943
С	-2.94157890338338	-1.02926446022143	-4.01144530264442
Н	-3.57178850619942	-1.92669322272005	-3.91902216077722
Н	-3.56258643157091	-0.18006150945485	-3.68054905186470
С	-2.53463994094639	-0.84026922319097	-5.47515381274564
Н	-1.97823624266109	0.09540993816767	-5.63064711829974
н	-1.89757979552992	-1.67084221853501	-5.81603145705134

Н	-3.42124312327640	-0.80704526718500	-6.12395605064576
С	0.60188319488836	0.86248781196474	2.80625433744794
Н	1.12097988847595	1.70505333791060	2.35177365523950
С	0.56940083880317	0.67227446267510	4.18227301050483
Н	1.06415918791671	1.39319589444208	4.83100785429063
С	-0.08795983143690	-0.44511985399116	4.70211113951556
Н	-0.11235193647224	-0.61867892234219	5.77784784350091
С	-0.70573605233239	-1.34806478608819	3.83220594671601
Н	-1.21799032797350	-2.23793061147105	4.19562452741527
С	-0.64744990980382	-1.09366675439243	2.47132364177855
С	-1.29131934896350	-1.91571146008924	1.38127242876895
Н	-1.60481296478039	-2.90741337512286	1.72977219432976
С	-2.43437781017728	-1.10290153661981	0.83258379162110
С	-3.78291917778358	-1.35985090710045	1.02488667957275
Н	-4.08987095881986	-2.23140880648184	1.60155474995033
С	-4.71253415578698	-0.48221610302033	0.46210780115946
Н	-5.78055289783893	-0.65822579475401	0.58807531217707
С	-4.25540121166372	0.62008568276653	-0.25960649976575
Н	-4.94617353299240	1.33243851500956	-0.70777993786489
С	-2.88739418710886	0.81917902270164	-0.41221256291432
Н	-2.50481273188658	1.67159039653859	-0.96828381566164
С	0.80738250048535	-2.96140605664906	0.52550734742303
Н	1.41435401010257	-2.58492370687673	1.35690245936672
Н	0.33123350328667	-3.89394172693299	0.87087474781000
С	1.63146044414374	-3.24328366657397	-0.72408061250066
Н	0.94393687893190	-3.51594313120657	-1.54190486393017
Н	2.17381408474932	-2.33990262252480	-1.04385600739127
С	2.64501893284907	-4.37583307512573	-0.50893859521338
Н	2.11072740109976	-5.27649267429191	-0.16438112140983
Н	3.08251905379354	-4.62917113495933	-1.48647077217915
С	3.76548678382024	-4.02237516611843	0.47250414927852
Н	3.37902612580932	-3.81043344048962	1.48024267232355
Н	4.48280827748256	-4.85032940629209	0.56118299523818
н	4.31639873161682	-3.13329638072512	0.13095658187421

[1C₄]³⁺ (DMSO, high-spin)

Charge = 3+, Spin Multiplicity = 6

Fe	-0.00336790523539	-0.02934144384842	-0.01091148749973
Ν	-0.03752939913776	2.01986866564832	-0.50679154061790
Ν	2.13120856316564	0.09025500234029	-0.16981162555486
Ν	0.34202307391968	-0.07054998563145	-2.18399590214327
н	0.81794020924611	-0.94213793201204	-2.45188384073032
Ν	0.06996167949713	-0.16100698884147	2.08941696430147
Ν	-2.13736891612135	-0.12606302995615	0.16747881452635
Ν	-0.38787100624300	-2.17027517535805	0.33250683909673
Н	-0.89266537581329	-2.56506887470842	-0.47090228366304
С	-0.61970796831231	3.02902331098857	0.16896700277014
н	-1.18633367877822	2.75908701437952	1.06070835229145
С	-0.49792650352425	4.34609595643231	-0.26027731144021
н	-0.97784614216343	5.14310436839280	0.30548601912288
С	0.23622788658260	4.61408030716962	-1.41756615126576
н	0.33792310982671	5.63689705405648	-1.78075326882317
С	0.83928615218777	3.56138045701918	-2.11242504308002
н	1.42091854629643	3.73118952095408	-3.01792104860424
С	0.68161777058136	2.27222051735930	-1.62558093676757
С	1.33371600831103	1.04242895242608	-2.23161523700146
н	1.67057599132808	1.24774372686602	-3.25702391291536
С	2.49867934676665	0.64328645583098	-1.35030715492974
С	3.82998987221894	0.84565640887699	-1.68393600806036
н	4.08735484776009	1.28830716363915	-2.64563178899758
С	4.81206348033164	0.46711732806377	-0.76430122320255
н	5.86666700198931	0.61145312394744	-0.99927091855803
С	4.42922351334414	-0.09858752766395	0.45253905094997
н	5.16566424724472	-0.40723215854053	1.19271432839386
С	3.07557074344001	-0.27438907569793	0.71802022871243
Н	2.73509609898834	-0.72235126912265	1.65001450690913
С	-0.80186419916583	0.13969978127167	-3.11520813144240
н	-1.38126100298372	1.00434153090451	-2.76294527252666

Н	-0.38601618382400	0.41034776100076	-4.09891310589069
С	-1.68144646928209	-1.09826111529086	-3.22148869673852
Н	-1.09205095676186	-1.92795428435989	-3.64574985856301
Н	-1.99988754957681	-1.41173928233086	-2.21700154448168
С	-2.93558556192549	-0.85034195512673	-4.07065270760057
Н	-3.56385410138850	-1.75265436593969	-4.01862418793816
Н	-3.52119722194432	-0.03859953419157	-3.60734191835086
С	-2.64548061693584	-0.51445594551268	-5.53604517013991
Н	-2.09438256966795	0.43162254584321	-5.63837677546512
Н	-2.04368010462397	-1.30615069836816	-6.00834899653383
Н	-3.57988360984272	-0.41513511116804	-6.10631775478168
С	0.68659614903816	0.66924596065159	2.95221305155752
Н	1.25994412301082	1.48991895560481	2.51930799811136
С	0.58920981453938	0.47923109122661	4.32621042978035
Н	1.09745236296532	1.16535625917874	5.00182249877615
С	-0.15792099713816	-0.59786765881266	4.80757500968124
Н	-0.24071398287391	-0.77490330080321	5.88001508290180
С	-0.79813964115274	-1.45308359506288	3.90565140923368
Н	-1.38946002586117	-2.30314943607198	4.24440163250761
С	-0.66312500324069	-1.20257568940620	2.54787854703431
С	-1.35390027166210	-2.00124817775414	1.45714487875148
Н	-1.70328805855843	-2.96729074301774	1.84593155162320
С	-2.51328711797924	-1.18388645747218	0.92480542505592
С	-3.84691658242242	-1.46225924950261	1.18692867435636
Н	-4.11094210824686	-2.32391705736715	1.79909262207995
С	-4.82160047651014	-0.61978243979686	0.64459526415236
Н	-5.87798336827508	-0.81610900715032	0.82829380118318
С	-4.42991965154482	0.47013585300335	-0.13439202118434
Н	-5.16116041926000	1.14706604767371	-0.57322895501601
С	-3.07417622647901	0.69064874635217	-0.35122678347516
Н	-2.72348072766352	1.52999397603234	-0.94942830726866
С	0.73063679803754	-3.09634516647041	0.66593194842704
Н	1.31920088375277	-2.64313772402819	1.47365038576710
н	0.29131988332676	-4.02607248239936	1.06652329288322

С	1.57981284605325	-3.40861713685786	-0.55865845563920
Н	0.91767750470144	-3.76653955255410	-1.36385810505040
Н	2.06595984145657	-2.49099973874448	-0.92529301980999
С	2.65590000662555	-4.46448347170812	-0.27033012331963
Н	2.17358594222890	-5.37021529693286	0.13321604934712
Н	3.11165187059771	-4.75722515171930	-1.22855136846590
С	3.75143381542849	-3.98440349132550	0.68543334814423
Н	3.34694132629611	-3.70991431270612	1.67070561248551
Н	4.50535420163818	-4.76831033142862	0.84437064706618
Н	4.26489188739707	-3.10127473037189	0.27661065355632

trans-[1C₄]²⁺ (DMSO, low-spin)

Charge = 2+, Spin Multiplicity = 1			
Fe	0.13308523438603	-0.04360095748709	-0.07016363385542
Ν	2.08601348425836	-0.10556443498499	0.15529639608228
Ν	-0.10584476709564	-0.11204097532305	1.87892414016788
Ν	0.36963700724150	-2.05383147202547	0.26831421647258
Н	-0.51628615872248	-2.40518677275814	0.64993781285290
Ν	0.41147959296332	0.16333927639216	-2.00930132246539
Ν	-1.80709889009305	-0.12642303141829	-0.35597991843321
Ν	-0.29728329318261	1.95419529739128	-0.25665586309750
Н	-0.92017314663037	2.20570775571251	0.51936938199701
С	3.04153061209663	0.65039694011886	-0.42770525971144
Н	2.70179060636111	1.45095872796776	-1.07779069327090
С	4.39793380401003	0.41894547372251	-0.22915795328972
Н	5.12368264589735	1.06553647943157	-0.72056320257362
С	4.80171113337309	-0.63506236143156	0.59212300673670
Н	5.85903338789403	-0.83695918935397	0.76254756447960
С	3.82109239880304	-1.44362272805033	1.17102086342597
Н	4.07850416534930	-2.30002169941299	1.79389830383490
С	2.48675256129129	-1.15577453769850	0.92131386811494
С	1.31684149131062	-1.95271043396283	1.42865884534811
Н	1.62274285965056	-2.93165255473560	1.82272849806897
С	0.58362696314572	-1.13201065316898	2.45327551966742

С	0.58812573329107	-1.36551475039297	3.82219632156361
Н	1.16121218031351	-2.20022064901785	4.22514638840076
С	-0.16088849634799	-0.52328550931567	4.64544662257851
Н	-0.18128665029511	-0.67758840478661	5.72414712376979
С	-0.90104127485077	0.50515251385051	4.05709916479819
Н	-1.51752976275640	1.17377180196608	4.65638258355681
С	-0.85805093797894	0.67621749775487	2.67831377770782
Н	-1.45039176028100	1.45582465200116	2.20307531287120
С	0.80048626734264	-3.05071780758844	-0.74640241905151
Н	1.75218543147294	-2.71603583245266	-1.18045281762055
Н	1.00643757628030	-4.00103366929280	-0.22848379673117
С	-0.27833277060239	-3.23298268393637	-1.80750289988826
Н	-1.16320464645620	-3.69494899789134	-1.33671736309208
Н	-0.59757655202717	-2.24463073234574	-2.16804581231969
С	0.18057907815383	-4.08692378567536	-2.99484060504267
Н	-0.62570882132108	-4.09055551292143	-3.74470724009101
Н	1.04515829643611	-3.59823168525186	-3.47505447280115
С	0.54006723397802	-5.52923913526701	-2.62676313382295
Н	1.40846750684170	-5.57582137909546	-1.95336315451870
Н	-0.30229642559443	-6.02644543812903	-2.12121629550196
Н	0.78699077081772	-6.11388525394841	-3.52453881717179
С	1.26227578397387	-0.48722860929296	-2.83354691102308
Н	1.86091406796174	-1.27916279763202	-2.39343545665037
С	1.38424463608436	-0.16670331901617	-4.18077462082204
Н	2.07950091110673	-0.73286186254647	-4.79924404617626
С	0.61854880466711	0.87335015550535	-4.71135595927975
Н	0.69905883480890	1.14585468264178	-5.76356942410838
С	-0.23770487577991	1.57375961101285	-3.85936152506619
Н	-0.83690283126973	2.41294017286601	-4.21198085495072
С	-0.30750654288852	1.19596541607992	-2.52572145359597
С	-1.16216671578745	1.85794984334395	-1.48012666665375
Н	-1.54724438245709	2.83094166466970	-1.81480891843710
С	-2.26761580399099	0.91138147297723	-1.10163018033446
С	-3.60289426469632	1.05243738296207	-1.45666360050352

Н	-3.91379728519619	1.90627916678942	-2.05815941863960
С	-4.51587747257031	0.09283463959855	-1.01603286868075
Н	-5.57174292994514	0.17282329836504	-1.27417815778415
С	-4.05357631705118	-0.95860382997471	-0.22056895752982
Н	-4.73205043364073	-1.71983045910734	0.16300429753127
С	-2.70217895873435	-1.03326319147392	0.09528637783089
Н	-2.33065249636994	-1.83059955327259	0.73659723088043
С	0.69830300439120	3.05394249918158	-0.34459218434128
Н	1.40038116407401	2.81933408818946	-1.15389307031292
Н	0.17046513170539	3.97647542519949	-0.64151868904430
С	1.38844123543811	3.26560636132227	0.99706540296458
Н	0.60898301755517	3.45188617765636	1.75463479843164
Н	1.90775469023090	2.34414461531576	1.30250194446093
С	2.36769468046533	4.44681744769126	0.98570586503467
Н	1.83714947308163	5.34993176622023	0.64006229672544
Н	2.67487664725562	4.64900105243233	2.02350178921363
С	3.61513188857034	4.21779742250303	0.12785899171618
Н	3.36070747944464	4.03448441060205	-0.92649431185262
Н	4.27968796297928	5.09304275124316	0.15936501643960
Н	4.18520909785928	3.34969258575893	0.49043449741258

trans-[1C₄]²⁺ (DMSO, high-spin)

Charge = 2+, Spin Multiplicity = 5				
Fe	0.13244473776919	-0.04513074137670	-0.07830231578666	
Ν	2.25755252338665	-0.25708365304065	0.18726433503220	
Ν	-0.03573353195716	-0.12637306375480	2.08987091319060	
Ν	0.39354472811415	-2.18977913735121	0.43593589619270	
Н	-0.47471451867653	-2.56460800761360	0.83296482423587	
Ν	0.38803316885395	0.32174674965624	-2.18392301483353	
Ν	-2.00300419797693	-0.10499676174605	-0.48021905885662	
Ν	-0.46289253929383	2.08488657659854	-0.30551404166747	
Н	-1.10072260583485	2.34762024030593	0.45400564530776	
С	3.25262669786634	0.46819205610074	-0.35488095828176	
Н	2.95990342074961	1.25808795903464	-1.04657905233619	

С	4.59050848512597	0.22140200158094	-0.06178538428626
Н	5.36595693502949	0.83374350876215	-0.52033244049062
С	4.90813123554875	-0.81824671551118	0.81520079932476
Н	5.94738981381229	-1.03918752110441	1.05977850577416
С	3.87660207637766	-1.58416084800163	1.36283665872220
Н	4.07960522503303	-2.41620737265966	2.03709627398970
С	2.56484133090748	-1.27504584814599	1.02040955795168
С	1.35678909761956	-2.02040069708391	1.55635772233901
Н	1.66818543357010	-2.98008254575175	1.99491415990367
С	0.67375634269415	-1.15833986834015	2.60005458052596
С	0.78012397826400	-1.38703430781551	3.96875256182697
Н	1.36157598209865	-2.23411372588008	4.33304153963095
С	0.12374203821590	-0.52122958821837	4.84479084805245
Н	0.18492365803725	-0.67586888587909	5.92225521489029
С	-0.62188246069580	0.53654670034940	4.31857079012714
Н	-1.15823657619596	1.22924824063912	4.96611819435496
С	-0.67933723560523	0.69727304770094	2.93727336812977
Н	-1.25860087903689	1.50557483381786	2.49090426456517
С	0.85590430673102	-3.11390659451452	-0.62602822988360
Н	1.77275635406606	-2.69451702254701	-1.06679612567522
Н	1.12552148665466	-4.08435104658593	-0.17812071770697
С	-0.22394285822673	-3.27382374026364	-1.69056723874533
Н	-1.10915450565029	-3.75184303912539	-1.23694943106028
Н	-0.54398977796268	-2.27340525268354	-2.02179227187268
С	0.23824838760636	-4.08741583477567	-2.90477700580880
Н	-0.56222164158320	-4.06091506116494	-3.66043516374596
Н	1.10906718322688	-3.58720380525402	-3.36144956766112
С	0.58686790270876	-5.54424903507425	-2.58613326962545
Н	1.44716267663770	-5.62046254710002	-1.90529411209752
Н	-0.26366597844217	-6.05564738345501	-2.10922146026441
Н	0.84106447806707	-6.09691763296647	-3.50213910162121
С	1.19503106184989	-0.30263970463263	-3.06217861568583
Н	1.82503820723187	-1.09935574243849	-2.66657896771668
С	1.23208409107241	0.04716060480642	-4.40844137879120

Н	1.89678455178990	-0.48648880777420	-5.08663736607293
С	0.41432825044446	1.08650678062190	-4.85846914834222
Н	0.42753083528573	1.38847323647323	-5.90606984592362
С	-0.41322662489886	1.74349056661043	-3.94569765195343
Н	-1.05942675772138	2.56651749887339	-4.25061110005741
С	-0.39682356392293	1.33217735366906	-2.61718319318396
С	-1.27812458571992	1.93649348169065	-1.53989779157529
Н	-1.69767403679835	2.89224721968820	-1.88745423702624
С	-2.39069241359077	0.95611534950710	-1.22379416721006
С	-3.69520264460706	1.10817165532629	-1.68434637444491
Н	-3.96039023205571	1.98040938122397	-2.28189480374331
С	-4.63756594741184	0.13145025640012	-1.35936447642782
Н	-5.66822138855251	0.22340885093857	-1.70271665748290
С	-4.24155896477648	-0.95872034389646	-0.58048106051074
Н	-4.94707448440183	-1.73928205512391	-0.29779010267187
С	-2.91766277639248	-1.03876258209905	-0.15893061247097
Н	-2.57205069458056	-1.87107625384967	0.45432441474917
С	0.58853260242333	3.12418638059591	-0.40341830241794
Н	1.29659424638154	2.81261419045399	-1.18376997561658
Н	0.13878334020349	4.07755668913331	-0.73298271801982
С	1.27838681448031	3.30504425733715	0.94439152379115
Н	0.50716878634934	3.52932095799261	1.69980462452432
Н	1.74783616877194	2.35477815576738	1.24817076835178
С	2.32320607292340	4.42811128113175	0.94061384142494
Н	1.84778526651986	5.35977246808914	0.59051578889273
Н	2.63452469748779	4.61359652944125	1.98041525518974
С	3.56112728396568	4.12550879385296	0.09197643716631
Н	3.30412072775736	3.95798231216678	-0.96438361593752
н	4.27825732991487	4.95797293710658	0.12959167983002
Н	4.07343527294299	3.22342754615491	0.45830140860282

References

- 1 G. Volpi, C. Garino and C. Nervi, *Dalton Trans.*, 2012, **41**, 7098.
- 2 C. Reichardt, *Chem. Rev.*, 1994, **94**, 2319–2358.

- 3 Y. Marcus, *Chem. Soc. Rev.*, 1993, **22**, 409–416.
- 4 V. Gutmann and E. Wychera, *Inorg. Nucl. Chem. Lett.*, 1966, **2**, 257–260.
- 5 J. Catalán, C. Díaz, V. López, P. Pérez, J.-L. G. De Paz and J. G. Rodríguez, *Liebigs Ann.*, 1996, **1996**, 1785–1794.
- 6 M. J. Kamlet, J. L. M. Abboud, M. H. Abraham and R. W. Taft, *J. Org. Chem.*, 1983, **48**, 2877–2887.
- 7 S. Sundaresan and S. Brooker, *Inorg. Chem.*, 2023, **62**, 12192–12202.