Supporting Information

Atmospheric Pressure Spatial Atomic Layer Deposition of p-type CuO thin films from copper (II) acetylacetonate and ozone for UV detection

Hung-Anh Tran Vu^{1,2}, Duc-Trung Pham², Hang Tran Thi My², Duc Anh Duong², Abdullah H. Alshehri³, Van Tan Tran⁴, Thi Minh Hien Nguyen⁵, De Pham-Cong⁶, Viet Huong Nguyen^{2,*}

¹Phenikaa University Nano Institute (PHENA), Phenikaa University, Hanoi 12116, Viet Nam

Viet Nam

Figure S1 illustrates the XRD diffractogram of CuO sample prepared with 4000 ALD cycles at 275 °C. The results should a tenorite CuO phase with unobservable Cu₂O contribution.

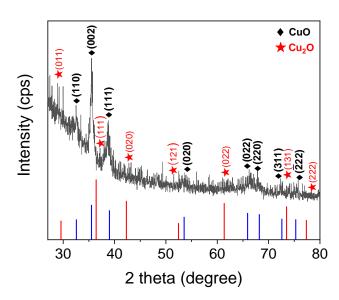


Figure S1: XRD pattern of CuO thin film fabricated with 4000 ALD cycles at 275 °C.

To illustrate the critical role of p-type CuO in the photodiode, we have performed the measurement of photocurrent in the two conditions: forward bias (1 V) and reverse bias (-1 V). With solely the photoactivity of ZnO, the photocurrent cannot significantly enhance (Fig

²Faculty of Materials Science and Engineering, Phenikaa University, Hanoi 12116, Viet Nam

³Department of Mechanical Engineering College of Engineering in Al-Kharj Prince Sattam Bin Abdulaziz University Al Kharj 11942, Saudi Arabia

⁴Faculty of Biotechnology, Chemistry and Environmental Engineering, Phenikaa University, Hanoi 12116,

⁵Institute of Physics, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Hanoi, Viet Nam ⁶Department of Nanoenergy Engineering and College of Nanoscience and Nanotechnology, Pusan National University, Busan 46241, Republic of Korea.

^{*}Email: huong.nguyenviet@phenikaa-uni.edu.vn

S2a), while with the built-in electric field created from p-CuO/n-ZnO heterojunction, we can observed the higher performance.

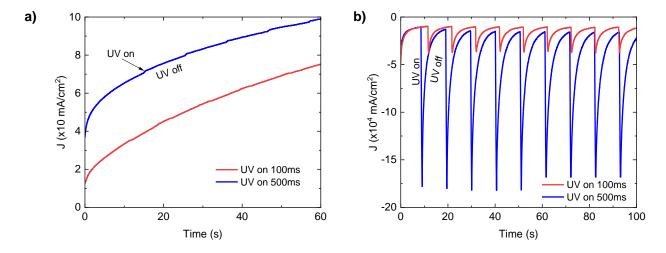


Figure S2: Photo-response versus time of p-CuO/n-ZnO photodiode under 365nm light illumination at a) forward bias 1 V and b) reverse bias -1 V, at room temperature conditions.

We conducted additional photocurrent measurements using 395 nm light, which lies beyond the primary absorption range of ZnO. As shown in Figure S3, the device demonstrates a weak but observable photo-response at 395 nm, while the performance at 365 nm can be clearly seen. This results indicate that the main role of p-type CuO in this UV diode is not the absorber but indeed to create an efficient junction with n-type ZnO to enhance the photocurrent in such a UV detector.

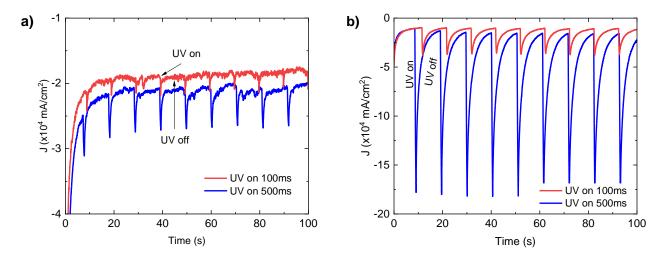


Figure S3: Photo-response versus time of p-CuO/n-ZnO photodiode under a) 395 nm and b) 365nm light illumination at -1 V reverse bias voltage, and at room temperature conditions.