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Experimental Section

All chemicals including (Chloromethyl)triethoxy silane (CMTES), sodium hydride (95 %), Pluronic P-123,
tetraethyl orthosilicate (TEOS), hydrochloric acid (37%), (3-aminopropyl)trimethoxysilane(APTMS),
ruthenium(lll) chloride trihydrate, potassium perrhenate and also solvents were purchased from Sigma-
Aldrich, Merck, and TCI (Tokyo Chemical Industry) Companies. All the chemicals were used without
additional purification. Philips CM-200 and Titan Krios transmission electron microscopes were utilized for
studying the pore system of the materials. The nitrogen adsorption-desorption analyses were achieved
with a BELSORP-MAX analyzer at 77 K. Degasification was operated for all materials at 353 K for 6 h
before the assessment. The specific surface area of the samples was determined from the BET plot at
the relative pressures (P/P0) of 0.05-0.15, and the pore size distribution (PSD) was assessed from the
adsorption branch using the Barrett-Joyner-Halenda (BJH) and DH methods. Moreover, total pore volume
was allocated by the adsorbed volume at P/PO = 0.995. The surface morphology of the materials was
investigated with a TeScan-Mira Il ultrahigh resolution cold field emission scanning electron microscope
(FESEM). XPS spectra of the materials were obtained by a-Kratos Analytical X-ray photoelectron

spectrometer. To correct possible deviation caused by electric charge, the C1s line at 285.0 eV was used
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as the internal standard. The main elemental composition was measured using vario-EL CHNS
instrument. Thermogravimetric analysis (TGA) was achieved by a NETZSCH STA-409 PC/PG instrument
between the temperatures of 25 to 600 °C under O2 and N2 atmospheres. Fourier transform infrared
(FTIR) spectrum was attained by a Bruker vector device in the ranges of 400 and 4000 cm-1. NMR
spectra were reported with a Bruker instrument (1H frequency: 400 MHz, 13C frequency: 100 MHz).
Cross-polarization (CP) technique was used for both 3C and 2°Si spectra, which were referenced to
tetramethylsilane. Rigaku Japan/Ultima-1V diffractometer was used to carry out low angle X-ray diffraction
(LA-XRD) analysis. GC-MS spectrums were obtained by Bruker scion 456-GC equipment. A Varian CP-
3800 gas chromatograph (GC) equipped with a capillary column [Teknokroma Meta. BLOOD 2 (30 m x
0.53 mm x 2.0 uym)] and a flame ionization detector (FID) were used to analyze the initial meta-

bromination reaction progressing.

Special Notice: We are deeply committed to addressing environmental pollution and
climate change. Therefore, in all conducted experiments, the solvents have been
individually separated, purified according to established fractional distillation

procedures, and reused in subsequent applications.

A typical procedure for the Preparation of the 1, 3-bis(triethoxysilyl)methyl imidazolium
chloride ionic liquid (BTESMICI):

The ionic liquid precursor (BTESMICI) was prepared following a modified version of our previously
established protocol for the synthesis of BTMSPICI.! In the initial step, imidazole was recrystallized in
absolute CH2Clz and dried under vacuum over silica blue at room temperature for 3 days. Subsequently,
the well-dried imidazole (2 g) was combined with a mixture 0.77 g of NaH (95%) in 40 mL of freshly dried
THF under an argon atmosphere. Following 2 hours of stirring at room temperature, chloromethyl
triethoxysilane (CMTES, 5.4 mL) was injected to the above suspension and, the resulting mixture was
refluxed for 48 hours. The resulting mixture was allowed to cool to room temperature, and the solvent was
subsequently removed under reduced pressure until an oily mixture containing NaCl was obtained.
Freshly dried toluene (20 mL) and CMTES (5.4 mL) were successively added to the mixture, which was
then refluxed under an argon atmosphere for 72 h until a two-phase mixture of toluene and the crude
ionic liquid 1, 3-bis(triethoxysilylmethyl)imidazolium chloride (BTESMICI) was obtained. The toluene
phase was removed, and 50 mL of dry CH2Cl. was added to eliminate precipitated NaCl. The CH2Cl2
phase was then transferred to a well-dried two-neck flask, and the volatiles were removed under reduced
pressure to obtain the ionic liquid (BTESMICI) along with any unreacted starting material. Finally, the

ionic liquid was washed several times with dry toluene (5 x 15 mL) to remove the unreacted starting
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material under an argon atmosphere, yielding BTESMICI in pure form. The purity of BTESMICI was
further assessed by NMR spectroscopy (Figures S23, S24).

dry THF,

[T\ 2 h, Ar, RT /—\ ®
1) Ny NH + NaH > ng e + Hz%
dry THF,
/—\ 48 h, Ar, reflux _ —\ .
2 NN @ ———= « N SIOEty
© Na (Et0);Si”~ ClI
cl
a -
~ O N ON\..-O
3 N N__SIOEY (B8 ~C] o = §o
I 3 » _ / O o —
Ny N~ Toluene, reflux, Ar, 72 h < 7

lonic Liquid (IL)

Scheme S1: Preparation of 1, 3-bis(triethoxysilyl)methyl imidazolium chloride ionic liquid (BTESMICI).

Preparation of the Robust ordered periodic mesoporous organosilica (R-PMO-IL) with 35
% ionic liquid.

The R-PMO-IL was synthesized following a method developed within our group to produce a previously
reported PMO-IL with 10% propyl imidazolium group, with minor adjustments.’ In a typical procedure,
Pluronic P123 (1.67 g) was introduced into a solution containing H20 (10.5 g) and HCI (2 M, 46.2 g). After
4 hours, KCI (8.8 g) was added, and the mixture was stirred for an additional 2 hours at 35 °C until a
homogeneous solution was obtained. A pre-mixture of tetraethyl orthosilicate (TEOS, 2.7 g, 13 mmol) and
BTESMICI ionic liquid (3.2 g, 7 mmol) in dry MeOH (6 mL) was then added to the above solution, followed
by continuous vigorous stirring at 40 °C for 24 hours. The resulting mixture was then subjected to an
aging process at 100 °C for 72 hours without agitation. The resultant white precipitate was separated
through vacuum filtration, and the surfactants were extracted using a Soxhlet apparatus by utilizing a
solution comprising 100 mL ethanol and 3 mL concentrated HCI, repeated using a fresh solution four
times within 12 hours. The final powder was then desiccated in an oven at 100 °C overnight and identified
as R-PMO-IL bearing high methylene imidazolium bridges of approximately 1.8-2 mmol.g-1 within the
framework as determined by TGA and CHN analysis.
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Scheme S2: Synthesis of robust periodic mesoporous organosilica with the ionic liquid framework
(RPMO-IL).

A typical procedure for the Preparation of Ru@PMO-IL-1 catalyst?:

10 mg KRuO4 was completely dissolved in 20 mL deionized water under sonication for 20 min followed by
1 hour of vigorous stirring at room temperature. In another flask, 200 mg of PMO-IL substrate was
dispersed in 20 mL of deionized water by sonication for 20 minutes. Subsequently, the solution containing
perruthenate ions was gradually added to the vigorously rotating suspension containing the PMO-IL
material. The mixture was then vigorously stirred for an additional 24 hours at room temperature, and
then washed with a sufficient quantity of deionized water to remove unreacted RuOs ions. The black
crude product dried at 70°C for 24 hours. Subsequently, 100 mg of the dried RuO4s@PMO-IL IL (or
RuO4@R-PMO-IL) was dispersed in 10 mL of deionized water, and a freshly prepared NaBH4 solution
(0.05 M, 3 mL) was gently injected dropwise to reduce the RuO4 ions. The resultant was washed with
water and ethanol and dried at 70°C for 24 hours. The exact amount of Ru species was calculated to be
0.19 mmol/g by ICP-AES analysis.

Typical procedure for the Preparation of Ru@PMO-IL-2 and Ru@PMO-IL-3 catalysts:

17.4 mg RuCls.3H20 was completely dissolved in 20 mL acetone under sonication for 20 min followed by
vigorous rotation at room temperature. In another flask, 200 mg of PMO-IL substrate was dispersed in 20
mL of acetone by sonication for 20 minutes. Subsequently, the solution containing ruthenium chloride was
gradually added to the vigorously rotating suspension containing the PMO-IL (or R-PMO-IL) substrate.
The mixture was then vigorously rotated for 24 hours at room temperature, and the resulting gray-black
crude was washed with acetone (3 x 20) to remove unreacted RuCls species and give Ru@PMO-IL-3
catalyst. Subsequently, 100 mg of the dried Ru@PMO-IL-3 was dispersed in 10 mL of absolute EtOH,
and a freshly prepared NaBH4 solution (0.05 M, 3 mL) was gently injected dropwise to reduce the RuCls
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species. The resulting material was successively washed with water and ethanol and dried at 70°C for 24
hours to give Ru@PMO-IL-2 catalyst. The exact amount of Ru species was calculated to be 0.12 mmol/g
for Ru@PMO-IL-3 and 0.10 mmol/g for Ru@PMO-IL-2 respectively by ICP-AES analysis.

A typical procedure for the Preparation of PrNH.@R-PMO-IL3:

In a typical protocol, 3-(aminopropyl)trimethoxysilane (1 mmol, 0.23 mL) was introduced into a vigorously
stirred mixture of R-PMO-IL (1 g) in freshly anhydrous toluene (30 mL) under an argon atmosphere.
Following 2 hours of stirring at room temperature under an argon atmosphere, the mixture underwent
reflux for 16 hours. The beige solid obtained was subjected to vacuum filtered and washed multiple times
with toluene (3 x 30 mL) and ethanol (3 x 30 mL) to eliminate any unreacted 3-
(aminopropyl)trimethoxysilane and physisorbed residues. Subsequently, the material was dried at 105° C
in an oven, resulting in the production of PrNH2@R-PMO-IL in the form of a pale-yellow powder with an

aminopropyl loading of 0.85 mmol g=*, as determined through thermogravimetric and CHN analysis.

Preparation of Ru@PrNH.@R-PMO-IL catalyst

In a typical procedure, RuCl3.3H20 (87 mg, 0.33 mmol) was added to a well-stirred mixture of PrNH@R-
PMO-IL (1 g) in acetone (30 mL) for 2 hours at room temperature under an argon atmosphere. The
resulting black powder was washed with acetone (4 x 20 mL) to remove any unreacted ruthenium
species, followed by drying at 70 °C for 12 hours under vacuum. The catalyst loading was determined to
be 0.24 mmol.g-1 through ICP-AES analysis. Notably, this procedure allows for an increase in Ru loading

of up to 0.6 mmol.g' However, for practical considerations such as accuracy in catalyst weighting, the

catalyst comprising 0.24 mmol.g-' was chosen for this study.

VieO).S NH:

R-PMO-IL o
a) Dry toluene, reflux, 24 h

b) RuCl; 3H,0, acetone, 2 h
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Scheme S3. Synthesis of Ruthenium catalyst supported on mesoporous organosilica (Ru@PrNH-2@R-
PMO-IL).

Procedure for synthesis of Ackermann’s catalyst (Ru@SiO.)*

This catalyst was prepared following the procedure reported by Ackermann and his co-workers. In a
typical procedure, RuCls-3H20 (150 mg, 0.53 mmol) was dissolved in ethanol (2.4 mL), followed by the
addition of ethylene glycol (6.0 mL, 99.5% purity) and water (0.1 mL). The red-colored solution was stirred
at 65 °C for 30 minutes, during which the color slightly changed to pale red. Si(OEt)4 (6.0 mL, 26.9 mmol)
was then added, and the mixture was stirred for 3 hours at 65 °C. Water (3.0 mL, 167 mmol) was added
while stirring at 65 °C for 75 minutes. The mixture was then stirred for 24 hours at 27 °C. The volatiles
were removed under reduced pressure, and the mixture was heated to 100 °C overnight in an oven. The
catalyst was dried at 100 °C in a vacuum oven. The catalyst was purified by first grinding it into a fine
powder and washing it with CH2Cl2 (3 x 10 mL). The solid was separated by decantation after
centrifugation (40 minutes, 8000 rpm). The wash phase was analyzed for residues, yielding a yellowish

powder. (The protocol text was slightly changed in order to avoid plagiarism)

A typical reaction procedure of selective meta-bromination of 2-phenylpyridine using
Ru@PrNH.@R-PMO-IL as catalyst (Condition A)®

A 5-mL two-necked round bottom flask, equipped with a condenser, was charged with Ru@PrNH2@R-
PMO-IL (21 mg, 0.005 mmol, 4 mol%), 2-Phenylpyridine (18 pl, 0.125 mmol, 1.0 eq), and TBATB (90 mg,
0.1875 mmol, 1.5 eq) in dry 1,4-dioxane (0.7 mL). The top of the condenser was sealed using a rubber
septum. The entire system was purged three-times using vacuum-oxygen couples, and in the final stage,
a balloon filled with oxygen was attached to the top of the condenser. The mixture was refluxed while
gently stirring for 12 h under a balloon-filled oxygen atmosphere (625 Torr). After this period, the reaction
mixture was allowed to cool to room temperature, and sodium thiosulfate (5 mL,10 wt% solution) was
added and stirred for 10 minutes. The aqueous phase was subsequently extracted with ethyl acetate (3 x
10 mL). The combined organic layers were gathered and thoroughly rinsed with brine (25 mL) and water
(2 x 15 mL), followed by drying over Na2SOa4. After the removal of solvents under reduced pressure, the
conversion was assessed through GC or NMR analysis. The crude product was subjected to purification
via preparative TLC chromatography (solvent) to determine the isolated yield of the corresponding meta-
C-H brominated products.

Important note: In those particular cases where small by-products have appeared in the product
mixtures, to obtain an isolated yield of all reaction constituents, the reactions were carried out with a 0.5
mmol scale of 2-phenyl pyridine, and the crude products were combined, and the reaction products were

precisely separated on the plate by a thin-layer chromatography method.
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Typical reaction procedure of selective meta-bromination of 2-phenylpyridine using
Ru@PrNH.@R-PMO-IL as catalyst (Condition B)

A 5-mL two-necked round bottom flask, equipped with a condenser, was charged with Ru@PrNH-@ HL-
PMO-IL (21 mg, 0.005 mmol, 4 mol%), 2-Phenylpyridine (18 pl, 0.125 mmol, 1.0 eq), K2COs (35 mg, 2
eq), and TBATB (90 mg, 0.1875 mmol, 1.5 eq) in dry 1,4-dioxane (0.7 mL). The top of the condenser was
sealed using a rubber septum. The entire system was purged three-times using vacuum-oxygen couples,
and in the final stage, a balloon filled with oxygen was attached to the top of the condenser. The mixture
was refluxed while gently stirring for 12 h under a balloon-filled oxygen atmosphere (625 Torr). After this
period, the reaction mixture was allowed to cool to room temperature, and sodium thiosulfate (5 mL,10
wt% solution) was added and stirred for 10 minutes. The aqueous phase was subsequently extracted with
ethyl acetate (3 x 10 mL). The combined organic layers were gathered and thoroughly rinsed with brine
(25 mL) and water (2 x 15 mL), followed by drying over Na2SOa. After the removal of solvents under
reduced pressure, the conversion was assessed through GC or NMR analysis. The crude product was
subjected to purification via column chromatography (solvent) to determine the isolated yield of the

corresponding meta-C-H brominated products.

Typical reaction procedure of selective meta-bromination of 1-phenylpyrazole using
Ru@PrNH.@R-PMO-IL as catalyst (Condition C)

The reaction was carried out under condition A (84 mg catalyst, 3 mL 1,4-dioxane, and 0.5 mmol 1-
phenylpyrazole) without TBATB. The TBATB (360 mg, eq. 1.5) was dissolved in 0.8 mL of 1,4-dioxane
and then injected into the above mixture 4 drops per hour during 20 hours. The reaction was then stirred
for a further 4 hours under the same conditions. The reaction was cooled and after quenching the
remaining TBATB with 20 mL Na2S203 solution (10%), the reaction mixture was filtered under vacuum,
and the catalyst was washed with ethyl acetate (3x50 mL). The filtrate was dried over sodium sulfate and
concentrated under reduced pressure. Thin layer chromatography (TLC) (n-Hexane:CH2CL2:EtOAC -
20:5:3) was used to monitor reaction progress. The isolated yield was calculated after separating different

spots on plate thin-layer chromatography.

Typical procedure for the catalyst recycling

In the initial run of catalyst recycling, the reaction was conducted under optimized conditions (Conditions

A) using 105 mg of catalyst along with the appropriate amounts of starting materials: 90 uL (0.625 mmol)
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of 2-phenylpyridine 1a and 450 mg of TBATB. After cooling to room temperature, the reaction mixture
was centrifuged for 10 minutes at 6000 rpm, allowing for the separation of the catalyst, which was then
washed with 4 x 15 mL of ethyl acetate through multiple centrifugation steps. The catalyst was dried
overnight at 70 °C and reused in the subsequent reaction run. The collected organic phases were
successively washed with a 30 mL solution of Na2S203 (10%) and then with 2 x 15 mL of water to
eliminate TBATB. Finally, the product was separated and purified from the collected organic phase

following the procedures outlined in previous protocols.

Run 18t 2nd 3 rd 4th 5th 6th 7th
Amount of 2a | 126.0 mg 1244mg 1245mg 1258mg 123.0mg 102.5mg 72.0 mg
Yield of 2a % 86 85 85 86 84 70 49

Typical procedure for TEMPO Test

Two typical reactions were conducted using 2-phenylpyridine (1a, 0.5 mmol), TBATB (360 mg, 1.5
equivalents), and Ru@PrNH2@R-PMO-IL (84 mg, 4 mol%) as the catalyst. One reaction was performed
in the presence of the radical scavenger (2,2,6,6-tetramethylpiperidin-1-yl)oxyl (TEMPO) (7.8 mg, 10
mol%), while the other was conducted without TEMPO, both under an argon atmosphere for 12 hours. No
desired product was observed in the presence of TEMPO, in contrast to the 84% yield obtained in the
absence of TEMPO. This result confirms the radical mechanism of the meta-bromination reaction with the
ruthenium catalyst, which has been previously proposed in the literature for meta-C-H activation reactions

of arenes®3.

Typical procedure for Hg poisoning test

Two typical reactions were conducted using 2-phenylpyridine (1a, 0.5 mmol), TBATB (360 mg, 1.5
equivalents), and Ru@PrNH2@R-PMO-IL (84 mg, 4 mol%) as the catalyst under the outlined reaction
conditions A. The yield of the first reaction, conducted in the absence of mercury, was calculated to be
58%. In the second reaction, metallic mercury (120 pL, 400 equivalents to catalyst, 8 mmol) was carefully
introduced at the beginning and allowed to proceed for 6 hours as well. After cooling the second reaction
to room temperature, the mercury was quenched with additional sulfur, and the crude product was
washed with EtOAc (3 x 50 mL). The yield of this reaction was also calculated and compared with that of
the first reaction. The nearly identical yield (60%) for the second reaction indicated that no free Ru

nanoclusters were generated or leached into the solution during the catalysis.

Typical procedure for hot filtration test
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A reaction was carried

out using 2-phenylpyridine (1a, 0.5 mmol), TBATB (360 mg, 1.5 eq), and

Ru@PrNH2@R-PMO-IL (84 mg, 4mol%) as catalyst under oxygen for 6 hours, where the yield of 2a was
58% by GC analysis through an standard addition method. The catalyst was then centrifuged and
separated from the reaction medium and the filtrate was allowed to proceed for a further 6 hours under

optimized condition A. The desired product was extracted with EtOAc (3 x 50) mL and purified by thin-

layer chromatography after concentration.The yield of 2a was measured to be 64%.

V,/em3(STP) g!

dVp/drp

600

500 =—4— R-PMO-IL

400 —#— PrNH2@R-PMO-IL

=== Ru@PrNH2@R-PMO-IL
300

200

100

0.6 0.8 1

0.7
0.6 —4—R-PMO-IL
0.5 —#— PrNH2@R-PMO-IL
0.4

—4— RU@PrNH2@R-PMO-IL

0.3

0.2
0.1 \A\
0 JA‘L-’A"’AVAVNAWAVAVAVAVHAVAVNAVAHAVAVHAVAVA\

iy A
1 20

rp/nm

Figure S1. N2 adsorption—desorption isotherms and BJH Pore size distributions (a and b) for R-PMO-IL

(blue diamonds), PrNH2@R-PMO-IL (

), and Ru@PrNH2@R-PMO-IL (green triangles).
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Figure S2. TEM images of R-PMO-IL (a, b), PrNH2@R-PMO-IL (c, d) and Ru@PrNH2@R-PMO-IL (e, f).
STEM of Ru@PrNH2@R-PMO-IL (g).
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Figure S3. Low angle powder XRD of R-PMO-IL (blue diagram), Ru@PrNH2@R-PMO-IL catalyst (orange
diagram), and recovered-Ru@PrNH-@R-PMO-IL catalyst (green diagram).
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Figure S4. Scanning electron microscopy (SEM) images of R- PMO-IL.
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Figure S7. Thermogravimetric analysis of R-PMO-IL in Oz (top) and N2 (down) atmosphere.
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Figure S9. EDS images of R-PMO-IL (top) and Ru@PrNH2@R-PMO-IL (down).

S21




O 1s
-
= e
- E — =3 o
= - g
i - g =
. v Lag]
= o z
: %
£ A
_ ] U oa =
& Z S
N‘GKLET-‘.
T T T T T T 1
1400 1200 1000 800 600 400 200 0
Binding Energy (eV)
Figure S$10. survey scans XPS spectra.
C1s,Ru3d —— Rew date Nis
— (s ckground a Cc
N\
-~ —_ CN
- 5 3
a K] 3
z z z
= - 7
2 | £ Ru-N
g 2 2| NmH N-Imidazole
= - =
N\
g N
290 289 288 287 286 285 284 283 282 281 280 279 489 485 481 477 473 469 465 461 457 405 404 403 402 401 400 399 398 397
Binding Energy (eV) Binding Energy (eV) Binding Energy (eV)
CI2 N O1s
P d Si 2p 3 e Si-0 f
3 3 3
Z 2 2
£ E E
(o)
202 201 200 199 198 197 196 195 107 106 105 104 103 102 101 100 99 536 535 534 533 532 531 530 529
Binding Energy (eV) Binding Energy (eV) Binding Energy (eV)

Figure S11. High resolution spectra of C1s, Ru3d (a), Ru3p (b), N1s (c), CI2p (d), Si2p (e) and, O1s (f).

Table S1. The percentage of constituent elements in the R-PMO-IL based on XPS analysis.

Atomic Constitutes
R-PMO-IL

C O Ru N Si Cl

(%) 26.04 3937 2.1 543 2271 437
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Figure S14. N2 adsorption—desorption isotherm (top-left), BJH Pore size distribution (top-right) DH Pore

size distribution (down-right) and BET surface area diagrams for of recovered Ru@PrNH2@R-PMO-IL
(Rec-Ru@PrNH2@R-PMO-IL).
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HT Size |Dwell | Pixel size | Beam conv. | Coll. Angle
200 kV | 2048 | 10.0 ps | 749.8 pm | 10.5 mrad | 58 - 200 mrad

HT Sze Dwell | Pixel size | Beam conv.  Coll Angle 100 nm HT Saze | Exp | Puel size | screen
200 kV 2048 10.0ps 373.7 pm 105 mrad 58 - 200 mrad 200kV 4096 1s 4053pm 1.48nA

S25



Figure S15. TEM images and elemental mapping of recovered RU@PrNH@RPMO-IL catalyst ofter 7t
run.
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Figure S16: The proposed mechanistic cycle for the meta-bromination reaction of 2-phenylpyridine in the
presence of RU@PrNH2@R-PMO-IL catalyst in condition A.
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The E-factor and EcoScale factor calculations:

40 mL THF (g)

I 35.52 [T\
) NG_NH + NaH &> NN © +H2$
X 2h, Ar, RT © Na
2.00¢g 0.77 ¢g
dry THF,
2) [\ ® 48 h, Ar, reflux o —\ SI(OE),
© Na (Et0);Si” ~Cl
54mL, 552¢
cl
(Et0);Si” Cl ~ O /\N/*N;\S./O\/
| 1~
= : 5.4mL, 5.52 g 07l — 0O
3) Si(OEt)3 i » 0 o —
Ny N~ Toluene (20 mL, 17.34) — < 7
reflux, Ar, 72 h
non-pure lonic Liquid (IL)
CH,Cl,
50mL, 66.5¢g
Cll Toluene CI_
+
\/O\Si/\N/%N/\Si/\(())\/ 75mL, 65 g \/O\Si/\N/%N/\Si/O\/
0 \—/ | - o \—/ 7'=0
-/ <O O7 p— _/ <o o7 pu—
12.7 ¢
pure lonic Liquid (IL) NaCl free non-pure lonic Liquid (IL)

S17: Substrate weights for synthesis of IL

E-factor for ionic liquid synthesis reactions:
Substrates:

Imidazolium: 2 g
Sodium hydride: 0.77 g
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(Chloromethyl)triethoxysilane: 11.04 g (2*5.52)

Reaction solvent:

THF (40 mL) (density 0.889 g/mL) = 35.52 g

Toluene (20 mL) (density 0.867 g/mL) = 17.34 g (80 % (13.87 g) of combined toluene
was distilled and recovered; waste = 3.47 g)

Workup solvent:

Dichloromethane (50 mL) (density 1.33 g/mL) =66.5 g

Toluene (75 mL (5*15 mL)) (density 0.867 g/mL) = 65.02 g (80 % (52.02 g) of combined
toluene was distilled and recovered; waste = 13.00 g)

Product: 12.7 g IL

mass of waste
E factor=—— =
mass of product

2 g (Imidazolium)+0.77 g (Sodium hydride)+11.04 (Chloromethyl)trimethoxysilane+35.52 (THF)+16.47 Toluene
+ 66.5 Dichloromethane
12.7 g lionic Liquid (IL)

223 1042 kg waste / 1kg product

12.7

Calculation of EcoScale score of the lonic Liquid synthesis
Eco Scale = 100 — Sum of individuals penalties
Score on EcoScale: >75, Excellent; >50, Acceptable; <50, Inadequate

A) Calculations of Penalty Points
Parameters Penalty Points

Table S2 : The penalty points for the synthesis of 12.7 g (27.8 mmol) (lonic Liquid (BTESMICI)

Ent. Penalty The effective factor on the penalty point To obtain 27.8 mmol IL Penglty
parameter point
1 Yield (100 — % yield)/2 95 2.5
Price of reaction components Imidazole 02
. (to obtain 10 mmol of end product) NaH (0.77 02
2 Coﬁsgﬂggts Inexpensive (< $10) 0 S
Expensive (> $10 and < $50) 3 (Chloromethyl)triethoxysilane 32
Very expensive (> $50) 5
N (dangerous for environment) 5 NaH (F) 5
T (toxic) 5 (Chloromethyl)triethoxysilane 5
3 Safety F (hlghly.flammable) 5 (F)
E (explosive) 10
F* (extremely flammable) 10 Imidazole 0
T* (extremely toxic) 10

S29



Common setup 0
Instruments for controlled addition of Common setups 0
chemicals 1

4 Technical Unconventional activation technique 2

Setup Pressure equipment, > 1 atm. 3

Any additional special glassware 1 Inert gas atmosphere 1
(Inert) gas atmosphere 1
Glove box 3
Room temperature, <1h 0 Room temperature, <24 h 1
Room temperature, <24 h 1 (NaH addition)

5 Temperature | Heating,<1h 2

ftime Heating,>1h 3 Heating, > 1 h (first step) 3

Coolingto 0°C 4
Cooling, <0°C 5
None 0 Crystallization of imidazole 1
Cooling to room temperature 0 Adding solvent 0
Adding solvent 0 ;
Simple filtration 0 Removal of1350(;\:<(e:nt with bp < 0
Removal of solvent with bp < 150°C 0

6 Workup and | Crystallization and filtration 1

purification Removal of solvent with bp > 150°C 2
Solid phase extraction 2 Liquid-Liquid extraction
Distillation 3 (purification of IL) 3
Sublimation 3
Liquid-Liquid extraction 3
Classical chromatography 10
Total Penalty Points 24.5
@ Based on the amount needed to synthesize 10 mmol of the IL

B) EcoScale calculation:
EcoScale score = 100 — 24.5 = 75.5 (>75; it is an Excellent synthesis)

(EtO),Si

cl
35 mol%
3.2¢g
+

TEOS
2749

/7
\/N\?l\l\/

H20 (10 g)

HCI (46.2 g, 2M)
P123 (1.67 g)
KCI (8.8 g)

35°C, 24 h

Si(OEt),
a)

b) 100 °C, 72 h, agging

c) Soxhlet extraction of surfactant
300 mL EtOH (236.7 g), 9 mL HCI (10.8 g)

S18: Substrate weights for synthesis of R-PMO-IL

E-factor for R-PMO-IL preparation:
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Substrates:

lonic liquid: 3.2 g

TEOS: 2.7 g

HCI: 46.2 mL (2M); (8.212 mL concentrated HCI (density = 1.2 g/ml) in 50 mL deionized
water gives 2M HCI solution) = (8.212*1.2) 9.85 g

P123:1.67 g

KCI: 8.8 g

Wash-up solvent:
Ethanol (EtOH) (3*100 mL) (density 0.789 g/mL) = 236.7 g (90 % (213.03 g) of
combined EtOH was distilled and recovered; waste = 23.67 Q)

Product: 2.5 g R-PMO-IL

3.2 g (IL)+2.7 g (TEOS)+20.65 g HCL (C)+1.67 g (P123)+8.8 g (KCI)
+23.67 g (EtOH)
2.5 g R—PMO-IL

mass of waste

E factor =

mass of product N

60.69

s = 24.28 kg waste / 1kg product

Calculation of EcoScale score of the R-PMO-IL synthesis

A) Calculations of Penalty Points
Parameters Penalty Points

Table S3 : The penalty points for the synthesis of 2.5 g R-PMO-IL

Ent. Penalty The effective factpr on the penalty To obtain 2.5 g R-PMO-IL Penglty
parameter point point
1 Yield (100 — % yield)/2 90 52
. . BTESMICI (IL) o
Price of reaction components TEOS 0P
Reaction (to obtaln' 10 mmol of end product)

2 components Inexpensive (< $10) 0 P123 (0
Expensive (> $10 and < $50) 3 el 0
Very expensive (> $50) 5 Kol i
N (dangerous for environment) 5
T (toxic) 5 TEOS (F) 5
F (highly flammable) 5

3 Safety E (explosive) 10 HCI (N} 5
F* (extremely flammable) 10
T* (extremely toxic) 10
Common setup 0
Instruments for controlled addition of Common setups 0
chemicals 1
Unconventional activation technique

4 Technical Setup | 2
Pressure equipment, > 1 atm. 3
Any additional special glassware 1 soxhlet apparatus 1
(Inert) gas atmosphere 1
Glove box 3
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Room temperature, <1h 0 Room temperature, 24 h 1
Room temperature, <24 h 1 Heating, > 1 h (aging step) 3
Temperature/ Heating,<1h 2

time Heating,>1h 3 Heating, > 1 h (Surfactant

Coolingto 0°C 4 extraction step) 3
Cooling, <0°C 5

None 0

Cooling to room temperature 0
Adding solvent 0

Simple filtration 0

Removal of solvent with bp < 150°C
0

6 Workup and Crystallization and filtration 1
purification Removal of solvent with bp > 150°C
2

Solid phase extraction 2

Distillation 3

Sublimation 3

Liquid-Liquid extraction 3

Classical chromatography 10

Simple filtration 0

Total Penalty Points 23

a Since the molecular mass is not available, it is not possible to calculate the yield. However, based on the
loading of the ionic liquid and taking into account the average penalty point, we have assumed an efficiency of
90% for the production of the R-PMO-IL. ® Based on the amount needed to synthesize 10 mmol of the R-
PMO-IL

B) EcoScale calculation:
EcoScale score = 100 — 23 = 77 (>75; it is an excellent synthesis)

E-factor for Ru@PrNH2@R-PMO-IL preparation:

(Me0)sSi” " N, RuCl5.3H,0
023mL=024g Washing 0.087 g Washing
R-PMO-IL
19 Toluene (30 mL, 26 g) 3 * 30 mL Toluene Acetone 4 * 20 mL Acetone
7849 (30 mL, 23.52 g) 62.72 g
3 * 30 mL Ethanol
7149
S19: Substrate weights for synthesis of Ru@PrNH2@R-PMO-IL
Substrates:
R-PMO-IL: 1 g

Aminopropyltrimethoxy silane (APTMS): 0.24 g
RuCl3.3H20: 0.087 g
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Reaction solvent:

Toluene (30 mL) (density 0.867 g/mL) = 26 g (90 % (23.4 g) of combined toluene was
distilled and recovered; waste = 2.6 Q)

Acetone (30 mL) (density 0.784 g/mL) = 23.52 g (90 % (21.17 g) of combined acetone
was distilled and recovered; waste = 2.4 g)

Wash-up solvent:

Toluene (3*30 mL) (density 0.867 g/mL) = 78 g (90 % (70.2 g) of combined toluene was
distilled and recovered; waste = 7.8 Q)

Ethanol (EtOH) (3*30 mL) (density 0.789 g/mL) = 71 g (90 % (63.9 g) of combined EtOH
was distilled and recovered; waste = 7.1 g)

Acetone (4*20 mL) (density 0.784 g/mL) = 62.72 g (90 % (56.45 g) of combined acetone
was distilled and recovered; waste = 6.3 Q)

Product: 1.2 g Ru@PrNH2@R-PMO-IL

mass of waste
E factor = ; =
mass of product

1g R—-PMO-IL+0.24 g APTMS+0.087 g RuCl .3H20+1 .4 g (Toluene)+8.7g (Acetone)
+7.1 g (EtOH)

1.2 g R—-PMO—IL
20.43

-5 - 17.02 kg waste / 1kg product

Calculation of EcoScale score of the Ru@PrNH2@R-PMO-IL synthesis

A) Calculations of Penalty Points
Parameters Penalty Points

Table S4: The penalty points for the synthesis of 1.2 g Ru@PrNH2@R-PMO-IL

Penalty . . To obtain 1.2 g Penalty
Ent. parameter The effective factor on the penalty point RU@PrNH2@R-PMO-IL point
1 Yield (100 — % yield)/2 80 102
APTMS (0.23 mL) 0
Price of reaction components
Reaction (to obtain 10 mmol of end product)
2 Inexpensive (< $10) 0
components Expensive (> $10 and < $50) 3 RuCl3.3H20 (0.087 g) 0
Very expensive (> $50) 5
N (dangerous for environment) 5 APTMS 0
T (toxic) 5
F (highly flammable) 5
3 Safety .
E (explosive) 10
F* (extremely flammable) 10 RuCls.3H20 (N) S
T* (extremely toxic) 10
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4 Technical Setup

Common setup 0

Instruments for controlled addition of
chemicals 1

Unconventional activation technique 2
Pressure equipment, > 1 atm. 3

Any additional special glassware 1
(Inert) gas atmosphere 1

Glove box 3

Common setup

gas atmosphere (Ar)

5 Temperature/time

Room temperature,<1h 0
Room temperature, <24 h 1
Heating,<1h 2
Heating,>1h 3

Coolingto 0°C 4

Cooling, <0°C 5

Heating, > 1 h (APTMS
grafting)

Room temperature, <24 h
(Ruthenium stabilization)

Workup and
purification

None 0

Cooling to room temperature 0
Adding solvent 0

Simple filtration 0

Removal of solvent with bp < 150°C 0
Crystallization and filtration 1
Removal of solvent with bp > 150°C 2
Solid phase extraction 2

Distillation 3

Sublimation 3

Liquid-Liquid extraction 3

Classical chromatography 10

Simple filtration of the
catalyst

Total Penalty Points

20

@ based on loading of Ru.

B) EcoScale calculation:
EcoScale score = 100 — 20 = 80 (>75; it is an excellent synthesis)

Ru@PrNH,@R-PMO-IL (4 mol%, 105 mg) |

= _N
TBATB (1.5 equiv., 450 mg)
1,4-dioxane (3.5 ml, 3.6 g), reflux, 12 (h) H
H Br
1a 2a
126
90ul, 97 mg mg

S20: Substrate weights for synthesis of 2-(3-bromophenyl)pyridine

E-factor for meta-selective C-H bromination of 2-phenylpyridine

Substrates:

2-phenylpyridine: 0.625 mmol; 97 mg
Ru@PrNH2@R-PMO-IL (catalyst): 105 mg

TBATB: 450 mg
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Reaction solvent:
1,4-dioxane (3.5 mL) (density 1.03 g/mL)=3.6 g

Work-up solvent:

Ethyl Acetate (EtOAc) (4*15 mL) (density 0.902 g/mL) = 54.12 g; (95 % (51.4 g) of
EtOAc was distilled and recovered using rotary); waste = 2.71 g

Na2S203 (30 mL) (10 g Naz2S203in 100 mL water gives 10% w/v Na2S203 solution): 3g

Product:

126 mg 2-(3-bromophenyl)pyridine in first run

798.2 mg 2-(3-bromophenyl)pyridine after 7th cycle (15t cycle: 126.0 mg; 2™ cycle:
124.4 mg; 3™ cycle: 124.5 mg; 4" cycle: 125.8 mg; 5™ cycle: 123.0 mg; 6% run: 102.5
mg; 7" cycle: 72.0 mg)

mass of waste
E factor=—— =
mass of product

0.097 g 2—phenylpyridine+ 0.105 g Ru@PrNH2@R—-PMO—-IL+0.450 g TBATB+3.6 g Dioxane+2.71 g (EtOAc)+ 3 g (Na25203)
0.126 g R—PMO—IL -

9.958
1z 79.03 kg waste / 1kg product
E factor after 7th run of catalyst usage= _232: — 12.48

Calculation of EcoScale score of the meta-selective C-H bromination of 2-
phenylpyridine

A) Calculations of Penalty Points
Parameters Penalty Points

Table S5 : The penalty points for the synthesis of 10 mmol of 2-(3-bromophenyl)pyridine

Ent. Penalty The effective factor on the penalty point 10 mmol of 2-(3- Penalty
parameter bromophenyl)pyridine point
1 Yield (100 — % yield)/2 86 7
61.6 mg Ru@PrNH2@R-
Price of reaction components PMO-IL (3.8 mg 0
Reaction (to obtain 10 mmol of end product) RuCl3.3H20)2
2 components | Inexpensive (< $10) 0 2-phenylpyridine (11.62 0
P Expensive (> $10 and < $50) 3 mmol)
Very expensive (> $50) 5 TBATB (264 mg) 0
N (dangerous for environment) 5 ~ -
T (toxic) 5 2-phenylpyridine 0
F (highly flammable) 5
3 Safety E (explosive) 10 TBATE 0
F* (extremely flammable) 10
T* (extremely toxic) 10
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Common setup 0
Instruments for controlled addition of Common setup 0
chemicals 1
4 Technical Unconventional activation technique 2
Setup Pressure equipment, > 1 atm. 3
Any additional special glassware 1 gas atmosphere (O2) 1
(Inert) gas atmosphere 1
Glove box 3
Room temperature,<1h 0
Room temperature, <24 h 1
5 Temperature/ | Heating,<1h 2 Heating, > 1 h (APTMS 3
time Heating,>1h 3 grafting)
Coolingto 0°C 4
Cooling, <0°C 5
None 0 Cooling to room temperature 0
Cooling to room temperature 0 Simple filtration of the
Adding solvent 0 catalyst
Simple filtration 0 P -
Removal of solvent with bp <150°C 0 %é?(l#gclt'lg: I\?vite'f t;\i%'gtr; 3
6 Workup and Crystallization and filtration 1 - -
purification | Removal of solvent with bp > 150°C 2 Washing with aq. Na2520s 3
Solid phase extraction 2 Washing with water and 3
Distillation 3 brine
Sublimation 3 Drying over sodium sulfate 0
Liquid-Liquid extraction 3 Removal of AcOEt 0
Classical chromatography 10 Silica gel chromatography 10
Total Penalty Points 30

aDue to the recyclability of the catalyst and the selective production of 798.2 mg (3.41 mmol) of the 2-(3-
bromophenyl)pyridine, 61.6 mg of the synthesized catalyst (containing 3.8 mg of ruthenium) is sufficient to

produce 10 mmol of the product.

B) EcoScale calculation:
EcoScale score = 100 — 30 = 70 (>50, it is an Acceptable synthesis)

Table S6. The average integral of 4-(2-pyridyl)benzaldehyde /2-bromo-4-(pyridin-2-
yl)benzaldehyde in different solutions
Ent Theoretical ratio of 4-(2-pyridyl)benzaldehyde /2- | practical ratio of 4-(2-pyridyl)benzaldehyde /2-
ntry bromo-4-(pyridin-2-yl)benzaldehyde bromo-4-(pyridin-2-yl)benzaldehyde
1 (1:1)=1 (55.00) + (45.00) = 1.22
Second B N B
injection (1:1)=1 (55.22) + (44.77) = 1.23
2 2:1)=2 (72.45) + (27.54) = 2.63
Second L o B
injection 2:1)=2 (72.59) + (27.41) = 2.65
3 (3:1)=3 (78.96) + (21.04) = 3.75
Second N — . -
injection (3:1)=3 (78.82) + (21.18) = 3.72
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Theoretical ratio GC ratio
1 1.22
2 2.63
3 3.75

4 Calibration curve
35

y=1.265x+0.0033
25 R2=10.9956

1.5

Practical ratio

0.5

0 0.5 1 1.5 2 2.5 3 3.5
Theoretical ratio

Figure S21. The calibrating curve of GC analysis in different molar ratios of 4-(2-pyridyl)benzaldehyde.
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Figure S27. Gas chromatogram of the solution contains 0.3 mmol 4-(2-pyridyl)benzaldehyde and 0.1
mmol 2-bromo-4-(pyridin-2 yl)benzaldehyde (3: 1)- 2nd injection.

1, 3-bis(triethoxysilyl)methyl imidazolium chloride ionic liquid (BTESMICI)

e Brown viscous liquid, "H NMR (400 MHz, CDCl3) & 8.74 (s,
\/S:S‘i/\N:N/\S'i/\%\/ 1H), 7.36 (d, J = 1.2 Hz, 2H).5 4.13 (s, 2H), 6 3.75 — 3.84 (m,
—/ 0 o_“— 12H), 3.51 (s, 2H), 6 1.15 (t, J = 7.0 Hz, 18H); '*C NMR (101

7 MHz, CDCls) 6 138.0, 118.7, 58.4, 31.1, 18.5.

2-(3-bromophenyl)pyridine (2a)
Yellow oil, procedure A, 86% (101 mg), 'H NMR (400 MHz, CDCl;) &

) 8.69 (ddd, J= 4.8, 1.8, 1.0 Hz, 1H), 8.17 (t, J = 1.9 Hz, 1H), 7.90 (ddd, J

N =78, 1.7,1.0 Hz, 1H), 7.76 (ddd, J = 8.0, 7.4, 1.8 Hz, 1H), 7.69 (dt, J =

8.0, 1.1 Hz, 1H), 7.54 (ddd, J = 8.0, 2.0, 1.1 Hz, 1H), 7.34 (t, J= 7.9 Hz,

1H), 7.25 (ddd, J = 7.3, 4.7, 1.3 Hz, 1H); 3C NMR (101 MHz, CDCls) &

Br 155.96, 149.9, 141.5, 137.0, 131.98, 130.4, 130.1, 125.5, 123.2, 122.8,

120.7.
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N
Br

2-(3-bromo-4-methylphenyl)pyridine (2b)

Yellow oil, procedure A, 89% (110 mg), 'H NMR (400 MHz, CDCl3) &
8.67 (ddd, J=4.8, 1.8, 1.0 Hz, 1H), 8.20 (d, /= 1.9 Hz, 1H), 7.82 (dd, J =
7.9, 1.9 Hz, 1H), 7.73 (ddd, J = 8.0, 7.3, 1.8 Hz, 1H), 7.67 (dt, J = 8.0, 1.2
Hz, 1H), 7.32 (dd, J= 7.9, 0.8 Hz, 1H), 7.22 (ddd, J = 7.3, 4.8, 1.3 Hz, 1H),
2.44 (s, 1H); *C NMR (101 MHz, CDCl3) & 155.9, 149.8, 138.9, 138.7,
136.9, 131.1, 130.8, 125.7, 125.6, 122.5, 120.4, 22.9.

2-(3-bromo-4-methoxyphenyl)pyridine (2¢)

B
N
Br
_0O

| N
_N
Br
| X
_N
Br
Cl

'H NMR (400 MHz, CDCLs) & 8.60 (dd, J = 3.5 Hz, 1.2Hz 1H), 8.22 (d, J
= 2.3 Hz, 1H), 7.85 (dd, J = 8.6, 2.3 Hz, 1H), 7.63 (td, J = 7.7, 1.9 Hz,
1H), 7.56 (d, J = 7.9 Hz, 1H), 7.15 — 7.09 (m, 2H), 6.90 (d, J = 8.6 Hz,
1H), 3.86 (s, 4H); 3C NMR (101 MHz, CDCls) § 156.5, 155.56, 149.6,
136.8, 133.2, 131.8, 127.0, 122.0, 119.8, 112.1, 111.8, 56.3.

2-(3-Bromo-2-methylphenyl)pyridine (2d)

colorless oil, procedure B and 48 h, 38% (47 mg), 'H NMR (400 MHz,
CDCls) 5 8.74 (d, J = 4.5 Hz, 1H), 7.81 (td, J = 7.7, 1.8 Hz, 1H), 7.65 (dd, J
= 8.0, 1.4 Hz, 1H), 7.40 (d, J = 7.8 Hz, 1H), 7.37 — 7.30 (m, 2H), 7.17 (¢, J
= 7.8 Hz, 1H), 2.42 (s, 3H); 3C NMR (101 MHz, CDCls) & 159.6, 149.4,
142.6, 136.4, 135.8, 132.6, 128.9, 126.98, 126.6, 124.3, 122.1, 20.7.

2-(3-bromo-4-chlorophenyl)pyridine (2¢)

Off-white solid, procedure A, 60% (81 mg), 'H NMR (400 MHz, CDCl;) §
8.69 (ddd, J=4.8, 1.8, 1.0 Hz, 1H), 8.30 (d, /= 2.1 Hz, 1H), 7.87 (dd, J =
8.4,2.1 Hz, 1H), 7.77 (ddd, J = 8.0, 7.4, 1.8 Hz, 1H), 7.69 (dt, J = 8.0, 1.1
Hz, 1H), 7.53 (d, J = 8.4 Hz, 1H), 7.29 — 7.24 (m, 1H); 3*C NMR (101 MHz,
CDCl3) 6 154.96, 150.00, 139.48, 137.14, 135.24, 132.22, 130.65, 126.79,
123.13, 122.99, 120.52. m.p. 60 — 62.
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2-(3-bromo-4-fluorophenyl)pyridine (2f)

_N

Br

_N

Br

Colourless Solid, mp 47-49 °C, procedure A, 53% (67 mg); 'H NMR (400
MHz, CDCIls) 6 8.67 (ddd, J=4.8, 1.8, 0.9 Hz, 1H), 8.23 (dd, J= 6.7, 2.3 Hz,
1H), 7.89 (ddd, /= 8.6, 4.7, 2.3 Hz, 1H), 7.75 (td, J= 7.7, 1.9 Hz, 1H), 7.70 —
7.62 (m, 1H), 7.27 — 7.22 (m, 1H), 7.19 (t, J = 8.4 Hz, 1H); *C NMR (101
MHz, CDCl3) 6 159.7 (d, Jc.r=249.6 Hz), 155.1, 149.9, 6 137.1, 137.0 (d, Jc-
r= 6.0 Hz), 132.3, 127.5 (d, J c.r = 7.5 Hz), 122.7, 120.4, 116.7 (d, J cFr =
22.6 Hz), 109.7 (d, J c.r = 21.1 Hz).

2-bromo-4-(pyridin-2-yl)benzaldehyde (2g)

Off-white solid, procedure A, 51% (66 mg), 'H NMR (400 MHz, CDCls) &
10.38 (d,J=0.7 Hz, 1H), 8.72 (ddd, J=4.8, 1.8, 1.0 Hz, 1H), 8.34 (d, J=
1.6 Hz, 1H), 8.06 — 7.92 (m, 2H), 7.85 — 7.75 (m, 2H), 7.31 (ddd, J = 6.8,
4.8,1.6 Hz, 1H); *C NMR (101 MHz, CDCls) 6 191.6, 154.4, 150.1, 145.9,
137.2,133.3,132.2, 130.1, 127.6, 126.1, 123.7, 121.2.

2-(3-bromophenyl)pyridine (2j)

)
NN
7Y
N.~-N

Br’ i

colorless solid, procedure A, 56% (66 mg), 'H NMR (400 MHz, CDCls) &
8.85 (d, J=4.9 Hz, 2H), 8.67 (t, J = 1.9 Hz, 1H), 8.43 (dt, /= 7.8, 1.4 Hz,
1H), 7.66 (ddd, J=17.9, 2.1, 1.1 Hz, 1H), 7.41 (t, J= 7.9 Hz, 1H), 7.26 (t,J
= 4.8 Hz, 1H); 3C NMR (101 MHz, CDCI3) § 163.4, 157.4, 139.6, 133.7,
131.2,130.2, 126.7, 122.9, 119.6.

2-(3-Bromo-4-methylphenyl)pyrimidine (2k)

colorless solid, procedure A, 62% (77 mg), 'H NMR (400 MHz, CDCl3) &
8.78 (d, J=4.9 Hz, 2H), 8.63 (d, J = 1.8 Hz, 1H), 8.27 (dd, /= 7.9, 1.8 Hz,
1H), 7.34 (d, J = 8.0 Hz, 1H), 7.17 (t, J = 4.8 Hz, 1H), 2.46 (s, 3H); 13C
NMR (101 MHz, CDCls) 6 163.6, 157.4, 140.8, 137.1, 132.1, 131.0, 126.99,
125.5,119.4, 23.1.
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7-bromobenzo[h]quinolone (2h)

Off-white solid, procedure A, 47% (61 mg), '"H NMR (400 MHz, CDCl3) &
9.33 (dt, J = 8.3, 1.0 Hz, 1H), 9.02 (dd, J = 4.4, 1.8 Hz, 1H), 8.26 (dd, J =
9.2, 0.8 Hz, 1H), 8.21 (dd, J = 8.1, 1.8 Hz, 1H), 7.98 (dd, J = 7.6, 1.2 Hz,
1H), 7.79 (d, J = 9.2 Hz, 1H), 7.70 — 7.52 (m, 2H); *C NMR (101 MHz,

CDCL) 6 149.5, 146.2, 136.1, 133.4, 132.4, 132.2, 127.6, 126.9, 126.3,
126.3, 124.3, 122.9, 122.5.

1-(3-bromophenyl)isoquinoline (2i)

X, Colorless oil, procedure A and 24 h, 32% (45 mg), 'H NMR (400 MHz,

O _N CDCI3) 6 8.63 (dd, J=5.7, 1.2 Hz, 1H), 791 (d, J = 8.2 Hz, 1H), 7.79 —
7.66 (m, 2H), 7.66 — 7.47 (m, 5H), 7.41 (d, J = 8.5 Hz, 1H); 3C NMR

O (101 MHz, CDClz) ¢ 157.4, 142.3, 142.2, 136.5, 134.3, 134.3, 134.2,

Br

133.2,132.99, 131.2, 130.6, 127.8, 127.2, 127.0, 121.2.

4-bromo-1-phenyl-1H-pyrazole (21)

2/ ,\N Colourless Solid, procedure A, 66% (74 mg), 'H NMR (400 MHz, CDCl3) &

7.93 (d, J = 0.7 Hz, 1H), 7.68 (s, 1H), 7.66 — 7.62 (m, 2H), 7.48 — 7.43 (m,
@ 2H), 7.35 — 7.29 (m, 1H); *C NMR (101 MHz, CDCls) & 141.4, 139.6,
129.5, 126.96, 118.9, 95.6.

1-(3-Bromophenyl)-1H-pyrazole (31)

</—\\ colorless oil, procedure C and 24 h, 26% (29 mg), 'H NMR (400 MHz,
N’N CDCl3) 6 7.90 (t, J = 2.4 Hz, 1H), 7.72 (d, J = 1.8 Hz, OH), 7.62 (ddd, J =

8.1,2.2, 1.0 Hz, 1H), 7.40 (ddd, J = 8.0, 1.9, 1.0 Hz, 1H), 7.30 (t, J = 8.0 Hz,
1H), 6.47 (t, J = 2.2 Hz, 1H); *C NMR (101 MHz, CDCls) § 141.7, 141.3,
B 130.8, 129.5, 126.9, 123.2, 122.4, 117.6, 108.2.
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1, 3-bis(triethoxysilyl)methyl imidazolium chloride ionic liquid (BTESMICI)
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Figure $28. "H-NMR Spectrum of 1, 3-bis(triethoxysilyl)methyl imidazolium chloride ionic liquid
(BTESMICI) in CDCls.
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Figure S29. '3C-NMR Spectrum of 1, 3-bis(triethoxysilyl)methyl imidazolium chloride ionic liquid
(BTESMICI) in CDCls.
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2-(3-bromophenyl)pyridine

1H NMR, 400 MHz, CDCI3
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Figure S30. "H-NMR Spectrum of isolated pure 2-(3-bromophenyl)pyridine in CDCls.
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Figure $31. "H-NMR Spectrum of isolated pure 2-(3-bromophenyl)pyridine in CDCls (Expanded).
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Figure S32. 3C-NMR Spectrum of isolated pure 2-(3-bromophenyl)pyridine in CDCls.
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Figure S33. '3C-NMR Spectrum of isolated pure 2-(3-bromophenyl)pyridine in CDCl3 (Expanded).
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1H NMR, 400 MHz, CDCI3
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Figure S34. "H-NMR Spectrum of isolated pure 2-(3-bromo-4-methylphenyl)pyridine in CDCls.
Figure $35. "H-NMR Spectrum of isolated pure 2-(3-bromo-4-methylphenyl)pyridine in CDCl3

(Expanded).
EEEE R 38 AR
e Y

3

i
X
_N

Br

Ju i

I

g

z5 ZID 1:5 L‘D DI5

10000

9000

8000

7000

6000

5000

4000

3000

2000

1000

-0




13C NMR, 100 MHz, CDCI3
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Figure S36. '3C-NMR Spectrum of isolated pure 2-(3-bromo-4-methylphenyl)pyridine in CDCla.
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Figure S37. '3C-NMR Spectrum of isolated pure 2-(3-bromo-4-methylphenyl)pyridine in CDCls
(Expanded).
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1H NMR, 400 MHz, CDCI3
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Figure S38. 'TH-NMR Spectrum of isolated pure 2-(3-bromo-4-methoxyphenyl)pyridine in CDCls.

8.61
8,61
8.60
8.59
787
786
7.85
784
66
65
64
7683
62
761
57
55
14
14
13
13
12
1
1
—6.91
~6.89

£
ke
/
%
|

4500

JC.
X:.

L4000
[ / / / / / 3500

J /

L3000

12500

2000

1500

1000

500

A

i Lo L O I T
g = =
+ T

& =2

T T T T T T T T T
90 89 88 87 86 85 84 83 82 81 80 70 78 77 76 75 74 73 72
f1 (ppm)

~
-
~
o
-]
%)
o
e
o
N
o
o

S49



Figure S$39. '"H-NMR Spectrum of isolated pure 2-(3-bromo-4-methoxyphenyl)pyridine in CDCls
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Figure S40. 3C-NMR Spectrum of isolated pure 2-(3-bromo-4-methoxyphenyl)pyridine in CDCls.
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Figure S41. 3C-NMR Spectrum of isolated pure 2-(3-bromo-4-methoxyphenyl)pyridine in CDCls
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1H NMR, 400 MHz, CDCI3
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Figure S42. '"H-NMR Spectrum of isolated pure 2-(3-Bromo-2-methylphenyl)pyridine in CDCls.

Figure S43. '"H-NMR Spectrum of isolated pure 2-(3-Bromo-2-methylphenyl)pyridine in CDCl3
(Expanded).
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13C NMR, 100 MHz, CDCI3
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Figure S44. '3C-NMR Spectrum of isolated pure 2-(3-Bromo-2-methylphenyl)pyridine in CDCls.
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Figure S45. 3C-NMR Spectrum of isolated pure 2-(3-Bromo-2-methylphenyl)pyridine in CDCl3
(Expanded).
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1H NMR, 400 MHz, CDCI3
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Figure S46. "H-NMR Spectrum of isolated pure 2-(3-bromo-4-chlorophenyl)pyridine in CDCls.
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Figure S47. 'H-NMR Spectrum of isolated pure 2-(3-bromo-4-chlorophenyl)pyridine in CDCIz (Expanded).
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13C NMR, 100 MHz, CDCI3
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Figure S48. 3C-NMR Spectrum of isolated pure 2-(3-bromo-4-chlorophenyl)pyridine in CDClIs.
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Figure S49. 3C-NMR Spectrum of isolated pure 2-(3-bromo-4-chlorophenyl)pyridine in CDCls
(Expanded).
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Figure S50. "H-NMR Spectrum of isolated pure 2-(3-bromo-4-fluorophenyl)pyridine in CDClIs.
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Figure S$51. "H-NMR Spectrum of isolated pure 2-(3-bromo-4-fluorophenyl)pyridine in CDCIlz (Expanded).
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Figure $52. 3C-NMR Spectrum of isolated pure 2-(3-bromo-4-fluorophenyl)pyridine in CDCls.
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Figure $53. 3C-NMR Spectrum of isolated pure 2-(3-bromo-4-fluorophenyl)pyridine in CDCl3
(Expanded).
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Figure S54. '"H-NMR Spectrum of isolated pure 2-bromo-4-(pyridin-2-yl)benzaldehyde in CDCla.

Figure S55. '"H-NMR Spectrum of isolated pure 2-bromo-4-(pyridin-2-yl)benzaldehyde in CDCl3
(Expanded).
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13C NMR, 100 MHz, CDCI3
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Figure $56. '3C-NMR Spectrum of isolated pure 2-bromo-4-(pyridin-2-yl)benzaldehyde in CDCls.
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Figure S57. '3C-NMR Spectrum of isolated pure 2-bromo-4-(pyridin-2-yl)benzaldehyde in CDCl3
(Expanded).
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2-(3-bromophenyl)pyridine

1H NMR, 400 MHz, CDCI3
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Figure S58. '"H-NMR Spectrum of isolated pure 2-(3-bromophenyl)pyrimidine in in CDCls.
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Figure $59. "H-NMR Spectrum of isolated pure 2-(3-bromophenyl)pyrimidine in CDCIs (Expanded).
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13C NMR, 100 MHz, CDCI3
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Figure S60. 3C-NMR Spectrum of isolated pure 2-(3-bromophenyl)pyrimidine in CDCls.
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Figure S61. '3C-NMR Spectrum of isolated pure 2-(3-bromophenyl)pyrimidine in CDClI3 (Expanded).
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1H NMR, 400 MHz, CDCI3
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Figure S62. "H-NMR Spectrum of isolated pure 2-(3-Bromo-4-methylphenyl)pyrimidine in CDCls.
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Figure S63. "H-NMR Spectrum of isolated pure 2-(3-Bromo-4-methylphenyl)pyrimidine in CDCl3

(Expanded).
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13C NMR, 100 MHz, CDCI3
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Figure S64. '3C-NMR Spectrum of isolated pure 2-(3-Bromo-4-methylphenyl)pyrimidine in CDCls.
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Figure S65. 3C-NMR Spectrum of isolated pure 2-(3-Bromo-4-methylphenyl)pyrimidine in CDCl3
(Expanded).
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1H NMR, 400 MHz, CDCI3
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Figure $66. "H-NMR Spectrum of isolated pure 7-bromobenzo[h]quinolone in CDCls.
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Figure S67. "H-NMR Spectrum of isolated pure 7-bromobenzo[h]quinolone in CDClIs (Expanded).
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13C NMR, 100 MHz, CDCI3
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Figure S68. '3C-NMR Spectrum of isolated pure 7-bromobenzo[h]quinolone in CDCls.
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Figure S69. 3C-NMR Spectrum of isolated pure 7-bromobenzo[h]quinolone in CDClz (Expanded).
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Figure S70. '"H-NMR Spectrum of isolated pure 1-(3-bromophenyl)isoquinoline in CDCls.

Figure S71. 'H-NMR Spectrum of isolated pure 1-(3-bromophenyl)isoquinoline in CDCIls (Expanded).
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13C NMR, 100 MHz, CDCI3
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Figure S72. 3C-NMR Spectrum of isolated pure 1-(3-bromophenyl)isoquinoline in CDCls.

—157.40
<?4Z%
.22
—136.47

34,

3,

34,

33

32,

—

Br

12119

N

8500

8000

7500

7000

6500

6000

5500

5000

4500

4000

3500

3000

2500

2000

1500

1000

500

léO 1%8 1§5 1é4 1&2 1%0 1&8 1%6 L44 142 150 158 156 154 152 130 1&8
f1 (ppm)

126

124

152

120

118

116

Figure S73. 3C-NMR Spectrum of isolated pure 1-(3-bromophenyl)isoquinoline in CDClIs (Expanded).
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1H NMR, 400 MHz, CDCI3
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Figure S74. "H-NMR Spectrum of isolated pure 4-bromo-1-phenyl-1H-pyrazole in CDCls.
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Figure S75. "H-NMR Spectrum of isolated pure 4-bromo-1-phenyl-1H-pyrazole in CDCIs (Expanded).
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Figure S76. '3C-NMR Spectrum of isolated pure 4-bromo-1-phenyl-1H-pyrazole in CDCls.
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Figure S77. 3C-NMR Spectrum of isolated pure 4-bromo-1-phenyl-1H-pyrazole in CDCIz (Expanded).
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1H NMR, 400 MHz, CDCI3
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Figure S79. "H-NMR Spectrum of isolated pure 1-(3-Bromophenyl)-7H-pyrazole in CDCIz (Expanded).
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13C NMR, 100 MHz, CDCI3
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Figure S80. 3C-NMR Spectrum of isolated pure 1-(3-Bromophenyl)-1H-pyrazole in CDCls.
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Figure S81. 3C-NMR Spectrum of isolated pure 1-(3-Bromophenyl)-1H-pyrazole in CDCls (Expanded).
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Figure S82. Gas-Chromatography Mass Spectroscopy (GC-MS) spectrum of 2-(3-bromophenyl)pyridine
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Figure $S83. Gas-Chromatography Mass Spectroscopy (GC-MS) spectrum of 2-(3-bromo-4-
methylphenyl)pyridine.
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Figure $S84. Gas-Chromatography Mass Spectroscopy (GC-MS) spectrum of 2-(3-bromo-4-
chlorophenyl)pyridine.
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Figure S85. Gas-Chromatography Mass Spectroscopy (GC-MS) spectrum of 2-bromo-4-(pyridin-2-
yh)benzaldehyde.
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Figure S86. Gas-Chromatography Mass  Spectroscopy (GC-MS) spectrum  of  2-(3-
bromophenyl)pyrimidine.
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Figure S87. Gas-Chromatography Mass Spectroscopy (GC-MS) spectrum of 7-bromobenzo[h]quinolone.
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