Supporting Information

Development and antibacterial evaluation of a dopaminemodified curcumin@zinc-based organic framework

Jiayi Qin^b⁺, Haiyan Zhang^a⁺, Xianying Cao^d^{*}, Feng Wen^c^{*}, Ke Jiang^{a,b}^{*}

a Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang, 330004, P. R. China.

b Key Laboratory of Food Nutrition and Functional Food of Hainan Province, School of Food Science and Engineering, Hainan University, Haikou 570228, P. R. China.

c School of Materials Science and Engineering, Hainan University, Haikou 570228, P. R. China.

d Engineering Technology Research Center for Elderly Health Management in Hainan Province, Haikou

571126, PR China

Corresponding author (E-mail: cxying_02@163.com; fwen323@163.com; kejiang@hainanu.edu.cn;)

Fig. S1 The TEM image of CCM@ZIF-8 and CCM@ZIF-8@PDA.

Fig. S2 The UV-vis adsorption of CCM.

Fig. S4 The FTIR spectra of PDA, CCM, ZIF-8, CCM@ZIF-8, and CCM@ZIF-8@PDA.

Fig. S5 The PXRD of CCM@ZIF-8@PDA after immersion in the culture medium for 0.5 d, 1 d, 2 d, 3 d, and 5 d.

Fig. S6 The UV-Vis adsorption spectra of CCM, ZIF-8, CCM@ZIF-8, and CCM@ZIF-8@PDA.

Fig. S7 The comparison of antibacterial performance of different samples with different PDA contents.

CCM (mg)	Abs.	DLC (%)
5	0.408	5.68
10	0.476	6.76
15	0.701	10.36
20	1.000	15.15

 Table. S1 The DLC of CCM from CCM@ZIF-8 samples