Supplementary Materials

Zeolitic Imidazolate Framework-67-Derived Chalcogenides as Electrode Materials for Supercapacitor

Lidong Jiao^a, Mingshu Zhao^{a,*}, Qingyang Zheng^b, Qingyi Ren^a, Zhou Su^a, Min Li^a, Feng Li^a

a. School of Physics, Key Laboratory of Shaanxi for Advanced Functional Materials and Mesoscopic Physics, MOE Key Laboratory for Non-equilibrium Synthesis and Modulation of Condensed Matter, Xi'an Jiaotong University, Xi'an, 710049, Shaanxi, China.

b. Xi'an High-tech Research Institute, 710025 Xi'an, China.

* Corresponding author. Mingshu Zhao

E-mail address: zhaomshu@mail.xjtu.edu.cn (M. Zhao). Tel: +86-13186193932.

Figure S1. A relevant number of publications about ZIF-67 used for supercapacitors in Web of Science Core Collection. Data were taken in March 2025.

Table S1. Summary of the electrochemical characteristics of the pristine ZIF-67

materials in	three-electrode	e measurements.

Electrode Materials	Specific Capacity	Electrolyte	Potential Window (CV)	Capacity Retention	Cyclic stability	Ref.
PANI-ZIF-67-CC	2146 mF cm ⁻² at 10 mV s ⁻¹	3 M KCl	-0.2-1 V (Ag/AgCl)	42% (10 to 100 mV s ⁻¹)		1
PANI-CNT@ZIF-67-CC	3511 mF cm-2 at 10 mV s-1 $$	0.1 M aniline + 3 M KCl	-0.2-1 V (SCE)		83% (1000)	2
Ni/Co-MOF	530.4 F g ⁻¹ at 0.5 A g ⁻¹	1 M LiOH	0-0.5 V (Ag/AgCl)		99.75% (2000)	3
ZIF-PPy-2	554.4 F g ⁻¹ at 0.5 A g ⁻¹	1 M Na ₂ SO ₄	0-0.6 V (Ag/AgCl)	$43.8\%(0.5 \text{ to } 20 \text{ A g}^{\text{-1}})$	90.7% (10000)	4
POAP/ZIF-67	724 F g ⁻¹ at 0.005 mA	0.1 M HClO ₄	-0.5-0.5 V		90% (1000)	5
ZIF-67/rGO	1453 F g ⁻¹ at 4.5 A g ⁻¹	RAE	-0.1-0.5 V (Ag/AgCl)		90.5% (1000)	6
ZIF-67/GO-n	70.76 F g ⁻¹ at 1 A g ⁻¹	6 M KOH	-0.3-0.4 V(SCE)	$65.5\% (1 \text{ to } 20 \text{ A g}^{-1})$	150% (1000)	7
TC-ZIF-67	1756 mF cm ⁻² at 2 mA cm ⁻²	2 M KOH	0-0.55 V (Ag/AgCl)	76% (2 to 50 mA cm ⁻²)	103% (15000)	8
Co/Mn-ZIF	926.25 F g ⁻¹ at 0.5 A g ⁻¹	3 М КОН	0-0.4 V (Hg/HgO)	29% (0.5 to 5 A $g^{\text{-1}}$)	64.1% (1500)	9
MOF-PPy/PDA/BC	$1.71~\mathrm{F~cm^{-2}}$ at 0.4 mA cm^-2	$1 \ M \ H_2 SO_4$	0-0.8 V (SCE)	59.8% (0.4 to 20 mA cm ⁻²)	71.04% (5000)	10
PMo10V2@ZIF-67	475 F g^{-1} at 2 A g^{-1}	3 М КОН	0-0.4 V (SCE)	76% (2 to 10 A g ⁻¹)		11
ZIF-67@Amorphous ZIF	1176.9 F g ⁻¹ at 1 A g ⁻¹	6 M KOH	0-0.6 V (SCE)	52.4% (1 to 20 A $g^{\text{-1}}$)	98% (1000)	12
Ni ₃₃ /ZIF-67/rGO ₂₀	304.2 F g ⁻¹ at 1 A g ⁻¹	$1 \ M \ H_2 SO_4$	-0.2 0.8 V (Ag/AgCl)		98.9% (1000)	13
ZIF-67/PEDOT	106.8 F g ⁻¹ at 1 A g ⁻¹	$1 \ M \ H_2 SO_4$	0-0.5 V (Ag/AgCl)	46.7% (5 to 100 mV s ⁻¹)	85% (2000)	14
NiV LDH@ZIF-67	830.6 F g ⁻¹ at 1 A g ⁻¹	6 M KOH	0-0.6 V (Ag/AgCl)	$61.6\% (1 \text{ to } 20 \text{ A g}^{-1})$		15
ZIF-67@PANI	2497 F g ⁻¹ at 1 A g ⁻¹	1 M KOH	-0.5-0.7 V (Ag/AgCl)	57.7% (1 to 10 A $g^{\text{-1}}$)	92.3% (9000)	16
M-ZIF-67@LDH	597.6 F g^{-1} at 0.5 A g^{-1}	3 М КОН	0-0.6 V (Hg/HgO)	$68\% (0.5 \text{ to } 10 \text{ A g}^{-1})$	92% (5000)	17
$NH_4Co_xNi_{1\text{-}x}F_3$	490.4 F g ⁻¹ at 20 mV s ⁻¹	3 М КОН	-0.3-0.7 V (Ag/AgCl)	94% (2.5 to 4 A g ⁻¹)		18
MnFe ₂ O ₄ /CNT/ZIF	389 F g ⁻¹ at 1 A g ⁻¹	3 М КОН	-0.55-0.3 V (Ag/AgCl)	$1\% (0.5 \text{ to } 10 \text{ A g}^{-1})$	107% (500)	19
$\alpha\text{-CoMn}_{0.05}(\text{OH})_x/\text{ZIF-67}$	689 F g ⁻¹ at 0.5 A g ⁻¹	3 М КОН	0-0.5 V (Hg/HgO)			20
Co-ZIF-R3	86 C g $^{-1}$ at 0.25 A g $^{-1}$	1 M KOH	-0.1-0.45 V (Ag/AgCl)		85% (1000)	21
N-ZIF-67.rGO	962 F g ⁻¹ at 20 mA cm ⁻²	2 M KOH	0-0.6 V (SCE)		97% (1000)	22
ZIF-7@ZF-67	518.9 F g ⁻¹ at 1 A g ⁻¹	6 M KOH	0-0.4 V (Ag/AgCl)	74.2% (1 to 20 A g^{-1})	99.6% (4000)	23
$NH_4Co_xNi_{1\text{-}x}F_3$	735.7 F $g^{\text{-1}}$ at 20 mV $s^{\text{-1}}$	3 М КОН	-0.15-0.55 V (Ag/AgCl)	86% (10 to 50 mV s ⁻)		24
CFP/ZIF-L/PANI	730 mF cm $^{-2}$ at 10 mV s $^{-1}$	0.1 M aniline + 3 M KCl	-0.2-0.8 V (Ag/AgCl)		82.6% (3000)	25
ZADV@LSC	250.1 F g ⁻¹ at 0.8 A g ⁻¹	1 M Na ₂ SO ₄	-0.2-0.6 V (Ag/AgCl)			26
Graphene@ZIF-67/PANI-NT	20.4167 F $g^{\text{-1}}$ at 0.5 mA $\text{cm}^{\text{-2}}$	1 M Na ₂ SO ₄	0-0.8 V (Ag/AgCl)	36.7% (0.05 to 1 mA cm ⁻²)	75% (3000)	27
ZIF-67/rGO/NiPc	860 F g ⁻¹ at 1 A g ⁻¹	3 М КОН	0-0.8 V (SCE)	47.4% (1 to 10 A g^{-1})	95.1% (5000)	28
ZIF-67@ZIF-9	300 F g ⁻¹ at 3 A g ⁻¹	6 M KOH	-0.05-0.45 V (Ag/AgCl)	54.7% (3 to 100 A $g^{\text{-1}}$)		29

ZIF-90@ZIF-67	1357.8 F g ⁻¹ at 1 A g ⁻¹	6 M KOH	0-0.6 V (SCE)	55.4% (1 to 20 A g ⁻¹)	90.1% (4000)	30
CPYF-ZIF-67-PPy	2308.8mF cm ⁻² at 0.5mA cm ⁻²	1 M Na ₂ SO ₄	0-0.8 V (Ag/AgCl)	67.1% (1 to 15 A g ⁻¹)	87.6% (10000)	31
ST@ZIF-67/MnO2	278.6 F g ⁻¹ at 0.5 A g ⁻¹	1 M Na ₂ SO ₄	0-1 V (SCE)	70.3% (0.5 to 10 A $g^{\text{-1}})$	80.3% (10000)	32
Co-ZIF-67@NiMo-LDH	1734 F g ⁻¹ at 1 A g ⁻¹	3 M KOH	0-0.5 V (SCE)	80% (1 to 10 A g ⁻¹)	88% (5000)	33
Ru/ZIF-67	1503.33 F g ⁻¹ at 1 A g ⁻¹	1 M KOH	0-0.6 V (Hg/HgO)			34
NiCo-MOF@CoOOH@V2O5	$605.49\ F\ g^{1}$ at 0.5 A g^{1}	3 М КОН	0-0.5 V (Hg/HgO)	51.6% (0.5 to 20 A $g^{\text{-1}})$		35
ZIF-67/LIG	135.6 mF cm ⁻² at 1 mA cm ⁻²	1 M Na ₂ SO ₄	-0.25-0.75 V (SCE)	51.4% (1 to 5 mA cm ⁻²)		36
NiTe/ZIF-67	1521 F g ⁻¹ at 1 A g ⁻¹	1 M KOH	0-0.6 V (SCE)		93.5% (5000)	37
ZIF-67@Cu ₂ CoO ₃	117.5 mAh g ⁻¹ at 1 mA cm ⁻²	1 M KOH	0-0.5 V (Ag/AgCl)		83.4% (25000)	38
VAGC/ZIF-67	1674 F g ⁻¹ at 2 A g ⁻¹	6 M KOH	-0.2-0.6 V (Hg/HgO)	38.9% (2 to 10 A g ⁻¹)	67% (4500)	39
Ni-BTC@ZIF-67	1063 F g $^{-1}$ at 4 A g $^{-1}$	5 M KOH	0-0.48 V (Ag/AgCl)		98% (5500)	40
ZIF8@ZIF67	1521 F g ⁻¹ at 1 A g ⁻¹	1 M KOH	0.1-0.6 V (Hg/HgO)	38.5% (1 to 13 A g ⁻¹)		41
ZIF-67	377.88 F g ⁻¹ at 2 A g ⁻¹	6 M NaOH	0-0.55 V (Ag/AgCl)	54.7% (2 to 20 A g ⁻¹)	118.2% (5000)	42
ZnO/ZIF-67	2908 F g ⁻¹ at 1 A g ⁻¹	2 M KOH	-0.3-0.9 V (Ag/AgCl)		95.3% (5000)	43
A-ZCo@NF	5603 mF cm ⁻² at 5 mA cm ⁻²	3 M KOH	0-0.5 V (Hg/HgO)	78.6% (5 to 50 mA cm ⁻²)	89.18% (10000)	44
Co-ZIF-67/Ni-CNT@NiLa-LDH	1710 F g ⁻¹ at 1 A g ⁻¹	6 M KOH	0-0.5 V (Hg/HgO)	38.1% (1 to 10 A g ⁻¹)	73.3% (10000)	45
G/PANI-NT/ZNC	62.1 C g ⁻¹ at 10 mV s ⁻¹	1 M Na ₂ SO ₄	0-0.8 V (Ag/AgCl)	57.6% (10 to 100 mV s ⁻¹)	92.2% (8000)	46
ZIF-67/NiS	1157.1 F g ⁻¹ at 10 A g ⁻¹	1 M KOH	-1-1 V (Ag/AgCl)		87% (4000)	47
S-Ni/ZIF-67@RGO	1142.3 F g ⁻¹ at 1 A g ⁻¹	1 M KOH	0-0.5 V (Ag/AgCl)	46.6% (1 to 20 A g^{-1})	90.8% (3000)	48
CoMn-LDH/ZIF-67/PANI	1048 F g ⁻¹ at 1 A g ⁻¹	6 M KOH	0-0.6 V (Hg/HgO)	$61.07\%(1\mbox{ to }10\mbox{ A g}^{\mbox{-1}})$	80.5% (5000)	49
ZF-NS/g-C ₃ N ₄	$625\ F\ g^{\text{-1}}$ at 3 A $g^{\text{-1}}$	1 M KOH	-1-0.45 V (Ag/AgCl)	62.4% (3 to 15 A g ⁻¹)	142% (7000)	50
ZIF-67	472 F $\mathrm{g}^{\text{-1}}$ at 3 A $\mathrm{g}^{\text{-1}}$	6 M NaOH	0-0.55 V (Ag/AgCl)	76.5% (3 to 12 A g ⁻¹)	91.6% (5000)	51
ZIF-8@ZIF-67	263.43 F g ⁻¹ at 0.5 A g ⁻¹	$1 \text{ M H}_2 \text{SO}_4$	0-1 V (Ag/AgCl)		112% (4500)	52
ZIF-67/CFC	1470 mF cm ⁻² at 1 mA cm ⁻²	1 M LiOH	0-0.6 V (Hg/HgO)	89% (1 to 8 mA cm ⁻²)	91% (10000)	53
V ₂ O ₅ @ZIF-67	913.06 F g ⁻¹ at 6 A g ⁻¹	6 M KOH	0-0.5 V (Hg/HgO)	52% (6 to 40 A g ⁻¹)	78.37% (10000)	54
CCNF-20@MOF	361.5 C g ⁻¹ at 0.5 A g ⁻¹	3 M KOH	0-0.7 V (Hg/HgO)	$32.27\%(0.5$ to 10 A $g^{1})$		55
CoTe/ZIF-67	2021 F g ⁻¹ at 1 A g ⁻¹	6 M KOH	0-0.6 V (SCE)	60% (1 to 20 A g ⁻¹)	95% (10000)	56

Table S2. Summary of the electrochemical characteristics of the ZIF-67-derived

1	1	•	.1	1 , 1	
carbon	materiale	111	three_e	lectrode	measurements
caroon.	materials	ш	unce-c	ICCHOUC	measurements.

Electrode Materials	Specific Capacity	Electrolyte	Potential Window (CV)	Capacity Retention	Cyclic stability	Ref.
NPC-800	238 F g ⁻¹ at 20 mV s ⁻¹	0.5 M H ₂ SO ₄	0-0.8 V (Ag/AgCl)	72% (20 to 200 mV s ⁻¹)		57
Carbon-ZS	285.8 F g ⁻¹ at 0.1 A g ⁻¹	6 M KOH	-1-0 V (Hg/HgO)	72.8% (0.1 to 2 A $g^{\text{-1}}$)	97.8% (1000)	58
Cobalt/carbon composites	512 F g ⁻¹ at 1 A g ⁻¹	1 M KOH	0.5-1.1 V (SCE)	46.4% (1 to 20 A $g^{\text{-1}}$)	87.5% (1000)	59
Carbon-ZSR	305 F g ⁻¹ at 1 A g ⁻¹	$1 \text{ M} \text{H}_2 \text{SO}_4$	-0.2-0.8 V (SCE)	75% (1 to 10 A g ⁻¹)	98.4% (5000)	60
HCN-650	343 F g ⁻¹ at 10 mV s ⁻¹	6 M KOH	-0.8-0.2 V (Ag/AgCl)	58% (0.5 to 2 A $g^{\text{-1}}$)		61
NiCo-C-1	2471 F g ⁻¹ at 1 A g ⁻¹	2 M KOH	0-0.7 V (Ag/AgCl)		88% (5000)	62
CoNi-carbon	236 F g ⁻¹ at 1 A g ⁻¹	6 M KOH	-0.2-0.3 V (Ag/AgCl)	50.8% (1 to 10 A $g^{\text{-1}}$)	94.3% (1000)	63
Co ₃ O ₄ /NC-90-15	1.22 F cm ⁻² at 0.5 mA cm ⁻²	6 M KOH	0-0.6 V (Hg/HgO)	60% (0.5 to 20 mA cm ⁻²)	98.2% (4000)	64
NCMO	389 F g ⁻¹ at 1 A g ⁻¹	1 M Na ₂ SO ₄	0-1.2 V (Hg/HgO)	66% (1 to 15 A $g^{\text{-1}}$)	93.8% (10000)	65
NSCPCNF	396 F g ⁻¹ at 1 A g ⁻¹	$1 \mathrm{M} \mathrm{H}_2 \mathrm{SO}_4$	0-1 V (Ag/AgCl)	$67\% (1 \text{ to } 20 \text{ A g}^{-1})$		66
RPCF/CC	1049 mF cm ⁻² at 12 mA cm ⁻²	1 M Na ₂ SO ₄	-1.5-0 V (SCE)	69% (12 to 60 mA cm ⁻²)	98.4% (6000)	67
Fe ₃ O ₄ /C	868.7 C g ⁻¹ at 2 A g ⁻¹	3 M KOH	-0.9-0.45 V (Hg/HgO)	52.5% (2 to 20 A $g^{\text{-1}}$)	88.8% (3000)	68
NFHPC	305 F g ⁻¹ at 1 A g ⁻¹	3 M KOH	-1-0 V (Hg/HgO)	76.7% (1 to 20 A $g^{\text{-1}}$)	95.1% (5000)	69
ZIF-67-C-KOH	262.4 F g ⁻¹ at 1 A g ⁻¹	1 M KOH	-1-0 V (Hg/HgO)	$82\%(1$ to 10 A $g^{1})$		70
CCSs	320 F g ⁻¹ at 1 A g ⁻¹	$2 \text{ M} \text{H}_2 \text{SO}_4$	0-0.8 V (SCE)	74% (1 to 10 A g ⁻¹)	106% (10000)	71
Co@C	652 F g ⁻¹ at 1 A g ⁻¹	3 M KOH	-0.6-0.4 V (Hg/HgO)		97.1% (20000)	72
N-doped carbon	277 C g $^{-1}$ at 1 A g $^{-1}$	6 M KOH	-1-0 V (Hg/HgO)			73
MnO ₂ /Carbon-CNTs	508.8 F g ⁻¹ at 0.5 A g ⁻¹	2 M KOH	-0.25-0.55 V	52.6% (0.5 to 10 A $g^{\text{-1}})$	90% (5000)	74
N-Co/CNF	433 F g ⁻¹ at 0.2 A g ⁻¹	$1 \text{ M} \text{H}_2 \text{SO}_4$	0-0.5 V (SCE)	70% (0.2 to 1 A $g^{\text{-1}}$)	84% (3000)	75
HT-Ag/ZIF(H)	135.5 C g ⁻¹ at 1 A g ⁻¹	6 M KOH	-0.1-0.5 V (SCE)	66% (1 to 15 A g ⁻¹)		76
NF@CoO@Co/N-C	1693.4 F g ⁻¹ at 2 mA cm ⁻²	6 M KOH	0-0.5 V (Hg/HgO)	91.3% (2 to 20 mA cm ⁻²)		77
Gr-CNT@Co	1108 F g ⁻¹ at 1 A g ⁻¹	2 M KOH	0-0.7 V (Hg/HgO)	$81\%(1$ to 10 A g $^{-1})$	75% (6000)	78
C@ZIF-67-600	1044.8 F g ⁻¹ at 1 A g ⁻¹	3 M KOH	0-0.5 V (Hg/HgO)	$40\%(1 \text{ to } 20 \text{ A g}^{\text{-1}})$	89% (30000)	79
rGO/NPC-10	190 F g ⁻¹ at 0.5 A g ⁻¹	$1 \text{ M H}_2 \text{SO}_4$	0-1 V (Ag/AgCl)	$83.6\%(0.5\ to\ 5\ A\ g^{\text{-1}})$	97.2% (2500)	80
NC@GC/CNTs		1 M NaCl	-1-0 V (Ag/AgCl)			81
NiS@Co-NC	1116.6 F g ⁻¹ at 1 A g ⁻¹	6 M KOH	0-0.5 V (SCE)	71.8% (1 to 8 A g^{-1})	90.177% (5000)	82
N-Ti ₃ C ₂ T _x /C/CuS	1205.8 F g ⁻¹ at 1 A g ⁻¹	1 M KOH	-1- 0.55 V (Hg/HgO)			83
g-C ₃ N ₄ @ZIF-67	657 F g $^{-1}$ at 1 A g $^{-1}$	2 M KOH	-0.01-0.55 V (Ag/AgCl)	$40.6\%(1 \text{ to } 20 \text{ A g}^{\text{-1}})$	90% (3500)	84
CAT@ZIF-67-NC	133.4 F g ⁻¹ at 5 mV s ⁻¹	6 M KOH	-0.8-0 V (Ag/AgCl)	58% (5 to 200 mV s $^{-1})$		85
CuFe/N-C@Co/N-CNTs@GO	493 F g ⁻¹ at 1 A g ⁻¹	1 M KOH	0-0.6 V (Ag/AgCl)	51.9% (1 to 10 A $g^{\text{-1}}$)		86
Carbonized Wood@ZIFs	5155.3 mF cm ⁻² at 2.5mA cm ⁻²	3 M KOH	-0.8-0 V (Ag/AgCl)	47.3% (2.5 to 20 mA cm ⁻²)		87
Bi ₂ S ₃ /C	419 F g ⁻¹ at 1 A g ⁻¹	2 M KOH	-1-0 V (Hg/HgO)		72.2% (1000)	88
CoMnO _x @ZIFC	963 F g ⁻¹ at 1 A g ⁻¹	2 M KOH	-0.2-0.6 V (Ag/AgCl)	63.8% (1 to 10 A g ⁻¹)	93.72% (1000)	89
NC-VG-CC	201 F g^{-1} at 5 A g^{-1}	2 M KOH	-1-0 V (Hg/HgO)	$60\% (5 \text{ to } 50 \text{ A g}^{-1})$		90
NiCo-LDH@C	2210.6 F g ⁻¹ at 1 A g ⁻¹	2 M KOH	0-0.6 V (SCE)	$88.8\% (1 \text{ to } 10 \text{ A g}^{-1})$	86.3% (10000)	91

CNS/CNP-2	588 F g ⁻¹ at 1 A g ⁻¹	3 М КОН	0-0.55 V (Hg/HgO)		94% (8000)	92
Co@NPC/MX	1605 F g $^{\text{-1}}$ at 5 mV s $^{\text{-1}}$	$3 \text{ M} \text{H}_2 \text{SO}_4$	-0.6-0.25 V (Ag/AgCl)	$66\%(5 \mbox{ to } 100 \mbox{ mV s}^{-1})$	94.5% (5000)	93
CZIF-67-CNTs	103.3 F g ⁻¹ at 0.2 A g ⁻¹	2 M ZnSO ₄	0.3-1.8 V (Zn)		74% (2000)	94
CNF@CoNi(1:4)S	617.78 F g $^{-1}$ at 0.5 A g $^{-1}$	3 М КОН	0-0.7 V (Hg/HgO)	$58.27\%~(0.5~to~5~A~g^{1})$	71.94% (1000)	95
Co ₄ N/C	312.96 F g ⁻¹ at 1.5 A g ⁻¹	$1 \mathrm{M} \mathrm{H}_2 \mathrm{SO}_4$	-0.8-0 V (Ag/AgCl)	$38.2\%(1.5 \text{ to } 6 \text{ A g}^{-1})$		96
Cu ₂ S/C@NiMnCe-LDH/CF	5176.4 mF cm ⁻² at 2 mA cm ⁻²	6 M KOH	0-0.5 V (Hg/HgO)		84.11% (8000)	97
bamboo@ZIF-67	24.7 F cm ⁻² at 1 mA cm ⁻²	6 M KOH	-1-0 V (Hg/HgO)	70.7% (5 to 30 mA cm ⁻²)	90.5% (50000)	98

Table S3. Summary of the electrochemical characteristics of the ZIF-67-derived

hydroxides	materials	in three-	electrode	measurements.

Electrode Materials	Specific Capacity	Electrolyte	Potential Window (CV)	Capacity Retention	Cyclic stability	Ref.
Ni-Co LDH-3	790 C g ⁻¹ at 2 A g ⁻¹	1 M KOH	-0.2-0.65 V (Hg/HgO)	51.2% (1 to 10 A g ⁻¹)	82.9% (1000)	99
NCLDH@CNTs	916.8 C g ⁻¹ at 1 A g ⁻¹	6 M KOH	-0.2-0.65 V (Hg/HgO)	$82.7\%~(1~to~10~A~g^{1})$	79.0% (4000)	100
rGO@NiClAl-LDHs	2291.6 F g ⁻¹ at 1 A g ⁻¹	6 M KOH	-0.2-0.6 V (SCE)		92% (2000)	101
HIH-LDHs	156.4 mAh g ⁻¹ at 5 A g ⁻¹	1 M KOH	0-0.5 V (Ag/AgCl)	$70\%~(5~to~80~A~g^{1})$	73.4% (10000)	102
H-NiCo LDH@ACC	3060 mF cm ⁻² at 1 mA cm ⁻²	1 M KOH	0-0.5 V (Ag/AgCl)	70% (1 to 80 mA cm ⁻²)	99% (10000)	103
NiCoMn-OH	1654.5 F g ⁻¹ at 1 A g ⁻¹	3 M KOH	-0.1-0.6 V (SCE)	$58.5\%(1 \text{ to } 30 \text{ A g}^{\text{-1}})$	70.2% (2500)	104
α-Co/Ni(OH)2@Co3O4-70	1000 F g ⁻¹ at 1 A g ⁻¹	6 M KOH	0.1-0.6 V (Ag/AgCl)	74% (1 to 10 A $g^{\text{-1}}$)	72.34% (8000)	105
a-Co/Ni(OH)2@CQDs-X	700 C $g^{\text{-1}}$ at 1 A $g^{\text{-1}}$	6 M KOH	0.97-1.47 V (Hg/HgO)	$80\%(1\mbox{ to }10\mbox{ A g}^{\mbox{-}1})$	79.93% (10000)	106
Ni-CCH@MnNiCo-OH	1029.3 C g ⁻¹ at 1 A g ⁻¹	1 M KOH	-0.2-0.7 V (Hg/HgO)	62.4% (1.5 to 25 mA cm ⁻²)	88% (3000)	70
Ni-Co LDH/rGO/NF	2505 F g ⁻¹ at 1 A g ⁻¹	2 M KOH	0-0.5 V (Hg/HgO)	$81\%~(1~to~20~A~g^{1})$	54.7% (1000)	107
CoNi-LDH	1877 F g ⁻¹ at 1 A g ⁻¹	6 M KOH	-0.2-0.45 V (Hg/HgO)	77.14% (1 to 10 A $g^{\text{-1}}$)	99.89% (5000)	108
(NiCo-LDH)S _{HH}	1765 F g ⁻¹ at 1 A g ⁻¹	6 M KOH	0-0.4 V (Hg/HgO)	69% (1 to 10 A g ⁻¹)	86% (5000)	109
OCS/NiCo-LDH@Ni foam	1784 F g ⁻¹ at 1 A g ⁻¹	3 М КОН	-0.3-0.95 V (Hg/HgO)	41% (1 to 10 A g ⁻¹)	83.2% (6000)	110
PPy/Ni-Co LDH-X	1858.3 F g ⁻¹ at 1 mA cm ⁻²	1 M KOH	0-0.6 V (SCE)	65% (1 to 20 mA cm ⁻²)	47% (100)	111
α-Co(OH) ₂	87.1 mAh g ⁻¹ at 1 A g ⁻¹	6 M KOH	0-0.55 V (Hg/HgO)	77% (1 to 20 A $g^{\text{-1}}$)	100% (20000)	112
PNT@NiCo-LDH	1448.2 F g ⁻¹ at 1 A g ⁻¹	6 M KOH	0-0.5 V (Hg/HgO)	44.8% (1 to 20 A $g^{\text{-1}}$)		113
GO@Co(OH)2/PANI	1014 F g ⁻¹ at 1 A g ⁻¹	6 M KOH	0-0.6 V (SCE)	61% (1 to 10 A g ⁻¹)	80% (20000)	114
MXene/NiCoZDH	877 F g ⁻¹ at 1 A g ⁻¹	6 M KOH	0-0.45 V (Hg/HgO)	79.1% (1 to 10 A g^{1})	90.9% (30000)	115
CCO/Co-Ni-Mn LDH	2995.56 F g ⁻¹ at 1 A g ⁻¹	2 M KOH	-0.1-0.6 V (SCE)	71.9% (1 to 10 A $g^{\text{-1}}$)	91.8% (5000)	116
hollow Ni Co-LDH	1141.1 F g ⁻¹ at 1 A g ⁻¹	6 M KOH	0-0.5 V (Hg/HgO)	$70.1\%(1 \text{ to } 20 \text{ A g}^{\text{-1}})$	93.8% (5000)	117
HA-NiCo-LDH	1083 C g $^{-1}$ at 0.5 A g $^{-1}$	6 M KOH	0-0.4 V (SCE)	52% (0.5 to 20 A $g^{1})$	77% (10000)	118
α -Ni _x Co _(1-x) (OH) ₂	2329.2 F g ⁻¹ at 1 A g ⁻¹	2 M KOH	-0.2-0.6 V (SCE)	77% (1 to 20 A $g^{\text{-1}}$)	80.4% (1000)	119
NiCo-LDH@MOF	723 C g ⁻¹ at 1 A g ⁻¹	2 M KOH	0-0.6 V (Hg/HgO)	$66\%(1\mbox{ to }30\mbox{ A g}^{\mbox{-}1})$	72.5% (5000)	120
CuBr2@NCC-LDH/CF	5460 mF cm ⁻² at 2 mA cm ⁻²	6 M KOH	0.1-0.5 V (Hg/HgO)	88% (2 to 50 mA cm ⁻²)	88% (5000)	121
Ni-Co LDH	2369 F g ⁻¹ at 0.5 A g ⁻¹	2 M KOH	0-0.6 V (Hg/HgO)	$78.5\%~(0.5$ to 10 A g ^-1)		122
NC-LDH/PNT	1280 F g ⁻¹ at 1 A g ⁻¹	2 M KOH	0-0.6 V (Hg/HgO)	$65\%(1 \text{ to } 20 \text{ A g}^{\text{-1}})$		123
Ni ₂ CoMn ₁ -LDH	1634.4 F g ⁻¹ at 0.5 A g ⁻¹	3 М КОН	0-0.55 V (Hg/HgO)	$63.6\%~(0.5~to~20~A~g^{1})$	73.1% (2000)	124
N-GQD/H-NiCo-LDH	2347 F g ⁻¹ at 1 A g ⁻¹	2 M KOH	0-0.7 V (Hg/HgO)	$82\%(1\mbox{ to }10\mbox{ A g}^{\mbox{-}1})$	81.1% (2000)	125
NiCo-LDH-210	2203.6 F g^{1} at 2 A g^{1}	3 М КОН	0-0.55 V (Hg/HgO)	$86.8\%(2 \text{ to } 10 \text{ A g}^{\text{-1}})$	76.5% (2000)	126
NiCo-LDH-S/PNTs	1554.7 F $\mathrm{g}^{\text{-1}}$ at 7 A $\mathrm{g}^{\text{-1}}$	3 М КОН	-0.1-0.5 V (Ag/AgCl)	95.8% (7 to 11 A g ⁻¹)		127
Co-Mn LDHs	714.7 F g $^{-1}$ at 0.5 A g $^{-1}$	1 M KOH	-0.1-0.6 V (SCE)	$67.4\%~(0.5~to~10~A~g^{1})$	91.2% (4000)	128
Ni@NC@NiCo-LDH	1761.8 F g ⁻¹ at 1 A g ⁻¹	6 M KOH	0-0.6 V (Hg/HgO)	61% (1 to 15 A g ⁻¹)	89.47% (20000)	129
NiCoMn-LDH/C	888.3 C g ⁻¹ at 1 A g ⁻¹	2 M KOH	0-0.6 V (Hg/HgO)	$85.16\% (1 \text{ to } 10 \text{ A g}^{-1})$	86.76% (5000)	130
V2CTx@NiCoMn-OH-20	827.45 C g $^{-1}$ at 1 A g $^{-1}$	3 M KOH	0-0.5 V (Hg/HgO)	85.32% (1 to 10 A g ⁻¹)	88.44% (10000)	131
ZIF-67@Ni-salicylate	1493 F g ⁻¹ at 1 A g ⁻¹	6 M KOH	0-0.5 V (Hg/HgO)	$86.8\% (1 \text{ to } 40 \text{ A g}^{-1})$	53.2% (5000)	132
NiCo-LDH/rGO-30	829 C g ⁻¹ at 1 A g ⁻¹	2 M KOH	0-0.6 V (SCE)	51% (1 to 8 A g ⁻¹)	69% (2500)	133

PEDOT@NiCo-LDH/CC	1508 F g ⁻¹ at 1 A g ⁻¹	1 M KOH	0-0.5 V (Hg/HgO)	71.9% (1 to 20 A g ⁻¹)	90.1% (10000)	134
MnCoNi-LDH	2254 F g ⁻¹ at 1 A g ⁻¹	6 M KOH	0-0.6 V (Hg/HgO)	$69.2\% (1 \text{ to } 20 \text{ A g}^{-1})$	91.53% (5000)	135
INPC/NiCo-LDH	1714 F g $^{-1}$ at 0.5 A g $^{-1}$	6 M KOH	0-0.5 V (Hg/HgO)	$64\%(0.5 \text{ to } 10 \text{ A g}^{\text{-1}})$	86.1% (5000)	136
CuO@NiCo-LDH/CF	5607 mF cm ⁻² at 1 mA cm ⁻²	2 M KOH	-0.1-0.6 V (SCE)	88.3% (1 to 10 mA cm ⁻²)	93.1% (5000)	137
CoNi@ZIF-LDH	1488 F g ⁻¹ at 1 A g ⁻¹	2 M KOH	0-0.6 V	55.9% (1 to 20 A $g^{\text{-1}}$)	83.87% (3000)	138
Ni1CoCu0.5-OH	1122.97 F g $^{-1}$ at 1 A g $^{-1}$	6 M KOH	0-0.6 V (Hg/HgO)	$85.1\% (1 \text{ to } 20 \text{ A g}^{-1})$	92.69% (10000)	139
NiCo-LDH/AgNWs/Cotton	823.9 mF cm ⁻² at 1 mA cm ⁻²	1 M KOH	0-0.4 V (Hg/HgO)		77% (1000)	140
CoFe-LDH	1824 F g ⁻¹ at 1 A g ⁻¹	3 М КОН	0-0.5 V (Hg/HgO)	$82\%(1$ to 5 A g^-1)	91% (5000)	141
NiCo-LDH@HOS	1100 mF cm ⁻² at 2 mV s ⁻¹	3 М КОН	0-0.5 V (Ag/AgCl)	54.5% (2 to 100 mV s $^{-1}$)		142
Mo-doped NiCo-LDH	1368.4 C g ⁻¹ at 1 A g ⁻¹	2 M KOH	0-0.6 V (SCE)	$88.4\%(1 \text{ to } 10 \text{ A g}^{\text{-1}})$	88.8% (10000)	143
MnCoNi LDH@CoNi LDH	2126.7 F g $^{\text{-1}}$ at 0.5 A g $^{\text{-1}}$	6 M KOH	0-0.5 V (Hg/HgO)	75.7% (0.5 to 5 A g ⁻¹)		144
IPC/NiCoMn-LDH	2236 F g ⁻¹ at 1 A g ⁻¹	6 M KOH	0-0.5 V (Hg/HgO)	$65.3\% (1 \text{ to } 10 \text{ A g}^{-1})$	85.9% (5000)	145
NMC-LDH/ZnO@CC	9258 mF cm ⁻² at 2 mA cm ⁻²	6 M KOH	-0.05-0.55 V (Hg/HgO)	61.5% (2 to 20 mA cm ⁻²)	87.5% (5000)	146
L-CoNi-LDH@MXene	1420 F g ⁻¹ at 1 A g ⁻¹	6 M KOH	0-0.5 V (Hg/HgO)	64.1% (1 to 20 A $g^{\text{-1}}$)	94.2% (5000)	147
ZnNiCo-LDH	1908 F g ⁻¹ at 1 A g ⁻¹	6 M KOH	0-0.75 V (Hg/HgO)	73.4% (1 to 10 A g ⁻¹)	76% (2000)	148
O _V IS-LDH	1111 C g ⁻¹ at 1 A g ⁻¹	3 М КОН	0-0.6 V (Hg/HgO)		88.78% (10000)	149
CoNi ₃ Mn ₁ -OH/CC	955.7 C g ⁻¹ at 1 A g ⁻¹	1 M KOH	0-0.6 V (Hg/HgO)	91.1% (1 to 10 A $g^{\text{-1}}$)	85% (5000)	150
CoCu@NiCo-LDH	18.71 F cm ⁻² at 3 mA cm ⁻²	6 M KOH	-0.2-0.7 V (Hg/HgO)	87.3% (3 to 50 mA cm ⁻²)	77.8% (5000)	151

Electrode Materials	Specific Capacity	Electrolyte	Potential Window (CV)	Capacity Retention	Cyclic stability	Ref.
Ni _x Co _{1-x} P	548 C g ⁻¹ at 1 A g ⁻¹	2 M KOH	0-0.6 V(SCE)	66.2% (1 to 40 A g ⁻¹)	86% (3000)	152
ZIF-67-LDH-CNP-110	1616 F g ⁻¹ at 1 A g ⁻¹	6 M KOH	-0.15-0.35 V (Ag/AgCl)	80.32% (1 to 10 A g ⁻¹)	72.46% (2000)	153
CoP-CoNC/CC	975 F g ⁻¹ at 1 mA cm ⁻²	2 M KOH	0-0.6 V (Hg/HgO)	40% (1 to 10 mA cm ⁻²)		154
N-CNTs@NiCoP/CoP	152 mAh g ⁻¹ at 1 A g ⁻¹	2 M KOH	0-0.5 V (SCE)	61% (1 to 30 A g ⁻¹)	87% (5000)	155
NCP/NF	1.43 C cm ⁻² at 1 mA cm ⁻²	1 M KOH	-0.2-07 V (SCE)	6.8% (1 to 10 mA cm ⁻²)	43.7% (5000)	156
CoP-NPC/GS	166 F g ⁻¹ at 3 A g ⁻¹	2 M KOH	-0.1-0.4 V (Hg/HgO)	83% (3 to 15 A g ⁻¹)	88% (10000)	157
NiCo ₂ O ₄ @Co ₂ P/Ni ₂ P-CC	2881.88mF cm ⁻² at 2mA cm ⁻²	6 M KOH	0-0.6 V (Hg/HgO)	86.9% (2 to 20 mA cm ⁻²)		158
Co(OH)F@CoP/CC	654 mC cm^{-2} at 1 mA cm $^{-2}$	3 М КОН	0-0.6 V	75.08% (1 to 10 mA cm ⁻²)	71.34% (10000)	159
NiCoP@CC	1149.2 C g ⁻¹ at 1 A g ⁻¹	3 М КОН	0-0.6 V (Hg/HgO)	88.6% (1 to 10 A g^{1})	99.7% (10000)	160
CoP-NP@C	540 F g ⁻¹ at 1 A g ⁻¹	2 M KOH	0-0.6 V (SCE)	73.1% (1 to 10 A g ⁻¹)	89% (10000)	161
Co ₂ P/Cu ₃ P	549 C g ⁻¹ at 1 A g ⁻¹	6 M KOH	0-0.55 V (Hg/HgO)		84% (5000)	162
CoMoP-DSHNBs	1204 F g ⁻¹ at 1 A g ⁻¹	3 М КОН	-0.1-0.55 V (Ag/AgCl)	$39.86\% (1 \text{ to } 20 \text{ A g}^{-1})$	87% (20000)	163
ZCoPC	192.6 mAh g ⁻¹ at 1 A g ⁻¹	1 M KOH	0-0.5 V (Ag/AgCl)		93.2% (5000)	164
V-CoP@MX/HCF	1896.8 F g ⁻¹ at 1 A g ⁻¹	3 M KOH	-0.2-0.6 V (Ag/AgCl)	69.1% (1 to 10 A g ⁻¹)	91.1% (10000)	165

Table S4. Summary of the electrochemical characteristics of the ZIF-67-derived

phosphides materials in three-electrode measurements.

References

- L. Wang, X. Feng, L. Ren, Q. Piao, J. Zhong, Y. Wang, H. Li, Y. Chen and B. Wang, *Journal of the American Chemical Society*, 2015, 137, 4920-4923.
- L. Wang, H. Yang, G. Pan, L. Miao, S. Chen and Y. Song, *Electrochimica Acta*, 2017, 240, 16-23.
- H. Xia, J. Zhang, Z. Yang, S. Guo, S. Guo and Q. Xu, Nano-Micro Letters, 2017, 9, 43.
- 4. X. Xu, J. Tang, H. Qian, S. Hou, Y. Bando, M. S. A. Hossain, L. Pan and Y. Yamauchi, *Acs Applied Materials & Interfaces*, 2017, **9**, 38737-38744.
- 5. F. B. Ajdari, E. Kowsari and A. Ehsani, *Journal of Colloid and Interface Science*, 2018, **509**, 189-194.
- S. Sundriyal, V. Shrivastav, H. Kaur, S. Mishra and A. Deep, *Acs Omega*, 2018, 3, 17348-17358.
- W. Cao, M. Han, L. Qin, Q. Jiang, J. Xu, Z. Lu and Y. Wang, *Journal of Solid* State Electrochemistry, 2019, 23, 325-334.
- 8. J. Ma, J. Li, R. Guo, H. Xu, F. Shi, L. Dang, Z. Liu, J. Sun and Z. Lei, *Journal of Power Sources*, 2019, **428**, 124-130.
- W. Yang, X. Shi, Y. Li and P. Huan, Journal of Energy Storage, 2019, 26, 101018.
- J. Zhou, Y. Yuan, J. Tang and W. Tang, *Energy Storage Materials*, 2019, 23, 594-601.

- A. M. Mohamed, M. Ramadan, N. Ahmed, A. O. A. ElNaga, H. H. Alalawy, T. Zaki, S. A. Shaban, H. B. Hassan and N. K. Allam, *Journal of Energy Storage*, 2020, 28, 101292.
- 12. C. Hu, J. Xu, Y. Wang, M. Wei, Z. Lu and C. Cao, *Journal of Materials Science*, 2020, **55**, 16360-16373.
- S. Sundriyal, V. Shrivastav, S. Mishra and A. Deep, *International Journal of Hydrogen Energy*, 2020, 45, 30859-30869.
- V. Shrivastav, S. Sundriyal, A. Kaur, U. K. Tiwari, S. Mishra and A. Deep, Journal of Alloys and Compounds, 2020, 843, 155992.
- G. Wang, Y. Li, L. Xu, Z. Jin and Y. Wang, *Renewable Energy*, 2020, 162, 535-549.
- 16. P.-Y. Liu, J.-J. Zhao, Z.-P. Dong, Z.-L. Liu and Y.-Q. Wang, *Journal of Alloys* and Compounds, 2021, **854**, 157181.
- Z. Zhao, H. Duan, H. Pang and R. Zhu, *Chemistry-an Asian Journal*, 2021, 16, 845-849.
- 18. P.-Y. Lee and L.-Y. Lin, *Journal of Power Sources*, 2021, **494**, 229754.
- Y. Zolfaghari, M. Ghorbani and M. S. Lashkenari, *Electrochimica Acta*, 2021, 380, 138234.
- C. Liu, Y. Bai, J. Wang, Z. Qiu and H. Pang, *Journal of Materials Chemistry* A, 2021, 9, 11201-11209.
- 21. A. H. A. Rahim, S. R. Majid, C.-K. Sim, S. N. F. Yusuf and Z. Osman, Journal of Industrial and Engineering Chemistry, 2021, **100**, 248-259.

- 22. S. A. Him and K. H. Park, Acs Applied Nano Materials, 2021, 4, 7870-7878.
- 23. C. Hu, J. Xu, Z. Lu, C. Cao and Y. Wang, *International Journal of Hydrogen Energy*, 2021, **46**, 32149-32160.
- 24. P.-Y. Lee and L.-Y. Lin, *Energy*, 2022, **239**, 122129.
- M. Xu, X. Wang, K. Ouyang and Z. Xu, *Energy & Fuels*, 2021, 35, 19818-19826.
- 26. D. Kumar, A. Joshi, G. Singh and R. K. Sharma, *Chemical Engineering Journal*, 2022, **431**, 134085.
- 27. S. Ramandi and M. H. Entezari, *Journal of Power Sources*, 2022, **538**, 231588.
- J. Mu, Z. Guo, Y. Zhao, H. Che, H. Yang, Z. Zhang, X. Zhang, Y. Wang and J. Mu, *Journal of Materials Science-Materials in Electronics*, 2022, 33, 17733-17744.
- 29. Z. Ebrahimi, M. Rad, V. Safarifard and M. Moradi, *Journal of Molecular Liquids*, 2022, **364**, 120018.
- J. Qian, C. Hu, Z. Kong, J. Xu and Y. Wang, *Energy Technology*, 2022, 10, 2200652.
- 31. Y. Liang, X. Luo, Z. Hu, L. Yang, Y. Zhang, L. Zhu and M. Zhu, *Journal of Colloid and Interface Science*, 2023, **631**, 77-85.
- 32. Z. Li, T. Feng, P. Zhou, R. Zhang and G. Liu, *Energy & Fuels*, 2022, **36**, 14490-14499.
- 33. S. Wang, C. Xiang, Z. Xiao, F. Xu, L. Sun and Y. Zou, *Journal of Energy Storage*, 2023, **59**, 106555.

- 34. I. Rabani, J.-W. Lee, S. R. Choi, J. Y. Park, S. A. Patil, G. R. Turpu, M. Kim and Y. Soo-Seo, *Journal of Energy Storage*, 2023, **62**, 106885.
- 35. H. Zhou, G. Zhu, S. Dong, P. Liu, Y. Lu, Z. Zhou, S. Cao, Y. Zhang and H. Pang, *Advanced Materials*, 2023, **35**, 2211523.
- 36. W. Wang, S. Han, N. Li, Y. Song, L. Chen, C. Liu, S. Zhang and Z. Wang, Nanotechnology, 2023, **34**, 305402.
- K. L. Meghanathan, M. Parthibavarman, V. Sharmila and J. R. Joshua, Journal of Energy Storage, 2023, 72, 108665.
- M. Nagaraju, B. Ramulu, E. G. Shankar and J. S. Yu, *Applied Surface Science*, 2023, 640, 158339.
- 39. X. Yu, H. Liu, S. Ling, X. Wu, C. Lian and J. Xu, *Small*, 2024, **20**, 2305396.
- 40. R. Deka, V. Kumar and S. M. Mobin, *Materials Advances*, 2023, **4**, 6627-6637.
- I. Rabani, M. S. Tahir, S. Nisar, M. Parrilla, H. B. Truong, M. Kim and Y.-S. Seo, *Electrochimica Acta*, 2024, 475, 143532.
- 42. S. Kaushik, P. Chand and S. Sharma, *Journal of Energy Storage*, 2024, **78**, 110033.
- 43. R. Raoufi, M. Arvand and M. Farahpour, *Ionics*, 2024, **30**, 1709-1722.
- 44. X. Hu, Y. Xiao, X. Liu, C. Wang, P. Xu, T. Tan, H. Yue, Y. Xing and X. Liu, International Journal of Hydrogen Energy, 2024, 60, 107-117.
- 45. Z. Huang, J. Wang, Y. Zou, F. Xu, C. Xiang, J. Xie and L. Sun, *Journal of Energy Storage*, 2024, **85**, 111093.

- 46. S. Ramandi and M. H. Entezari, *Ionics*, 2024, **30**, 3003-3019.
- 47. B. Tao, X. Ren, X. Liu and F. Miao, *Vacuum*, 2024, 224, 113181.
- 48. M. Adel, R. S. Salama, M. S. Adly, A. A. Ibrahim and A. I. Ahmed, *Journal* of Alloys and Compounds, 2024, **991**, 174539.
- 49. J. Yang, J. Wang, C. Lou, Y. Cui, X. Huang, H. Yu, L. Bai, W. Wang, X. Zhang and H. Pan, *Journal of Molecular Structure*, 2024, **1311**, 138392.
- 50. J. Kumar, S. Singal, A. Yadav and R. K. Sharma, *Journal of Energy Storage*, 2024, **93**, 112315.
- 51. S. Kaushik, P. Chand and S. Sharma, *Electrochimica Acta*, 2024, 497, 144565.
- 52. P. Mansi, P. Dubey, V. Shrivastav, M. Holdynski, S. Sundriyal, U. K. Tiwari and A. Deep, *Energy Technology*, 2024, **12**, 2400722.
- 53. B. Li, C. Bai and Y. Han, *Journal of Materials Science*, 2024, **59**, 13883-13895.
- 54. S. Sanjana, V. Siva, S. Sharmila, A. Murugan and A. Shameem, *Sustainable Materials and Technologies*, 2024, **41**, e01072.
- 55. G. Liu, X. Yu, F. Zhou, K. Yan, L. Yin, C. Zhuang, Y. Wang and D. Tian, *Journal of colloid and interface science*, 2024, **678**, 120-133.
- 56. K. L. Meghanathan, M. Parthibavarman, V. Sharmila, J. R. Joshua and S. Vadivel, *Inorganic Chemistry Communications*, 2023, **153**, 110820.
- 57. N. L. Torad, R. R. Salunkhe, Y. Li, H. Hamoudi, M. Imura, Y. Sakka, C.-C. Hu and Y. Yamauchi, *Chemistry-a European Journal*, 2014, **20**, 7895-7900.
- 58. S. Zhong, C. Zhan and D. Cao, *Carbon*, 2015, **85**, 51-59.

- 59. J. Yang, C. Zeng, F. Wei, J. Jiang, K. Chen and S. Lu, *Materials & Design*, 2015, **83**, 552-556.
- 60. Y. Lei, M. Gan, L. Ma, M. Jin, X. Zhang, G. Fu, P. Yang and M. Yan, *Ceramics International*, 2017, 43, 6502-6510.
- 61. T. Gao, F. Zhou, W. Ma and H. Li, *Electrochimica Acta*, 2018, **263**, 85-93.
- 62. A. Jayakumar, R. P. Antony, J. Zhao and J.-M. Lee, *Electrochimica Acta*, 2018, **265**, 336-347.
- 63. J. Qiu, E. Dai, J. Xu, S. Liu and Y. Liu, *Materials Letters*, 2018, **216**, 207-211.
- 64. C. Young, J. Wang, J. Kim, Y. Sugahara, J. Henzie and Y. Yamauchi, *Chemistry of Materials*, 2018, **30**, 3379-3386.
- 65. X. Wei, H. Peng, Y. Li, Y. Yang, S. Xiao, L. Peng, Y. Zhang and P. Xiao, Chemsuschem, 2018, 11, 3167-3174.
- 66. Y. Li, G. Zhu, H. Huang, M. Xu, T. Lu and L. Pan, *Journal of Materials Chemistry A*, 2019, 7, 9040-9050.
- 67. J. Zhang, W. Li, T. A. Shifa, J. Sun, C. Jia, Y. Zhao and Y. Cui, *Journal of Power Sources*, 2019, **439**, 227066.
- 68. X. Li, Y. Xu, H. Wu, X. Qian, L. Chen, Y. Dan and Q. Yu, *Electrochimica Acta*, 2020, **337**, 135818.
- 69. Y. Zhao, C. Huang, Y. He, X. Wu, R. Ge, X. Zu, S. Li and L. Qiao, *Journal of Power Sources*, 2020, **456**, 228023.
- 70. H. Lv, X. Zhang, F. Wang, G. Lv, T. Yu, M. Lv, J. Wang, Y. Zhai and J. Hu, Journal of Materials Chemistry A, 2020, 8, 14287-14298.

- J. Yue, H. Zhang, Y. Zhang, M. Li and H. Zhao, *Electrochimica Acta*, 2020, 353, 136528.
- 72. D. Shao, C. Wang, L. Wang, X. Guo, J. Guo, S. Zhang and Y. Lu, *Journal of Alloys and Compounds*, 2021, **863**, 158682.
- 73. L. Cheng, Q. Zhang, M. Xu, Q. Zhai and C. Zhang, *Journal of Colloid and Interface Science*, 2021, **583**, 299-309.
- X. Zheng, X. Liu, X. Yang, Y. Wang, X. Liu, A. Fu, P. Guo and H. Li, *Colloids and Surfaces a-Physicochemical and Engineering Aspects*, 2021, 623, 126686.
- 75. Y. Wu, G. Xu, W. Zhang, C. Song, L. Wang, X. Fang, L. Xu, S. Han, J. Cui and L. Gan, *Carbohydrate Polymers*, 2021, **267**, 118166.
- 76. M. Pooriraj, M. Moradi and S. Hajati, *Solid State Ionics*, 2021, **368**, 115697.
- X.-M. Cao, Z.-J. Sun and Z.-B. Han, *Materials Chemistry Frontiers*, 2021, 5, 6969-6977.
- W. Zhang, Y. Wang, X. Guo, Y. Liu, Y. Zheng, M. Zhang, R. Li, Z. Peng, H. Xie and Y. Zhao, *Applied Surface Science*, 2021, 568, 150929.
- 79. L. Yue, L. Chen, X. Liu, D. Lu, W. Zhou and Y. Li, *Journal of Colloid and Interface Science*, 2022, **608**, 2602-2612.
- 80. H. Xu, L. Cui, Y. An and X. Jin, *Energy & Fuels*, 2021, **35**, 20320-20329.
- Y. Zhang, J. Wu, S. Zhang, N. Shang, X. Zhao, S. M. Alshehri, T. Ahamad, Y. Yamauchi, X. Xu and Y. Bando, *Nano Energy*, 2022, 97, 107146.

- 82. C. Li, H. Guo, N. Wu, Y. Hao, Y. Cao, Y. Chen, H. Zhang, F. Yang and W. Yang, *Colloids and Surfaces a-Physicochemical and Engineering Aspects*, 2022, **648**, 129241.
- 83. Y. Deng, Y. Shen, Y. Du, T. Goto and J. Zhang, *Journal of Materials Research and Technology-Jmr&T*, 2022, **19**, 3507-3520.
- 84. S. Yetiman, F. K. Dokan, M. S. Onses, E. Yilmaz and E. Sahmetlioglu, International Journal of Energy Research, 2022, 46, 22730-22743.
- R. Patil, N. Kumar, S. Bhattacharjee, H.-Y. Wu, P.-C. Han, B. M. Matsagar, K.
 C. W. Wu, R. R. Salunkhe, A. Bhaumik and S. Dutta, *Chemical Engineering Journal*, 2023, 453, 139874.
- 86. H. Kamali, M. Mehrpooya and M. R. Ganjali, *Journal of Energy Storage*, 2022, **56**, 106012.
- 87. Z. Zhang, S. Deng, D. Wang, Y. Qing, G. Yan, L. Li and Y. Wu, *Chemical Engineering Journal*, 2023, **454**, 140410.
- X. Xu, S. Wu, Y. Liu, C. Liu, X. Sun, S. Tian, L. Wu, Y. Sun, Z. Wang and Q.
 Yang, *Journal of Energy Storage*, 2023, 62, 106869.
- S. Manoj, K. Pandi, G. Kalaiyarasan, S.-H. Pyo, R. Karkuzhali, S. Kancharla,
 G. Gopu, Y. Ahn, B.-H. Jeon and S. M. Prabhu, *Journal of Energy Storage*,
 2023, 68, 107821.
- M. He, G. J. H. Melvin, M. Wang, W. Fan, J. Lin, X. Chen, K. Xu, C. Yuan, Y. Zhang, F. Zhang and Z. Wang, *Journal of Energy Storage*, 2023, 70, 108055.

- 91. J. Yuan, Y. Li, G. Lu, Z. Gao, F. Wei, J. Qi, Y. Sui, Q. Yan and S. Wang, Acs Applied Materials & Interfaces, 2023, 15, 36143-36153.
- 92. P. Thondaiman, C. J. Raj, R. Manikandan, V. Cristobal, C. Kaya and B. C. Kim, *Sustainable Materials and Technologies*, 2023, **38**, e00742.
- 93. R. Ahmad, N. Iqbal, T. Noor, S. K. Nemani, L. Zhu and B. Anasori, Acs Applied Nano Materials, 2023, 7, 253-266.
- 94. J. Dai, C. Zhu, Y. Fan, L. Wen, Y. Zhao, Z. Huang, W. Zeng and S. Wang, Journal of Energy Storage, 2024, 83, 110670.
- 95. G. Liu, F. Zhou, K. Yan, C. Zhuang, Y. Wang, C. Wang and D. Tian, *Journal of Energy Storage*, 2024, **94**, 112462.
- 96. V. Shrivastav, P. Mansi, P. Dubey, U. K. Tiwari, A. Deep, W. Nogala and S. Sundriyal, *Nanoscale Advances*, 2024, **6**, 4219-4229.
- 97. L. Duan, H. Fu, H. Sun, Y. Sun, Z. Lu and J. Liu, Journal of Colloid and Interface Science, 2024, 676, 331-342.
- G. Duan, S. Zeng, H. Jin, S. He, H. Yang, X. Han, C. Zhang, Y. Huang and S. Jiang, *Industrial Crops and Products*, 2024, 222, 119616.
- 99. Z. Lv, Q. Zhong and Y. Bu, *Electrochimica Acta*, 2016, **215**, 500-505.
- 100. Z. Lv, Q. Zhong and Y. Bu, Advanced Materials Interfaces, 2018, 5, 1800438.
- 101. D. Guo, X. Song, L. Tan, H. Ma, W. Sun, H. Pang, L. Zhang and X. Wang, *Chemical Engineering Journal*, 2019, **356**, 955-963.
- 102. G. Lee, W. Na, J. Kim, S. Lee and J. Jang, *Journal of Materials Chemistry A*, 2019, 7, 17637-17647.

- 103. X. Xuan, M. Qian, L. Han, L. Wan, Y. Li, T. Lu, L. Pan, Y. Niu and S. Gong, *Electrochimica Acta*, 2019, **321**, 134710.
- 104. Y. Du, G. Li, M. Chen, X. Yang, L. Ye, X. Liu and L. Zhao, *Chemical Engineering Journal*, 2019, **378**, 122210.
- 105. Y. Bao, Y. Deng, M. Wang, Z. Xiao, M. Wang, Y. Fu, Z. Guo, Y. Yang and L. Wang, *Applied Surface Science*, 2020, **504**, 144395.
- Y. Bao, P. Liu, J. Zhang, L. Wang, M. Wang, H. Mei, Q. Zhang, C. Chen and
 Z. Xiao, *Journal of the American Ceramic Society*, 2020, 103, 4342-4351.
- 107. A. Tang, P. Chen and C. Mi, *Ionics*, 2020, **26**, 6277-6287.
- 108. M. U. Tahir, H. Arshad, H. Zhang, Z. Hou, J. Wang, C. Yang and X. Su, Journal of Colloid and Interface Science, 2020, **579**, 195-204.
- 109. M. U. Tahir, H. Arshad, W. Xie, X. Wang, M. Nawaz, C. Yang and X. Su, Applied Surface Science, 2020, **529**, 147073.
- 110. Q. Wang, X. Wang, H. He and W. Chen, *Applied Clay Science*, 2020, 198, 105820.
- Y.-H. Zou, H.-N. Wang, H.-X. Sun, Z.-X. Lin, F. Wang, X. Zhang, L.-J.
 Wang, X. Meng and Z.-Y. Zhou, *Materials Chemistry and Physics*, 2020, 255, 123497.
- X. Li, L. Lu, J. Shen, Z. Li and S. Liu, *Journal of Power Sources*, 2020, 477, 228974.
- 113. Y. Zang, H. Luo, H. Zhang and H. Xue, *Acs Applied Energy Materials*, 2021,4, 1189-1198.

- M. Xu, H. Guo, R. Xue, M. Wang, N. Wu, X. Wang, J. Zhang, T. Zhang and W. Yang, *Journal of Alloys and Compounds*, 2021, 863, 157699.
- 115. H. Guo, J. Zhang, M. Xu, M. Wang, F. Yang, N. Wu, T. Zhang, L. Sun and W. Yang, *Journal of Alloys and Compounds*, 2021, 888, 161250.
- C. Hao, X. Wang, X. Wu, Y. Guo, L. Zhu and X. Wang, *Applied Surface Science*, 2022, **572**, 151373.
- H. Zhang, B. Yan, H. Zhao, J. Qi, C. Zhou, Z. Peng and J. Han, *Journal of Alloys and Compounds*, 2022, 896, 163019.
- S. Cong, Y. Yang, K. Li, F. He, J. Liu, H. Yuan, X. Wang, R. Zhang, J. Chu,
 M. Gong, B. Wu, S. Xiong and A. Zhou, Acs Applied Electronic Materials,
 2022, 4, 233-245.
- 119. S. Xie, J. Gou, Y. Zhao, W. Zhao and Z. Gao, Journal of Alloys and Compounds, 2022, 899, 163302.
- 120. C. Shi, Y. Du, L. Guo, J. Yang and Y. Wang, *Journal of Energy Storage*, 2022,
 48, 103961.
- 121. H. Fu, A. Zhang, F. Jin, H. Guo and J. Liu, Acs Applied Materials & Interfaces, 2022, 14, 16165-16177.
- M. Wang, Y. Feng, Y. Zhang, S. Li, M. Wu, L. Xue, J. Zhao, W. Zhang, M. Ge, Y. Lai and J. Mi, *Applied Surface Science*, 2022, **596**, 153582.
- 123. H. F. Cao, Y. Pan, C. Shi, L. Guo, J. Yang and Y. Wang, *Journal of Materials Science-Materials in Electronics*, 2022, **33**, 13792-13803.

- 124. Y. Chen, J. Yang, H. Yu, J. Zeng, G. Li, B. Chang, C. Wu, X. Guo, G. Chen,L. Zheng and X. Wang, Acs Applied Energy Materials, 2022, 5, 6772-6782.
- 125. C. Zhang, L. Zhang, Q. Liu, Y. Ding, L. Cheng, M. Wu and Z. Li, *Applied Surface Science*, 2022, **602**, 154352.
- X. Zhao, H. Li, M. Zhang, W. Pan, Z. Luo and X. Sun, Acs Applied Materials & Interfaces, 2022, 14, 34781-34792.
- 127. Y.-F. Wu, Y.-C. Hsiao, C.-H. Liao, C.-S. Hsu, S. Yougbare and L.-Y. Lin, Journal of Colloid and Interface Science, 2022, 628, 540-552.
- H. Zhang, H. Di, D. Cao, Z. Jiang, Z. Hu and X. Bai, *International Journal of Energy Research*, 2022, 46, 19599-19614.
- 129. Y. Chen, H. Guo, F. Yang, N. Wu, J. Zhang, L. Peng, B. Liu, Z. Pan and W. Yang, *International Journal of Hydrogen Energy*, 2022, **47**, 29636-29647.
- Z. Sheng, X. Lin, H. Gao, L. Huang, Y. Zhang, Y. Zhao, H. Wei, C. Wang, D. Xu and Y. Wang, *International Journal of Hydrogen Energy*, 2022, 47, 29195-29206.
- T. Yu, S. Li, L. Zhang, F. Li, J. Wang, H. Pan and D. Zhang, Journal of Colloid and Interface Science, 2023, 629, 546-558.
- 132. M. Li, X. Jiang, J. Liu, Q. Liu, N. Lv, N. Qi and Z. Chen, Journal of Alloys and Compounds, 2023, 930, 167354.
- 133. T. K. Ghosh, D. L. Singh, V. Mishra, M. K. Sahoo and G. R. Rao, Nanotechnology, 2022, 33, 415402.

- 134. J. Zou, J. Zou, W. Zhong, Q. Liu, X. Huang, Y. Gao, L. Lu and S. Liu, Journal of Electroanalytical Chemistry, 2023, 928, 117069.
- 135. H. Yang, Y. Sun, C. Wang, Y. Li and M. Wei, *Journal of Electroanalytical Chemistry*, 2023, **928**, 117051.
- 136. K. Zhao, Z. Wang, X. Sun, H. Guo, H. Fu, Z. Lu, Z. Liu and J. Liu, *Journal of Energy Storage*, 2023, 60, 106559.
- 137. Q. Bi, X. Hu and K. Tao, *Chemistry-a European Journal*, 2023, **29**, e202203264.
- 138. J. Su, Y. Zhang, Y. Meng, X. Guan and M. Lu, Journal of Alloys and Compounds, 2023, 957, 170387.
- 139. L. Zhao, F. Meng and W. Zhang, *Electrochimica Acta*, 2023, **461**, 142656.
- 140. D. Gao, J. Zhu, B. Lyu, J. Ma, Y. Zhou, P. Zhao and S. Guo, *Journal of Alloys* and Compounds, 2023, **960**, 171008.
- 141. X. Xie, Journal of Materials Science-Materials in Electronics, 2023, 34, 1590.
- W. Wang, X. Zhou, L. Yu, L. Liu, X. Li, K. Zhang, G. Liang, P. Xie, J. Sun, L. Chen, Y. Li and Y. Xia, *Advanced Composites and Hybrid Materials*, 2023, 6, 216.
- 143. L. Xu, Y. Li, M. Li, N. Yu, W. Wang, F. Wei, J. Qi, Y. Sui, L. Li and L. Zhang, Journal of Energy Storage, 2024, 77, 109781.
- M. Wang, S. Wang, J. Zhao, S. Li, J. Mi and Y. Feng, *Chemical Engineering Journal*, 2024, 480, 148206.

- 145. Z. Lu, K. Zhao, H. Guo, L. Duan, H. Sun, K. Chen and J. Liu, *Small*, 2024, 20, 2309814.
- 146. A. Zhang, Q. Zhang, J. Huang, H. Fu, H. Zong and H. Guo, *Chemical Engineering Journal*, 2024, **487**, 150587.
- C. Liang, X. Cao, Z. Feng, W. Wang and M. Lu, *Applied Surface Science*, 2024, 665, 160346.
- 148. L. Zhang, Y. Luo, Q. Wang, D. Wei, H. Hu, P. Yan, X. Feng, S. Qiu, F. Xu,W. Cao, L. Sun and H. Chu, *Journal of Energy Storage*, 2024, 92, 112195.
- 149. X. Chen, Z. Zhang, S. Zhou, Y. Wei, S. Han and J. Jiang, *Applied Energy*, 2024, 371, 123670.
- W. Ning, S. Xu, P. Wang, H. Ma, X. Yang, X. Sun, C. Yang and X.-R. Shi, Journal of Energy Storage, 2024, 96, 112758.
- H. Zhou, X. Sha, F. Zeng, X. Wu, M. Yu, Z. Shi, X. Zhang, X. Song and C. Jiang, *Journal of Materials Chemistry A*, 2024, 12, 20191-20201.
- 152. Y. Xu, S. Hou, G. Yang, X. Wang, T. Lu and L. Pan, *Electrochimica Acta*, 2018, 285, 192-201.
- 153. Z. Xiao, Y. Bao, Z. Li, X. Huai, M. Wang, P. Liu and L. Wang, Acs Applied Energy Materials, 2019, 2, 1086-1092.
- V. Elayappan, P. A. Shinde, G. K. Veerasubramani, S. C. Jun, H. S. Noh, K. Kim, M. Kim and H. Lee, *Dalton Transactions*, 2020, 49, 1157-1166.
- T. Dang, D. Wei, G. Zhang, L. Wang, Q. Li, H. Liu, Z. Cao, G. Zhang and H. Duan, *Electrochimica Acta*, 2020, **341**, 135988.

- T. Shu, H. Gao, Q. Li, F. Wei, Y. Ren, Z. Sun, J. Qi and Y. Sui, *Nanoscale*, 2020, **12**, 20710-20718.
- 157. S. Gayathri, P. Arunkumar and J. H. Han, *Journal of Colloid and Interface Science*, 2021, **582**, 1136-1148.
- 158. W.-w. Song, B. Wang, X.-m. Cao, Q. Chen and Z.-b. Han, *Inorganic Chemistry Frontiers*, 2021, **8**, 5100-5112.
- 159. D. Liu, S. Li, Y. He, C. Liu, Q. Li, Y. Sui, J. Qi, P. Zhang, C. Chen, Z. Chen and S. Liu, *Journal of Energy Storage*, 2022, **55**, 105417.
- 160. X. Chen and J. Zhu, Journal of Energy Storage, 2022, 55, 105877.
- Y. Li, J. Yuan, H. Wang, T. Shu, G. Lu, Z. Gao, F. Wei, C. Ma, J. Qi and Y. Sui, *Journal of Materials Science*, 2023, 58, 3723-3734.
- 162. A. M. Kale, R. Velayutham, A. D. Savariraj, M. Demir and B. C. Kim, Materials Today Sustainability, 2023, 21, 100335.
- 163. F. H. Gourji, T. Rajaramanan, A. Kishore, M. Heggertveit and D. Velauthapillai, Acs Omega, 2023, 8, 23446-23456.
- S. Sundriyal, P. Dubey, Mansi, B. Gupta, M. Holdynski, M. Bonarowska, A. Deep, V. Shrivastav and W. Nogala, *Advanced Materials Interfaces*, 2023, 10, 2300401.
- I. Pathak, B. Dahal, D. Acharya, K. Chhetri, A. Muthurasu, Y. R. Rosyara, T. Kim, S. Saidin, T. H. Ko and H. Y. Kim, *Chemical Engineering Journal*, 2023, 475, 146351.