Spectroscopic evidence of the interaction of titanium (IV) coordination complexes with phosphate head group in phospholipids

Matthieu Scarpi-Luttenauer,^a Zahia Boubegtiten-Fezoua,^{*a} Petra Hellwig,^{*a} Alain Chaumont,^a Bruno Vincent,^b Laurent Barloy,^{*a} Pierre Mobian^{*a}

^aUniversité de Strasbourg, CNRS, UMR 7140, F-67000 Strasbourg, France

^bUniversité de Strasbourg, CNRS, UAR 2042, F-67000 Strasbourg, France

Supporting Information

Contents

- Figure S1. ATR-FTIR spectra of the titanium complexes (a) complex 1 and (b) complex 2 as dry film from solutions in methanol (10 mM).
 p. 3
- Figure S2. ATR-FTIR spectra on diamond crystal of DOPC lipid multi-bilayers hydrated by H₂O. p. 3
- Figure S3. ATR-FTIR spectra of complex 1/DOPC multi-bilayers hydrated by H₂O at a complex 1/lipid ratio of 1/20. p. 4
- Figure S4. ATR-FTIR spectra of complex 2/DOPC multi-bilayers hydrated by H₂O at a complex 2/lipid ratio of 1/20. p. 4
- Figure S5. ATR-FTIR difference spectra of the C=O ester carbonyl stretching in the 1770-1700 cm⁻¹ spectral range, calculated by subtracting the spectrum of DOPC multibilayers from the spectra of complex 1/DOPC (a) and complex 2/DOPC multi-bilayers (b). p. 5
- Experimental part Additional procedures and analyses. p. 6
- Figure S6. ¹H NMR spectrum of complex 1 in DMSO-d₆ (300 MHz). Residual free catechol signals are marked by asterisks. p. 7

1

- Figure S7. ¹H NMR spectrum of complex 2 in DMSO-*d*₆(300 MHz). Residual free 2,3dihydroxy-naphthalene signals are marked by asterisks. p. 8
- Figure S8. ³¹P{¹H} NMR spectra in DMSO-*d*₆ of a) solution B (202 MHz); b) solution
 A (121 MHz); c) DOPC (121 MHz). p. 9
- Figure S9. Sections of the ¹H NMR spectra in DMSO-*d*₆ of a) solution B (500 MHz); b) solution A (300 MHz); c) DOPC (300 MHz). p. 10
- Figure S10. Zooms of Figure S9: trimethylammonium signals on the ¹H NMR spectra in DMSO-*d*₆. p. 11
- Figure S11. Deconvolution of the trimethylammonium signals of solution A (Fig. S10b). p. 12
- Figure S12. ¹H NMR spectrum of solution B recorded in DMSO-d₆ (500 MHz); the signals of complex 3 have been integrated. p. 13
- Figure S13. Zoom of Fig. S12 showing that the integrals of the signals at 6.40-6.34 ppm,
 6.08-6.02 and 5.35-5.28 are equal, integrating each for 4H. p. 14
- Figure S14. Deconvolution of the trimethylammonium signals of solution B (Fig. S10a). p. 15
- Figure S15. ¹H NMR DOSY spectrum of DOPC in DMSO-*d*₆. p. 16
- Figure S16. Negative-mode electrospray ionization mass analysis of the mixture resulting from the stoichiometric reaction of complex 1 with DOPC in methanol. p. 17
- Figure S17. 3D optimized geometry of complex 4 obtained by DFT calculation. p. 18
- Figure S18. 3D optimized geometry of complex 5 obtained by DFT calculation. p. 18
- Figure S19. a) 3D optimized geometry of complex 6 obtained by DFT calculation. b)
 View of complex 6 exhibiting interligands spatial distances in Å. p. 19
- Estimation of Ti-DOPC binding constant from ¹H NMR analysis of solution B. p. 20

Figure S1. ATR-FTIR spectra of the titanium complexes (a) complex 1 and (b) complex 2 as dry film from solutions in methanol (10 mM).

ure S2. ATR-FTIR spectra on diamond crystal of DOPC lipid multi-bilayers hydrated by H_2O . The spectra were recorded with a parallel (black curve) and a perpendicular (red curve) polarization. (a) Spectral range characteristic for the C=O and PO_2^- stretching modes (b) Spectral range characteristic for the CH₂ stretching modes.

Figure S3. ATR-FTIR spectra of complex 1/DOPC multi-bilayers hydrated by H_2O at a complex 1/lipid ratio of 1/20. The spectra were recorded with a parallel (black curve) and a perpendicular (red curve) polarization. (a) Spectral range characteristic for the C=O and PO_2^- stretching modes (b) Spectral range characteristic for the CH₂ stretching modes.

Figure S4. ATR-FTIR spectra of complex 2/DOPC multi-bilayers hydrated by H_2O at a complex 2/lipid ratio of 1/20. The spectra were recorded with a parallel (black curve) and a perpendicular (red curve) polarization. (a) Spectral range characteristic for the C=O and PO_2^- stretching modes (b) Spectral range characteristic for the CH₂ stretching modes.

Figure S5. ATR-FTIR difference spectra of the C=O ester carbonyl stretching in the 1770-1700 cm⁻¹ spectral range, calculated by subtracting the spectrum of DOPC multi-bilayers from the spectra of complex 1/DOPC (a) and complex 2/DOPC multi-bilayers (b). To account for differences in lipid concentration in mixtures samples, the subtraction of the spectra have been normalized with respect to the area of the antisymmetric $(CH_3)_3N^+$ stretching band present in the DOPC and Ti(IV) complexes/DOPC spectra.

Experimental part – Additional procedures and analyses

The syntheses of complexes 1 and 2 have previously been reported in refs¹ and ², respectively.

In a 25 mL reaction flask, the diol (3.04 mmol, catechol H₂Cat: 335 mg; 2,3dihydroxynaphtalene H₂Napht: 487 mg) was first dissolved in dry toluene (10 mL) by gentle heating under argon atmosphere, and Ti(OiPr)₄ (0.3 mL, 1.00 mmol) was added dropwise. The resulting mixture was heated at 80 °C for 3 h. The suspension was allowed to cool at room temperature and the solvent was evaporated. The residue was washed with toluene (2 x 5 mL) and pentane (5 mL). The precipitate was then dried *in vacuo* to afford a dark reddish powder (1: 122 mg, 32%; 2: 136 mg, 26%).

Complex 1: ¹H NMR (300 MHz, DMSO- d_6): δ 6.44 (m, 6H), 6.12 (m, 6H). ESI⁻-MS: m/z 109.03 ([HCat]⁻, 100%), 295.01 ([Ti(Cat)₂(OMe)]⁻, 59%), 373.02 ([Ti(Cat)₂(HCat)]⁻, 27%).

Complex **2**: ¹H NMR (300 MHz, DMSO-*d*₆): δ7.48 (m, 6H), 7.07 (m, 6H), 6.50 (s, 6H). ESI--MS: *m/z* 319.11 ([(H₂Napht)(HNapht)]⁻, 100%), 523.07 ([Ti(Napht)₂(HNapht)]⁻, 48%).

¹ Y. Chi, P.-F. Hsu, J.-W. Lan, C.-L. Chen, S.-M. Peng and G.-H. Lee, *J. Phys. Chem. Solids*, 2001, **62**, 1871–1879.

² A. Sugawara, Jpn. Pat., 2006335835A, 2006.

Figure S6. ¹H NMR spectrum of complex **1** in DMSO- d_6 (300 MHz). Residual free catechol signals are marked by asterisks.

Figure S7. ¹H NMR spectrum of complex **2** in DMSO- d_6 (300 MHz). Residual free 2,3-dihydroxy-naphthalene signals are marked by asterisks.

Figure S8. ³¹P{¹H} NMR spectra in DMSO- d_6 of (a) solution **B** (202 MHz); (b) solution **A** (121 MHz); (c) DOPC (121 MHz).

Figure S9. Sections of the ¹H NMR spectra in DMSO- d_6 of (a) solution **B** (500 MHz); (b) solution **A** (300 MHz); (c) DOPC (300 MHz).

Figure S10. Zooms of figure **S9**: trimethylammonium signals on the ¹H NMR spectra in DMSO- d_6 .

Figure S11. Deconvolution of the trimethylammonium signals of solution A (Fig. S10b).

Figure S12. ¹H NMR spectrum of solution **B** recorded in DMSO- d_6 (500 MHz); the signals of complex **3** have been integrated.

Figure S13. Zoom of figure S12 showing that the integrals of the signals at 6.40-6.34 ppm, 6.08-6.02 and 5.35-5.28 are equal, integrating each for 4H.

Figure S14. Deconvolution of the trimethylammonium signals of solution B (Fig. S10a).

Figure S15. ¹H NMR DOSY spectrum of DOPC in DMSO-*d*₆.

Figure S16. Negative-mode electrospray ionization mass analysis of the mixture resulting from the stoichiometric reaction of complex **1** with DOPC in methanol. (a) Whole spectrum; (b) Zoom on $[Ti(cat)_2(DOPC)(OMe)]^-$ (top): experimental spectrum; bottom: simulated pattern).

Figure S17. 3D optimized geometry of complex 4 obtained by DFT calculation. Colour code: carbon, dark grey; hydrogen, light grey; nitrogen, blue; oxygen, red; phosphorus, violet; titanium, khaki. Absolute configurations : C, R; P, S.

Figure S18. 3D optimized geometry of complex **5** obtained by DFT calculation. Colour code: carbon, dark grey; hydrogen, light grey; nitrogen, blue; oxygen, red; phosphorus, violet; sulfur, yellow; titanium, khaki. Absolute configurations : C, R; P, S.

Figure S19. (a) 3D optimized geometry of complex **6** obtained by DFT calculation. Colour code: carbon, dark grey; hydrogen, light grey; nitrogen, blue; oxygen, red; phosphorus, violet; sulfur, yellow; titanium, khaki. Absolute configurations : C, *R*; P, *S*; Ti, Δ . (b) View of complex **6** exhibiting interligands spatial distances in Å, in agreement with the NOE crosspeaks represented Fig. 4a,b (for the atom numbering, see Fig 4c).

Estimation of Ti-DOPC binding constant from ¹H NMR analysis of solution B

The chemical equilibrium leading to the Ti-DOPC adduct, viz. complex 3, can be written as:

complex $1 + DOPC + DMSO-d_6 = complex 3 + CatH_2$

The equilibrium constant is:

 $K = \frac{[complex 3][CatH2]}{[DOPC][complex 1][DMSO]}$

DMSO being the solvent, it is convenient to determine constant K':

 $K' = K[DMSO] = \frac{[complex 3][CatH2]}{[DOPC][complex 1]}$

In solution **B**, the [complex **3**]/[DOPC] ratio has been determined as 95/5 = 19 as stated in the text of the article; the [CatH₂]/[complex **1**] ratio has been calculated as 0.37 from the integration of the aromatic catechol signals depicted below (see similar figure S13), from which K' = 7.0 at room temperature.

