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Crystallographic information

Table S1. Crystal data and structure refinement for [(AgBr)(n-pica)], coordination polymers?, reported for sake of clarity.

[(AgBr)(2-pica)]n

[(AgBr)(3-pica)]n [(AgBr)(4-pica)]n
Empirical formula CeHsAgBrN; CeHsAgBrN, CeHsAgBrN;
Formula weight (g mol?) 295.915 295.915 295.915
T (K) 293 293 293
Wavelength (&) 0.71073 0.71073 1.535
Crystal system triclinic monoclinic monoclinic
Space group P-1 P2i/c P2i/c
a (R) 4.3871(5) 9.4518(6) 6.316(1)
b (A) 10.1081(12) 6.1880(3) 7.365(1)
c(A) 10.2510(18) 14.3981(9) 17.769(1)
a (%) 113.498(14) 90 90
B (°) 97.081(12) 105.712(6) 81.08(1)
v (°) 93.535(9) 90 90
Vv (A3) 410.63(11) 810.64(8) 816
2,7 2,1 4,1 4,1
Pealc (Mg M3) 2.393 2.425 2.407

Table S2. Crystal data and structure refinement for [(AgCl)(n-pica)], coordination polymers.

[(AgCl)(2-pica)]a

[(AgCl)(3-pica)ln [(AgCl)(4-pica)ln
Empirical formula CsHsAgCIN, CsHsAgCIN, CsHsAgCIN,
Formula weight (g mol-1) 251.46 251.46 251.46
T (K) 293 293 293
Wavelength (A) 0.71073 0.71073 1.535
Crystal system orthorhombic monoclinic monoclinic
Space group P2,2,2; P2, P2i/c
a(A) 6.5423(4) 9.2824(6) 6.186(1)
b (R) 7.0698(5) 6.0256(3) 7.248(1)
c(A) 17.3926(10) 7.3134(5) 17.40(1)
a(°) 90 90 90
B (°) 90 108.918(8) 82.05(1)
v (°) 90 90 90
Vv (A3) 804.46(9) 386.96(4) 772.62
2,7 4,1 2,1 4,1
Pealc (Mg M-3) 2.076 2.158 2.162
M (mm-1) 2.760 2.869
F(000) 488 244
crystal size (mm) 0.144x0.127x0.057 0.153x0.124x0.044 powder
0 range for data collection (°) 3.327° to0 29.248° 4.102° to 28.898° 9.5° to 70°
reflections collected 2384 2965
Independent reflections 1603 1647
Rint/R-Bragg 0.0235 0.0353 0.0114
Completeness to theta = 99.7% 99.6%
25.000°
Refinement method Full-matrix least-squares on  Full-matrix least-squares on Rietveld
FZ FZ
Tmax/Tmin 1.00000/ 0.87046 1.00000/0.91766
data/restraints/parameters 1603/0/91 1647/1/92
Goodness-of-fit on F2 0.999 1.030 1.771
R1[1>20(1)]/Rp 0.0428 0.0470 0.0317
wR2 (all data)/Rwp 0.0683 0.0767 0.0437




a) b)

Fig. S1 asymmetric unit overlay of a) [(AgCl)(3-pica)l, and [(AgBr)(3-pica)l, and b) [(AgCl)(4-pica)], and [(AgBr)(4-pica)l.. The structures
AgCl-based are in green, the AgBr-based ones are in red.

Table S3. Isostructurality parameters of [(AgX)(3-pica)], and [(AgX)(4-pica)].

1 Is RMSD Max D
3-pica 0.248 84% 0.180 0.278
4-pica 0.019 98% 0.0995 0.138

[Ag(H4-pica)Cl2)]n

Fig. S1 a) [Ag(H4-pica)Cly], structure; b) packing along b-axis



Table S4. Crystal data and structure refinement for [Ag(H4-pica)Cl,]n.

[Ag(H4-pica)Cl,]n

Empirical formula
Formula weight (g mol?)
T (K)
Wavelength (A)
Crystal system
Space group
a(A)

b (A)

c(A)

a(’)

B (%)

v ()

V (A3)

2,7

Pcalc (Mg M~3)
# (mm-)
F(000)
crystal size (mm)

0 range for data collection (°)
reflections collected
Independent reflections
Rint
Completeness to theta = 25.000°
Refinement method
Tmax/Tmin
data/restraints/parameters
Goodness-of-fit on F2
R1[I > 20(1)]
wR2 (all data)

CGHgNzAgC|2
287.92
293
0.71073
orthorhombic
Pbca
13.2106(4)
7.0400(3)
19.2703(5)
90
90
90
1792.19
8,1
2.134
2.781
1120
0.187x0.127x0.093
3.445° to 29.225°
25352
2246
0.0347
99.8%
Full-matrix least-squares on F2
1.00000/0.61123
2246/0/101
1.147
0.0431
0.0833




PXRD patterns
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Fig. S3 Comparison between calculated (black line) and experimental (red line) X-ray powder diffraction patterns of [(AgCl)(2-pica)]n.
The diffractograms are shown in square root intensity mode.
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Fig. S4 Comparison between calculated (black line) and experimental (red line) X-ray powder diffraction patterns of [(AgCl)(3-pica)],.
The diffractograms are shown in square root intensity mode.
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Fig. S5 Comparison between calculated (black line) and experimental (red line) X-ray powder diffraction patterns of [(AgCl)(4-pica)],.
The diffractograms are shown in square root intensity mode.

50
2Theta (°)



DFT calculations

Fig. S6 Structural overlap (obtained by maximising the superpositions of silver atoms) between experimental (gray) and DFT-
optimized structures of [(AgCl)(2-pica)l. (left, green) and [(AgBr)(2-pica)ln (right, orange).



Fig. S7 Orbital densities associated to selected wavefunctions in I reciprocal space for the highest four valence and lowest four
conduction bands of [(AgCl)(2-pica)]n (isosurfaces are plotted at 0.002 a.u.).
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Fig. S8 View of the [(AgCl)(2-pica)]n crystal showing the reduced gradient density isosurfaces at 0.40 a.u., mapped using the product
of the electron density and the second eigenvalue of the electron-density Hessian matrix (green coloured regions indicate non-
covalent interactions). Interdigitated 2-pica ligands chelating different inorganic chains interact with each other via van-der-Waals
interactions.
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Fig. S9 Orbital densities associated to selected wavefunctions in I reciprocal space for the highest four valence and lowest four
conduction bands of [(AgBr)(2-pica)]n (isosurfaces are plotted at 0.002 a.u.).



Fig. S10 Detail of the [(AgBr)(2-pica)], inorganic double chain with reduced gradient density isosurfaces at 0.33 a.u., mapped using
the product of the electron density and the second eigenvalue of the electron-density Hessian matrix (colours span from red to blue,
indicating repulsive or attractive interactions, respectively). Two kinds of argentophilic interactions are clearly visible at the centre of
each Ag,Br; ring.

Fig. S11 Structural overlap (obtained by maximising the superpositions of silver atoms) between experimental (gray) and DFT-
optimized structures of [(AgCl)(3-pica)l. (left, green) and [(AgBr)(3-pica)ln (right, orange).
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Fig. $12 Band-structure diagram and density-of-states (DOS) plot of [(AgCl)(3-pica)], with relative orbital contributions; the band-
structure path in the reciprocal space (first Brillouin zone) is also depicted. All data refer to the standard cell of [(AgCl)(3-pica)], to be
compared to the 1x1x2 supercell depicted in Figure 4, main text.
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Fig. S13 Schematic 2-D representation of the m-interactions along the bc plane in [(AgCl)(3-pica)]n. Simplified analysis of the lowest
couple of conduction bands. Each of the two band has, as basis, the in-phase or out-of-phase combination of the same lowest rt*
orbital centred on each of the two equivalent 3-pica ligands found in the primitive cell. For both bands, orbital contributions are
sketched at T, B, Z and D k-points, showing how such bands become degenerate in Z and D. On the hand, despite in B the topological
pattern is similar for both bands, no degeneracy is observed since the same kind of interaction occurs, in one case, within the same
2-D network (parallel to the ab plane) and, in the other, involving different nearby layers.
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Fig. S14 Schematic 2-D representation of the m-interactions along the bc plane in [(AgCl)(3-pica)]» (top) and [(AgBr)(3-pica)], (bottom).
For the sake of clarity, a 1x1x2 supercell is used for [(AgCl)(3-pica)]» crystal and the 3-pica 1t systems belonging to the inorganic helix
of opposite chirality are dashed in [(AgBr)(3-pica)],. The lowest four conduction bands (I-1V) are sketched as linear combinations of
the same lowest i* orbital centred on each of the two couples of 3-pica ligands found in the crystal cells; the four linear combinations
are obtained by an in-phase or out-of-phase mixing within each inorganic helix and in between the two helixes of the cells. For all
bands, orbital contributions are sketched at T, B, Z and D k-points. In [(AgCl)(3-pica)l,, all bands become degenerate in Z and D due
to the presence of equivalent helixes staked along c; the four-fold degeneracy is removed in [(AgBr)(3-pica)], since the two helixes of
different chirality lead to a different rearrangement of the 3-pica ligands, leading to stronger m—m interactions within chains of
opposite chirality (accordingly, just bands I and Ill are degenerate along Z—D-B, and the same occurs for Il and IV).
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Fig. S15 View of the [(AgBr)(3-pica)]n crystal showing the reduced gradient density isosurfaces at 0.40 a.u., mapped using the product
of the electron density and the second eigenvalue of the electron-density Hessian matrix (green coloured regions indicate non-
covalent interactions).

Fig. S16 Structural overlap (obtained by maximising the superpositions of silver atoms) between experimental (gray) and DFT-
optimized structures of [(AgCl)(4-pica)l, (left, green) and [(AgBr)(4-pica)ln (right, orange).
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Fig. S17 View of the Ag,X; unit in both a) [(AgBr)(4-pica)], and b) [(AgCl)(4-pica)], crystals along with the reduced gradient density
isosurfaces at 0.33 a.u., mapped using the product of the electron density and the second eigenvalue of the electron-density Hessian
matrix (colours span from red to blue, indicating repulsive or attractive interactions, respectively). The argentophilic interaction is
clearly visible at the centre of each Ag,X; ring.
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Raman spectroscopy
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Fig. S18 Raman spectra of AgCl (red) and AgBr (black). For AgCl, the vibrational modes at 101 and 150 cm- correspond to the lattice
vibrations of the silver (Ag) atoms within the crystal structure; the mode at 238 cm is associated with the stretching vibrations of
the Ag-Cl bonds located at the terminal positions of the crystal structure.? In the case of AgBr, similar to what is observed in AgCl, the
low-wavelength mode at 140 cm! corresponds to the vibrational modes of the Ag lattice. The mode at 172 cm! is associated with
the stretching of the Ag-Br bonds.3
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Fig. S19 Left: Raman spectra of 2-pica (black), 3-pica (red) and 4-pica (blue).
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Fig. $20 Raman spectra of [(AgCl)(2-pica)]n (red) and [(AgBr)(2-pica)]» (black). The band at 81 cm is ascribed to the presence of the
metallophilic interactions.
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Fig. $21 Raman spectra of [(AgCl)(3-pica)]n (red) and [(AgBr)(3-pica)], (black).
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Fig. $22 Raman spectra of [(AgCl)(4-pica)]n (red) and [(AgBr)(4-pica)], (black).

Rietveld refinement
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Fig. S23 Rietveld refinement (red line) on [(AgCl)(4-pica)], diffraction pattern (blue line). Peaks of unreacted AgCl are present. In grey,

the difference plot.
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Thermogravimetric analysis
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Fig. S24 TGA analysis of [(AgCl)(2-pica)l.. The partial release of 2-pica starts at temperatures higher than 50°C, while the melting
point is observed at 70°C. The first weight lost (50°-150°C) is ascribable only to partial release of the 2-pica. At temperatures higher
than 350°C the residual weight correspond to the AgCl (analysis 65% calc. 57%, the higher experimental value could be due to the
presence of unreacted AgCl).
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Fig. S25 TGA analysis of [(AgCl)(3-pica)]». The weight loss can be ascribed to the loss of the 3-pica after melting (see figure S32). It is
worth noting that the ligand is released in two different steps and at 250°C the residual powder is ascribable to the AgCl (analysis
60%, calc. 57%).
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Fig. $26 TGA analysis of [(AgCl)(4-pica)],. The first weight lost corresponds to the first endothermic peak and is ascribable to a partial
release of the 4-pica. The full release of the ligand is observed at temperatures higher than 250°C.
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Fig. $27 DSC analysis of [(AgCl)(2-pica)]n. The endothermic peak at 70°C is due to the incongruent melting.

19

N . X o
o o o P
> = o o

&
(=]
Derivative Weight % (%/min) — —

20

F-22

F-24

25



AgCl 3pica 1°heating
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Fig. S28 DSC analysis of [(AgCl)(3-pica)]». The endothermic peak at 96°C is followed by an exothermic peak (99°C) and then by another
endothermic peak at 106°C. These events suggest a melting followed by recrystallization and a second melting peak. Further
investigations are in progress to understand the thermal behaviour of [(AgCl)(3-pica)]n..
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Fig. $29 DSC analysis of [(AgCl)(4-pica)]n. The endothermic peak at 127°C is followed by an exothermic peak at 131°C. Additional
studies are required to fully characterize the system.

Solid state absorption and emission spectroscopy
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Fig. S30 Normalized absorption spectra of polymers [(AgX)(2-pica)]n (left), [(AgX)(3-pica)]. (middle) and [(AgX)(4-pica)]n (right), with
X =Cl, Br (red and black lines respectively), as powder at room temperature. Low-energy absorption features may be due to traces
of metallic silver.
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Fig. $31 Normalized emission spectra of all the investigated samples (as powder) recorded at 77 K (blue) and 298 K (red).
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