Supplementary Information

Hydrogen Isotope Separation at Exceptional High Temperature Using Unsaturated Organometallic Complex

Taku Kitayama,^a Tamon Yamauchi,^a Kaiji Uchida,^{ab} Syunya Tanaka,^a Ryojun Toyoda,^a

Hiroaki Iguchi,^a Ryota Sakamoto,^a Hao Xue, ^a Naoki Kishimoto,^a Takefumi Yoshida,^c

Tomoya Uruga, de Shin-ichiro Noro, f and Shinya Takaishi*ag

a Department of Chemistry, Graduate School of Science, Tohoku University, 6-3 Arama-ki-Aza-Aoba, Aoba-ku, Sendai 980-8578, Japan b Tokyo Metropolitan Industrial Technology Research Institute, 2-4-10 Aomi, Koto, Tokyo 135-0064,

b Tokyo Metropolitan Industrial Technology Research Institute, 2-4-10 Aomi, Koto, Tokyo 155-0064, Japan

c Cluster of Nanomaterials, Graduate School of Systems Engineering, Wakayama University. 930 Sakaedani, Wakayama, 640-8510, Japan

d Research & Utilization Division, Japan Synchrotron Radiation Research Institute, SPring-8, Sayo, Hyogo 679-5198, Japan

e Innovation Research Center for Fuel Cells, The University of Electro-Communications, Chofu, Tokyo, 182-8585 Japan

f Faculty of Environmental Earth Science, Hokkaido University, Sapporo 060-0810, Japan

g Physical and Chemical Research Infrastructure Group, RIKEN SPring-8 Center, RIKEN, Sayo, Hyogo, Japan E-mail: <u>shinya.takaishi.d8@tohoku.ac.jp</u>

*Corresponding author: Assoc. Prof. Dr. Shinya Takaishi Department of Chemistry, Graduate School of Science, Tohoku University, 6-3 Aramaki-Aza-Aoba, Aoba-ku, Sendai 980-8578, Japan. Tel: +81- 22-795-6545 FAX: +81- 22-795-6548

Contents for SI

Fig S1. Adsorption isotherm of Mn-dppe ·····	S3
Fig S2. van't Hoff plot for Mn-dppe ·····	S3
Fig S3. Equivalent differential heat of adsorption	S4
Table S1 Fitting parameter in Langmuir fitting.	S4
Table S2 Equilibrium constant of H_2 and D_2 adsorption at each temperature	S4
Fig S4 XAFS spectra of Mn-dppe before and after hydrogen adsorption…	S5
Fig S5 Experimental and fitted EXAFS spectra (R-plot) of Mn-dppe before a	and after
hydrogen adsorption	S6
Table S3 Fitting parameters for EXAFS spectra of Mn-dppe before and after h	nydrogen
adsorption	S6
Fig S6 Mixed gas adsorption isotherm calculated by IAST method	S7
Fig S7 Calculated selectivity vs. total pressure	S 8
Fig S8 Plot of selectivity against temperature of the hydrogen isotope separation is	naterials
at high temperature	S9
Table S4 Selectivity and working temperature of the hydrogen isotope se	eparation
materials	S9
Table S5 Computed the thermodynamic parameters for H_2 and D_2 adducts	S10
Table S6 Computed difference of vibration mode involved with dihydrogen for	$r H_2$ and
D ₂ adducts	S11
Fig S9 Plot of the calculated differences in frequency in each vibration mode bet	тт
	ween H_2
adducts and D_2 adducts vs. frequency of H_2 adducts $\cdots \cdots \cdots$	S12 S12
adducts and D2 adducts vs. frequency of H2 adductsFig S10 Plot of the calculated dihydrogen isotope separation factor vs. the difference	S12
adducts and D_2 adducts vs. frequency of H_2 adducts \cdots Fig S10 Plot of the calculated dihydrogen isotope separation factor vs. the difference represented calculated vibration energy involved with H_2 or D_2 \cdots	S12 S12 erence of S13
adducts and D2 adducts vs. frequency of H2 adductsFig S10 Plot of the calculated dihydrogen isotope separation factor vs. the differencerepresented calculated vibration energy involved with H2 or D2Fig S11. Optimized structures of the Mn complexes	Since H_2 Since $Since of$ Since $Since Since Since$
adducts and D2 adducts vs. frequency of H2 adductsFig S10 Plot of the calculated dihydrogen isotope separation factor vs. the differepresented calculated vibration energy involved with H2 or D2Fig S11. Optimized structures of the Mn complexesFig S12 Optimized structures of the Mn complexes	Sizerence of Sizerence of Sizerence
adducts and D2 adducts vs. frequency of H2 adductsFig S10 Plot of the calculated dihydrogen isotope separation factor vs. the differepresented calculated vibration energy involved with H2 or D2Fig S11. Optimized structures of the Mn complexesFig S12 Optimized structures of the Mn complexesFig S13 Optimized structures of the Mn complexes	Sizerence of Sizerence of Sizerence
adducts and D2 adducts vs. frequency of H2 adductsFig S10 Plot of the calculated dihydrogen isotope separation factor vs. the differepresented calculated vibration energy involved with H2 or D2Fig S11. Optimized structures of the Mn complexesFig S12 Optimized structures of the Mn complexesFig S13 Optimized structures of the Mn complexesTable S7-S24 The cartesian coordinates of the optimized structure	ween H ₂ S12 erence of S13 S14 S15 S16 S17-S41

Fig S1 Adsorption isotherm of **Mn-dppe** for (a) H_2 and (b) D_2 , (c) van't Hoff plot for Mn-dppe; red-point represent D_2 and black point represent H_2 .

Fig, S2 van't Hoff plot for Mn-dppe; red-point represent D₂ and black point represent H₂.

Fig S3 Equivalent differential heat of adsorption (333K, 343K, 353K), where red line represents adsorption enthalpy of D_2 , black line represents adsorption enthalpy of H_2 .

Gas	<i>T /</i> K	$V_{\rm m}$ /ml(STP)·g ⁻¹	K	R^2 value
H ₂	313		104.0(16)	0.9990
	333		32.7(4)	0.9986
	343	12.423(16)	20.1(2)	0.9989
	353		11.57(12)	0.9989
	363		7.29(7)	0.9993
D ₂	313		204(4)	0.9968
	333		60.3(10)	0.9985
	343	12.437(17)	32.8(5)	0.9995
	353		19.4(3)	0.9991
	363		11.52(14)	0.9978

Table S1 Fitting parameter in Langmuir fitting of the H₂ and D₂ adsorption isotherms

Table S2 Equilibrium constant of H_2 and D_2 adsorption at each temperature.

T/K	K _{H2}	к _{D2}	$K_{H2/}K_{D2}$
313	104.02	204.17	1.96
333	32.74	60.41	1.85
343	20.12	32.84	1.63
353	11.57	19.45	1.68
363	7.29	11.54	1.58

Fig S4 (a) XAFS spectra, (b) XANES region, (c) R-plots and (d) k-plots of EXAFS spectra in **Mn-dppe** before dihydrogen adsorption (red) and after dihydrogen adsorption (blue) at 313 K.

Fig S5 Measured (blue) and fitted (red) curves of the R-plots in the EXAFS spectra for **Mn-dppe** before dihydrogen adsorption (a) and after dihydrogen adsorption (b) at 313 K.

	S ²	Mn-C	Mn-P	σ _C	σ _P	R-factor
		distance (A)	distance (A)			
Mn-dppe as	0.938(3)	1.80(4)	2.301(14)	0.0008(32)	0.007(3)	0.012
synthesis						
Mn-dppe after	0.938	1.84(2)	2.32(3)	-0.0004(28)	0.012(2)	0.0267
H ₂ adsorption	(fixed)					

Table S3 Fitting parameters of EXAFS for Mn-dppe before and after H_2 adsorption.

Fig S6 Mixed gas ($H_2:D_2 = 1:1$) adsorption isotherm calculated using pyIAST[10] at each temperature; (a) 313 K, (b) 333 K, (c) 343 K, (d) 353 K, (e) 363 K, where orange points represent D_2 uptake, blue points represent H_2 uptake, and gray points represent total uptake.

Fig S7 Calculated selectivity vs. total pressure, where blue points represent 313 K, orange points represent 333 K, gray points represent 343 K, yellow points represent 353 K, and green points represent 363 K.

Fig S8 Plot of selectivity against temperature of the hydrogen isotope separation materials at high temperature, where blue points represent previously reported materials and red points represent the materials in this work

Table S4 S	Selectivity and	working temper	rature of the	hydrogen	isotope	separation
materials (working tempe	erature is over 8	0 K)			

Compound	Selectivity	Temperature / K	Reference
1	1.98	313	This work
CPO-27-Co	6.3	80	[1]
Cu-MFU-41	7.1	90	[2]
Cu-MFU-41	11.1	100	[2]

Entry	Functional Basis sets		AH^{O} (II) / 1-I 1-1	AH° (D) / 1-1 1-1	$\Lambda \Lambda H^0$ 1 J 1 – 1		
		Mn	$H_{2}(D_{2})$	others	ΔH (H ₂) / KJ·mol ⁻¹	Δm (D ₂) / KJ·mol ⁻¹	ZZII KJ·mol
1	B3LYP	def2-TZVP	cc-pVDZ	6-31G	51.16	55.53	4.37
2	B3LYP	def2-TZVP	aug-cc-pVDZ	6-31G	40.70	44.97	4.27
3	M06	def2-TZVP	cc-pVDZ	6-31G	61.71	66.73	5.03
4	M06	def2-TZVP	aug-cc-pVDZ	6-31G	50.81	55.67	4.87
5	wB97X-D	def2-TZVP	cc-pVDZ	6-31G	68.32	73.11	4.79
6	wB97X-D	def2-TZVP	aug-cc-pVDZ	6-31G	56.94	61.67	4.73

Table S5 Computed thermodynamic parameters for H_2 and D_2 adducts

Compound	vibratio	vibrational difference ^a / cm ⁻¹		Tr (1 1:00 b / -1		Separation
Compound	Δv_{sym}	Δv_{asym}	Δv_{H-H}	1 otal difference ⁶ / cm ⁻¹	$\Delta ZFE / KJ·mol^{-1}$	factor
Mn-dppe	338.8	504.1	978.6	1821.5	10.9	2.75
Mn(CO) ₅	297.1	457.2	967.0	1721.3	10.3	2.13
Mn-PMe ₃	309.0	485.8	969.0	1763.8	10.5	2.31
Mn-PH ₃	302.6	477.9	982.9	1763.5	10.5	2.35
Mn-dmpe	312.3	483.4	954.0	1749.7	10.5	2.18
Mn-bpy	255.8	429.1	1030.5	1715.4	10.3	1.89
Mn-dmbpy	264.4	429.4	1033.1	1726.9	10.3	1.93
Mn-dcbpy	257.4	429.9	1029.2	1716.5	10.3	1.88
Mn-bpyOMe	252.5	429.9	1034.0	1716.4	10.3	1.96

Table S6. Computed difference of vibration mode involved with dihydrogen for H₂ and D₂ adducts.

a, vibrational difference were calculated by following equation; $\Delta v_{sym} = v_{sym}(M-H_2) - v_{sym}(M-D_2)$, $\Delta v_{asym} = v_{asym}(M-H_2) - v_{asym}(M-D_2)$, $\Delta v_{H-H} = v_{H-H}(M-H_2) - v_{D-D}(M-D_2)$.

b, total difference was sum of the three vibrational differences.

Fig S9 Plot of the calculated differences in frequency in each vibration mode between H_2 adducts and D_2 adducts vs. frequency of H_2 adducts, (a) symmetric vibration between metal and dihydrogen (v_{sym}), (b) separation factor vs. asymmetric vibration between metal and dihydrogen (v_{asym}), (c) separation factor vs. symmetric vibration between the hydrogen (v_{H-H})

Fig S10 (a) Represented vibration mode involved with dihydrogen (b) - (d) Plot of the calculated dihydrogen isotope separation factor *vs*. the difference of represented calculated vibration energy involved with H₂ or D₂ between H₂ adducts and D₂ adducts on the corresponding unsaturated Mn complexes series, (b) separation factor *vs*. symmetric vibration between metal and dihydrogen (Δv_{sym}), (c) separation factor *vs*. asymmetric vibration between the hydrogen (Δv_{H-H}), where the red points represent Mn-dppe. Grey points represent the corresponding unsaturated Mn complexes.

Fig S11. Optimized structures of various unsaturated Mn complexes and the H_2 adducts; $10[Mn(dppe)_2(CO)]^+$ (a), $[Mn(dppe)_2(CO)(H_2)]^+$ (b), $[Mn(CO)_5]^+$, (c), $[Mn(CO)_5(H_2)]^+$ (d), $[Mn(PMe_3)_2(CO)_3]^+$ (e), $[Mn(PMe_3)_2(CO)_3(H_2)]^+$ (f), Mn: purple, P: orange, C: gray, O: red, H: white. The cartesian coordinate of the optimized structures were shown in Table S6-S11.

Fig S12 Optimized structures of various unsaturated Mn complexes and the H₂ adducts; $[Mn(dmpe)_2(CO)]^+$ (a), $[Mn(dmpe)_2(CO)(H_2)]^+$ (b), $[Mn(PH_3)_4(CO)]^+$, (c), $[Mn(PH_3)_4(CO)(H_2)]^+$ (d), $[Mn(bpy)(CO)_3]^+$ (e), $[Mn(bpy)(CO)_3(H_2)]^+$ (f), Mn: purple, P: orange, C: gray, O: red, N: blue, H: white. The cartesian coordinate of the optimized structures were shown in Table S12-S17.

Fig S13 Optimized structures of various unsaturated Mn complexes and the H₂ adducts; $[Mn(dmbpy)(CO)_3]^+$ (a), $[Mn(dmbpy)(CO)_3(H_2)]^+$ (b), $[Mn(dcbpy)(CO)_3]^+$, (c), $[Mn(dcbpy)(CO)_3(H_2)]^+$ (d), $[Mn(dOMebpy)(CO)_3]^+$ (e), $[Mn(dOMebpy)(CO)_3(H_2)]^+$ (f), Mn: purple, P: orange, C: gray, O: red, N: blue, H: white. The cartesian coordinate of the optimized structures were shown in Table S18-S23.

Symbol	Х	Y	Z
Р	1.385604	-1.86006	-0.27875
Р	-1.70841	-1.62093	-0.35041
Р	1.707804	1.621582	-0.34628
Р	-1.38546	1.863988	-0.25424
С	0.926797	3.346813	-0.68076
С	-0.47851	3.208666	-1.24751
Н	1.591076	3.896182	-1.35772
Н	0.896142	3.87301	0.281842
Н	-0.47031	2.886758	-2.29657
Н	-1.04009	4.148398	-1.17806
С	0.475609	-3.1967	-1.27944
С	-0.92579	-3.34181	-0.70407
Н	1.038524	-4.13652	-1.22269
Н	0.45895	-2.86479	-2.32538
Н	-0.88719	-3.87586	0.253902
Н	-1.59355	-3.88724	-1.38077
С	-0.01848	0.019399	-2.14143
0	-0.04039	0.040125	-3.3356
С	3.104891	1.59428	-1.59213
С	4.430495	1.407202	-1.19146
С	2.805579	1.779818	-2.94864
С	5.452544	1.419909	-2.14175
Н	4.670551	1.255767	-0.14171
С	3.831079	1.790902	-3.89321
Н	1.776462	1.908756	-3.2771
С	5.156091	1.616039	-3.49002
Н	6.48143	1.276365	-1.8239
Н	3.594235	1.941551	-4.94232
Н	5.954575	1.633093	-4.22605
С	2.602061	1.87877	1.277062

Table S7. The cartesian coordinates of the optimized structure for $[Mn(dppe)_2(CO)]^+$

С	3.149788	3.118663	1.626546
С	2.720467	0.801351	2.160736
С	3.783191	3.280834	2.858565
Н	3.097223	3.957811	0.93614
С	3.353126	0.963334	3.394196
Н	2.318946	-0.17235	1.886453
С	3.879478	2.206503	3.745838
Н	4.205986	4.245103	3.124466
Н	3.43424	0.119166	4.073495
Н	4.371633	2.337926	4.704847
С	1.419915	-2.70158	1.394333
С	2.068974	-3.92803	1.589006
С	0.66579	-2.15281	2.437866
С	1.967787	-4.58606	2.814518
Н	2.657635	-4.36855	0.786475
С	0.554427	-2.81565	3.660511
Н	0.133578	-1.21175	2.294767
С	1.209697	-4.03223	3.849
Н	2.475682	-5.53468	2.960729
Н	-0.04813	-2.38616	4.455613
Н	1.126857	-4.55277	4.798292
С	3.133074	-1.95055	-0.91221
С	3.342482	-1.85732	-2.29427
С	4.228156	-2.05937	-0.04816
С	4.637326	-1.90521	-2.80709
Н	2.501067	-1.73166	-2.97373
С	5.5229	-2.1079	-0.56753
Н	4.076133	-2.1185	1.027372
С	5.727366	-2.03912	-1.94525
Н	4.794489	-1.8303	-3.87906
Н	6.369681	-2.20424	0.105802
Н	6.735091	-2.08244	-2.34807

С	-3.11369	-1.58896	-1.58709
С	-4.43613	-1.40004	-1.1767
С	-2.82442	-1.7735	-2.94583
С	-5.46492	-1.41002	-2.11964
Н	-4.66819	-1.24825	-0.12521
С	-3.85657	-1.78175	-3.88313
Н	-1.79785	-1.90356	-3.28172
С	-5.17838	-1.60535	-3.47021
Н	-6.49127	-1.26504	-1.79437
Н	-3.62751	-1.93144	-4.9341
Н	-5.98215	-1.62036	-4.20052
С	-2.59444	-1.89175	1.275277
С	-3.13358	-3.13628	1.621378
С	-2.71744	-0.81827	2.163131
С	-3.76251	-3.30705	2.854581
Н	-3.07786	-3.97244	0.927638
С	-3.34581	-0.98885	3.397619
Н	-2.32261	0.158895	1.891567
С	-3.8632	-2.23668	3.746105
Н	-4.17851	-4.27495	3.117983
Н	-3.43058	-0.1477	4.080184
Н	-4.35195	-2.37478	4.705913
С	-3.12938	1.956251	-0.89687
С	-4.23095	2.094646	-0.04576
С	-3.3262	1.838407	-2.27921
С	-5.52002	2.149364	-0.57913
Н	-4.08878	2.171538	1.029964
С	-4.61513	1.893906	-2.80559
Н	-2.47987	1.684643	-2.94708
С	-5.71171	2.058313	-1.95732
Н	-6.37213	2.268136	0.083824
Н	-4.76275	1.800523	-3.87747

Н	-6.71481	2.107256	-2.37091
С	-1.41853	2.694253	1.423967
С	-2.06221	3.922188	1.626942
С	-0.66507	2.136204	2.463138
С	-1.9571	4.572113	2.8565
Н	-2.64895	4.370942	0.827584
С	-0.54928	2.791226	3.689543
Н	-0.13702	1.193887	2.313322
С	-1.19981	4.009024	3.88652
Н	-2.46099	5.521851	3.009179
Н	0.052829	2.354561	4.481037
Н	-1.11363	4.523403	4.838866
Mn	-0.00141	0.002305	-0.40207

Table S8 The cartesian coordinates of the optimized structure for

$[Mn(dppe)_2(CO)(H_2)]$]+		
Symbol	Х	Y	Ζ
Р	1.46927	-1.81717	-0.15443
Р	-1.66088	-1.67303	-0.2214
Р	1.661144	1.672678	-0.22162
Р	-1.46917	1.817151	-0.15432
С	0.799289	3.36825	-0.47473
С	-0.56356	3.180932	-1.1214
Н	1.45989	4.000896	-1.07866
Н	0.690523	3.821066	0.519764
Н	-0.4843	2.853839	-2.16562
Н	-1.1581	4.101766	-1.09178
С	0.563802	-3.18122	-1.12129
С	-0.79898	-3.36855	-0.47447
Н	1.158435	-4.102	-1.09148
Н	0.484413	-2.85437	-2.16559

Н	-0.69001	-3.82128	0.520046
Н	-1.45965	-4.00127	-1.07823
С	-0.00126	0.001347	-1.97043
0	-0.00316	0.003727	-3.15994
С	2.980526	1.757404	-1.55326
С	4.33712	1.626376	-1.24347
С	2.592179	1.997403	-2.87852
С	5.296834	1.743176	-2.25021
Н	4.651062	1.437842	-0.21956
С	3.55478	2.112802	-3.88021
Н	1.541252	2.090924	-3.141
С	4.909203	1.989667	-3.56646
Н	6.349328	1.641879	-2.00057
Н	3.245723	2.304844	-4.90344
Н	5.659034	2.087415	-4.34603
С	2.658315	1.945812	1.337264
С	3.192639	3.202992	1.645842
С	2.900259	0.868194	2.195108
С	3.936596	3.379889	2.812293
Н	3.042651	4.044079	0.972409
С	3.648592	1.04403	3.360562
Н	2.514254	-0.11984	1.951165
С	4.161525	2.302762	3.672361
Н	4.344772	4.358175	3.048066
Н	3.829298	0.198111	4.017989
Н	4.74176	2.445037	4.579057
С	1.782088	-2.78272	1.433229
С	2.5701	-3.94305	1.38635
С	1.166637	-2.43069	2.639725
С	2.749155	-4.72342	2.527035
Н	3.058103	-4.23486	0.458642
С	1.345642	-3.21432	3.782973

Н	0.531299	-1.55123	2.703553
С	2.13841	-4.3588	3.728549
Н	3.364598	-5.61673	2.477247
Н	0.859668	-2.92948	4.711422
Н	2.277646	-4.96811	4.616349
С	3.148544	-1.76296	-0.96716
С	3.214684	-1.63972	-2.36113
С	4.33082	-1.80199	-0.21882
С	4.452849	-1.59443	-2.99992
Н	2.305523	-1.56356	-2.95483
С	5.567806	-1.75621	-0.86319
Н	4.292599	-1.88399	0.86514
С	5.629837	-1.66216	-2.25312
Н	4.496682	-1.49915	-4.08082
Н	6.481506	-1.79958	-0.27738
Н	6.593025	-1.63294	-2.75427
С	-2.98034	-1.75799	-1.55292
С	-4.33695	-1.62712	-1.24313
С	-2.59198	-1.99845	-2.87808
С	-5.29665	-1.74441	-2.24983
Н	-4.65094	-1.43861	-0.21923
С	-3.55455	-2.1144	-3.87972
Н	-1.54103	-2.09206	-3.14047
С	-4.90898	-1.9913	-3.566
Η	-6.34916	-1.64322	-2.00024
Н	-3.24548	-2.30683	-4.90288
Н	-5.65881	-2.08941	-4.34553
С	-2.65795	-1.94576	1.337611
С	-3.19107	-3.20307	1.647643
С	-2.90114	-0.86728	2.194042
С	-3.93504	-3.37922	2.81421
Н	-3.04014	-4.04485	0.975295

3 64047	1 0/228	2 2506
-3.04947	-1.04238	1.049942
-2.31607	0.120783	1.948843
-4.16117	-2.30125	3.6/2896
-4.3423	-4.35761	3.051152
-3.83113	-0.19581	4.015928
-4.74141	-2.44297	4.579678
-3.14815	1.76245	-0.96765
-4.33071	1.803539	-0.21985
-3.21379	1.637226	-2.36149
-5.56747	1.757818	-0.86464
-4.29287	1.887022	0.864003
-4.45177	1.592308	-3.00068
-2.30448	1.559094	-2.95474
-5.62901	1.662068	-2.25449
-6.48137	1.802745	-0.27927
-4.49522	1.495823	-4.08149
-6.59201	1.633096	-2.756
-1.78233	2.782852	1.433116
-2.5698	3.943546	1.385906
-1.1678	2.430359	2.639941
-2.74917	4.723845	2.526586
-3.05713	4.235681	0.457947
-1.34716	3.213889	3.783196
-0.53287	1.550617	2.704008
-2.13936	4.358754	3.728431
-3.36415	5.617463	2.476535
-0.86193	2.928683	4.71192
-2.27888	4.968015	4.616224
0.000011	-3.2E-05	-0.19935
0.362423	0.203397	1.438627
-0.36227	-0.2031	1.438624
	-3.64947 -2.51607 -4.16117 -4.3423 -3.83113 -4.74141 -3.14815 -4.33071 -3.21379 -5.56747 -4.29287 -4.45177 -2.30448 -5.62901 -6.48137 -4.49522 -6.59201 -1.78233 -2.5698 -1.1678 -2.74917 -3.05713 -1.34716 -0.53287 -2.13936 -3.36415 -0.86193 -2.27888 0.000011 0.362423 -0.36227	-3.64947 -1.04238 -2.51607 0.120783 -4.16117 -2.30125 -4.3423 -4.35761 -3.83113 -0.19581 -4.74141 -2.44297 -3.14815 1.76245 -4.33071 1.803539 -3.21379 1.637226 -5.56747 1.757818 -4.29287 1.887022 -4.45177 1.592308 -2.30448 1.559094 -5.62901 1.662068 -6.48137 1.802745 -4.49522 1.495823 -6.59201 1.633096 -1.78233 2.782852 -2.5698 3.943546 -1.1678 2.430359 -2.74917 4.723845 -3.05713 4.235681 -1.34716 3.213889 -0.53287 1.550617 -2.13936 4.358754 -3.36415 5.617463 -0.86193 2.928683 -2.27888 4.968015 0.000011 $-3.2E-05$ 0.362423 0.203397 -0.36227 -0.2031

Symbol	X	Y	Z
Mn	0.00004	-3.9E-05	-0.32984
С	1.381611	-1.3087	-0.38294
0	2.217112	-2.1002	-0.40127
С	-1.38154	1.308623	-0.38281
0	-2.21701	2.100153	-0.40106
С	0.000091	-9.8E-05	1.503441
0	0.000139	-0.00015	2.658852
С	-1.30876	-1.38147	-0.38313
С	1.30862	1.381593	-0.38312
0	-2.10045	-2.2168	-0.40218
0	2.100067	2.217165	-0.40216

Table S9 The cartesian coordinates of the optimized structure for $[Mn(CO)_5]^+$

Table S10 The cartesian coordinates of the optimized structure for $[Mn(CO)_5(H_2)]^+$

Symbol	Х	Y	Z
Mn	-4E-06	0.000079	-0.32325
H(Iso=1)	-0.4051	-0.10762	-1.98685
H(Iso=1)	0.405537	0.105902	-1.98687
С	0.424217	-1.84696	-0.35992
0	0.681885	-2.96927	-0.37576
С	-0.42444	1.846981	-0.36301
О	-0.68193	2.969298	-0.38055
С	-0.00063	0.002895	1.547039
О	-0.00103	0.004728	2.69987
С	-1.84427	-0.4247	-0.31368
С	1.844856	0.422308	-0.31372
О	-2.9665	-0.68382	-0.29208
О	2.967724	0.678637	-0.29214

Symbol	X	Y	Z
Mn	-8E-06	0.000006	-0.1624
Р	-2.35073	-7.8E-05	-0.25267
Р	2.350723	0.000069	-0.25268
С	-0.00019	1.847524	-0.20883
0	-0.00036	3.013733	-0.21382
С	0.000174	-1.84751	-0.20878
0	0.000404	-3.01372	-0.21375
С	0.000006	0.000029	1.615359
0	0.000033	0.000063	2.787844
С	-3.10405	-1E-06	-1.96584
С	-3.16731	-1.45819	0.581953
С	-3.16722	1.457908	0.582242
С	3.104056	-0.00023	-1.96584
С	3.16718	-1.45784	0.582409
С	3.167321	1.45826	0.581779
Н	-4.1961	-4.8E-05	-1.87589
Н	-2.8931	-2.3873	0.072726
Н	-2.8929	2.387108	0.07324
Н	4.1961	-0.0002	-1.87588
Н	2.892833	-2.38709	0.073524
Н	2.893144	2.387318	0.072437
Н	2.789319	0.892402	-2.51457
Н	2.789364	-0.89306	-2.51427
Н	4.255414	1.336834	0.550973
Н	2.84016	1.511453	1.625629
Н	2.839994	-1.51045	1.626288
Н	4.255293	-1.33663	0.551577
Н	-2.78929	-0.8927	-2.51445
Н	-2.78937	0.89277	-2.51438

Table S11 The cartesian coordinates of the optimized structure for $[Mn(PMe_3)_2(CO)_3]^+$

Н	-4.25533	1.336675	0.551433
Н	-2.84003	1.510664	1.626111
Н	-2.84016	-1.51125	1.625814
Н	-4.2554	-1.33679	0.551117

Table S12 The cartesian coordinates of the optimized structure for

$[\text{NIII}(\text{PMe}_3)_2(\text{CO})_3(\text{H}_2)]$	2)]		
Symbol	X	Y	Z
Mn	-9E-06	0.000005	-0.26544
H(Iso=1)	0.416345	0.000311	-1.91308
H(Iso=1)	-0.41637	-0.00019	-1.91309
Р	-2.35107	0.000079	-0.18351
Р	2.351067	-5.3E-05	-0.18353
С	0.000083	1.843798	-0.30881
0	0.000232	3.010118	-0.31515
С	-0.00015	-1.84379	-0.30894
0	-0.00022	-3.01011	-0.31532
С	-7E-06	-4.9E-05	1.542028
0	0.000066	-0.00019	2.711859
С	-3.26817	-9.9E-05	-1.81098
С	-3.08509	-1.45699	0.725298
С	-3.08506	1.457327	0.725043
С	3.268176	0.000364	-1.81099
С	3.085091	-1.4574	0.72484
С	3.085058	1.456916	0.725473
Н	-4.34753	-0.00028	-1.62232
Н	-2.84802	-2.38722	0.19968
Н	-2.84787	2.387499	0.19939
Н	4.34753	0.00056	-1.62233
Н	2.84792	-2.38751	0.199062
Н	2.847964	2.387205	0.199973
Н	3.00335	0.894059	-2.38523

 $[Mn(PMe_3)_2(CO)_3(H_2)]^+$

Н	3.003698	-0.89329	-2.38545
Н	4.172731	1.341634	0.783097
Н	2.672684	1.502212	1.739173
Н	2.67277	-1.50301	1.738553
Н	4.172768	-1.34217	0.782441
Н	-3.00337	-0.89373	-2.38533
Н	-3.00366	0.893625	-2.38532
Н	-4.17274	1.342107	0.782625
Н	-2.67274	1.502785	1.738763
Н	-2.67271	-1.50242	1.73899
Н	-4.17276	-1.34169	0.782942

Table S13 The cartesian coordinates of the optimized structure for $[Mn(dmpe)_2(CO)]^+$

Symbol	X	Y	Z
Р	1.630623	-1.64391	-0.19199
Р	1.793478	1.489468	-0.18058
Р	-1.79351	-1.4895	-0.18048
Р	-1.63064	1.643885	-0.19206
С	-3.40788	-0.50584	-0.41973
С	-3.28288	0.835551	0.287173
Н	-4.24754	-1.10131	-0.03868
Н	-3.55335	-0.37549	-1.50159
Н	-3.2621	0.710981	1.379853
Н	-4.10683	1.517035	0.038779
С	3.282862	-0.83556	0.28718
С	3.407854	0.505805	-0.41978
Н	4.106812	-1.51705	0.038799
Н	3.262104	-0.71094	1.379855
Н	3.553325	0.375405	-1.50164
Н	4.247512	1.101295	-0.03875
С	-1.8E-05	0.000047	1.629468
0	0.000348	0.000254	2.821084

С	-2.06781	2.461649	-1.82876
Н	-2.93617	3.116868	-1.69617
Н	-1.22063	3.055991	-2.1858
Н	-2.3019	1.699578	-2.57896
С	1.988162	2.852759	-1.45772
Н	1.248126	3.639041	-1.27437
Н	2.991168	3.288708	-1.38576
Н	1.840195	2.450668	-2.46478
С	-1.98819	-2.85285	-1.45754
Н	-1.24816	-3.63912	-1.27415
Н	-2.9912	-3.28879	-1.38556
Н	-1.84023	-2.45081	-2.46463
С	-2.1616	-2.41972	1.407124
Н	-3.07147	-3.01762	1.285744
Н	-1.32266	-3.07706	1.6564
Н	-2.29349	-1.70599	2.22649
С	-1.57634	3.111686	0.968485
Н	-1.36114	2.75774	1.982658
Н	-0.79126	3.80872	0.656142
Н	-2.53901	3.635145	0.960085
С	1.576325	-3.11165	0.968629
Н	2.539	-3.63509	0.960272
Н	1.361107	-2.75766	1.98278
Н	0.79126	-3.80871	0.656311
С	2.06777	-2.46175	-1.82866
Н	1.220579	-3.05612	-2.18565
Н	2.30183	-1.69972	-2.5789
Н	2.93614	-3.11696	-1.69606
С	2.161548	2.419762	1.406976
Н	3.07148	3.017579	1.285624
Н	1.32264	3.077183	1.656161
Н	2.293316	1.706058	2.226388

Mn -9E-06	-8E-06	-0.11081
-----------	--------	----------

Table S14 The cartesian coordinates of the optimized structure for

$[Mn(dmpe)_2(CO)(H_2)]^+$	

Symbol	X	Y	Z
Р	1.656215	-1.61072	-0.20188
Р	1.745691	1.524865	-0.11387
Р	-1.74563	-1.52485	-0.11423
Р	-1.65622	1.610734	-0.20208
С	-3.36981	-0.58802	-0.435
С	-3.30019	0.769916	0.247258
Н	-4.21055	-1.19521	-0.07525
Н	-3.46945	-0.48367	-1.52529
Н	-3.30883	0.667134	1.342446
Н	-4.13374	1.424582	-0.03818
С	3.300139	-0.76995	0.247763
С	3.369905	0.588016	-0.43442
Н	4.133712	-1.42462	-0.03758
Н	3.308603	-0.66722	1.342957
Н	3.469712	0.483711	-1.5247
Н	4.210601	1.195172	-0.07451
С	-0.00015	-3.5E-05	1.617744
О	-0.00023	-0.0001	2.803802
Mn	0.000012	0.000016	-0.15424
С	-2.08143	2.443125	-1.8306
Н	-2.9488	3.101137	-1.70702
Н	-1.22745	3.034481	-2.17797
Н	-2.30728	1.68099	-2.58426
С	-1.64488	3.06111	0.980544
Н	-0.86267	3.772773	0.694472
Н	-2.61315	3.573879	0.960416
Н	-1.44605	2.696756	1.9945

С	2.128855	2.395553	1.502186
Н	2.321613	1.653734	2.283747
Н	3.007919	3.037436	1.379163
Н	1.273315	3.004429	1.811628
С	1.871805	2.942872	-1.33404
Н	2.851961	3.426025	-1.25011
Н	1.738223	2.564516	-2.35344
Н	1.092959	3.684158	-1.124
С	1.644624	-3.06113	0.980697
Н	2.612883	-3.57392	0.960737
Н	1.445602	-2.6968	1.994626
Н	0.862453	-3.77277	0.694449
С	-2.12902	-2.39561	1.501734
Н	-2.32186	-1.65382	2.283304
Н	-3.00809	-3.03747	1.378563
Н	-1.27354	-3.00453	1.811257
С	-1.87151	-2.94281	-1.33447
Н	-1.09267	-3.68408	-1.12433
Н	-2.85166	-3.426	-1.25072
Н	-1.73777	-2.56441	-2.35384
С	2.081666	-2.44306	-1.83036
Н	2.948985	-3.10112	-1.70666
Н	1.227709	-3.03436	-2.1779
Н	2.307673	-1.6809	-2.58395
H(Iso=1)	-0.28773	-0.30349	-1.81519
H(Iso=1)	0.288022	0.303584	-1.81512

Table S15 The cartesian coordinates of the op	otimized structure for	$[Mn(PH_3)_2(CO)_3]^+$
---	------------------------	------------------------

Symbol	Х	Y	Z
Mn	0.000026	0.000038	-0.23082
Р	1.628125	1.716297	-0.34692
Н	1.323228	2.973565	0.263668

Н	2.899722	1.476337	0.263211
Н	2.081467	2.193749	-1.61895
Р	1.716279	-1.62806	-0.34703
Н	2.97353	-1.32322	0.263618
Н	1.476281	-2.8997	0.262994
Н	2.193773	-2.08131	-1.61908
Р	-1.62808	-1.7162	-0.34716
Н	-1.32315	-2.97361	0.263127
Н	-2.8996	-1.47634	0.263164
Н	-2.08158	-2.19338	-1.61924
Р	-1.71624	1.628131	-0.34703
Н	-2.19376	2.081336	-1.61908
Н	-2.97347	1.323287	0.263655
Н	-1.47626	2.899796	0.262955
С	-1.3E-05	0.000003	1.536932
0	-0.00026	-0.0005	2.717626

Table S16 The cartesian coordinates of the optimized structure for

$[Mn(PH_3)_2(CO)_3(H_2)]^2$				
Symbol	X	Y	Z	
Mn	0.000002	-9.8E-05	-0.2617	
Р	-1.70569	1.628834	-0.24874	
Н	-2.35277	1.876212	1.001281	
Н	-1.39187	2.979448	-0.61031	
Н	-2.86568	1.449605	-1.07012	
Р	1.660849	1.673528	-0.32192	
Н	1.291304	3.031642	-0.59208	
Н	2.433531	1.887611	0.860929	
Н	2.730982	1.552616	-1.26722	
Р	1.705803	-1.62883	-0.2484	
Н	1.391323	-2.98021	-0.60656	
Н	2.864177	-1.45124	-1.07241	

 $[M_{p}(PH_{s})_{s}(CO)_{s}(H_{s})]^{+}$

Н	2.355387	-1.87366	1.000831
Р	-1.66085	-1.67368	-0.32177
Н	-2.72871	-1.5553	-1.26994
Н	-1.29038	-3.0324	-0.58758
Н	-2.43634	-1.88496	0.859744
С	-0.00011	0.000145	1.532426
0	-0.00023	0.000566	2.70868
H(Iso=1)	0.131371	-0.3919	-1.92779
H(Iso=1)	-0.13153	0.391748	-1.92774

Table S17 The cartesian coordinates of the optimized structure for $[Mn(bpy)(CO)_3]^+$

Symbol	X	Y	Ζ
С	1.67178	-0.73217	-0.09954
С	0.326164	-2.65215	-0.11535
С	1.441472	-3.48016	-0.0722
С	2.708284	-2.90253	-0.04691
С	2.822	-1.51356	-0.05992
С	1.671716	0.732307	-0.09955
С	0.325931	2.652171	-0.11535
С	1.441166	3.480275	-0.07224
С	2.708031	2.902757	-0.04699
С	2.821869	1.5138	-0.05998
Н	-0.67306	-3.07039	-0.13335
Н	1.310903	-4.55559	-0.05867
Н	3.597549	-3.52242	-0.01459
Н	3.801944	-1.05104	-0.03654
Н	-0.67333	3.070323	-0.13331
Н	1.310503	4.555696	-0.05873
Н	3.597243	3.522728	-0.01471
Н	3.801854	1.051368	-0.03664
N	0.429055	1.30274	-0.13354
N	0.429171	-1.30271	-0.13356

Mn	-1.12198	-5.3E-05	-0.21656
С	-2.37453	1.291159	-0.53466
С	-2.37442	-1.29136	-0.53474
С	-1.49791	-0.00014	1.534227
0	-3.16529	2.124191	-0.73496
0	-1.69223	-4E-06	2.683741
0	-3.16511	-2.12443	-0.73509

Table S18 The cartesian coordinates of the optimized structure for

$[Mn(bpy)(CO)_3(H_2)]^+$	

Symbol	Х	Y	Z
С	1.676559	-0.70688	-0.10625
С	0.375546	-2.65507	-0.14958
С	1.507259	-3.45923	-0.09095
С	2.76146	-2.8552	-0.04228
С	2.844063	-1.4656	-0.04879
С	1.650708	0.756636	-0.10299
С	0.279902	2.658037	-0.16315
С	1.380693	3.5021	-0.08242
С	2.654826	2.943104	-0.01217
С	2.788106	1.557443	-0.0215
Н	-0.61418	-3.09467	-0.18614
Н	1.39937	-4.53732	-0.08331
Н	3.66308	-3.45602	0.002838
Н	3.813063	-0.98166	-0.00843
Н	-0.72481	3.060222	-0.21753
Н	1.233755	4.575556	-0.07358
Н	3.532993	3.576028	0.052393
Н	3.77293	1.108893	0.038536
N	0.404371	1.311532	-0.17747
N	0.449763	-1.30504	-0.16164
Mn	-1.14461	-0.02759	-0.26779

С	-2.43981	1.245303	-0.45657
С	-2.39934	-1.34902	-0.36506
С	-1.28539	0.021122	1.557753
0	-3.25498	2.072209	-0.5639
0	-1.3503	0.056849	2.717323
0	-3.19058	-2.20492	-0.40744
H(Iso=1)	-1.09273	-0.44189	-1.972
H(Iso=1)	-0.74777	0.285597	-1.9485

Table S19 The cartesian coordinates of the optimized structure for $[Mn(dmbpy)(CO)_3]^+$

Symbol	X	Y	Z
0	-2.12606	3.277467	-0.73744
N	1.30425	-0.31039	-0.12801
С	0.730726	-1.54927	-0.09257
С	-1.29166	2.488051	-0.53467
С	2.653055	-0.20703	-0.11003
Н	3.070406	0.794276	-0.12973
С	3.503461	-1.31259	-0.0647
С	2.903745	-2.57777	-0.03865
Н	3.52613	-3.46768	-0.0052
С	1.518873	-2.69618	-0.05151
Н	1.059975	-3.67813	-0.02713
N	-1.30426	-0.31039	-0.12801
С	-0.73074	-1.54927	-0.09257
С	-2.65306	-0.20702	-0.11004
Н	-3.07041	0.794286	-0.12974
С	-3.50347	-1.31257	-0.0647
С	-2.90376	-2.57776	-0.03865
Н	-3.52615	-3.46767	-0.00519
С	-1.51889	-2.69617	-0.05151
Н	-1.05999	-3.67813	-0.02712
0	2.126115	3.277416	-0.73744

0	0.000022	1.815822	2.685041
С	-1.3E-05	1.619321	1.535457
С	1.291655	2.488061	-0.53465
Mn	0	1.23874	-0.21291
С	4.989681	-1.14297	-0.04378
Н	5.421367	-1.57208	0.868306
Н	5.456531	-1.6536	-0.89429
Н	5.278267	-0.08882	-0.08622
С	-4.98969	-1.14296	-0.04378
Н	-5.45654	-1.65359	-0.89428
Н	-5.42138	-1.57205	0.868312
Н	-5.27827	-0.0888	-0.08623

Table S20	The cartesian	coordinates	of the of	ptimized	structure	for
-----------	---------------	-------------	-----------	----------	-----------	-----

[Mn(d	mbpv)	(CO)	$)_2(H_2)$)]+
Livin(u	mopy		13(112	271

Symbol	X	Y	Z
О	-2.14099	3.349856	-0.40187
Ν	1.304971	-0.31213	-0.1717
С	0.722032	-1.54295	-0.09444
С	-1.30045	2.54154	-0.36011
С	2.653175	-0.21431	-0.158
Н	3.074794	0.783951	-0.21516
С	3.497002	-1.3223	-0.07442
С	2.890396	-2.58319	-0.00266
Н	3.508021	-3.47453	0.063452
С	1.506431	-2.69317	-0.01136
Н	1.04169	-3.67071	0.050297
N	-1.31565	-0.30468	-0.15423
С	-0.73871	-1.53927	-0.09648
С	-2.66322	-0.20345	-0.14211
Н	-3.08241	0.79676	-0.18139
С	-3.51175	-1.30946	-0.07953

С	-2.91053	-2.5737	-0.0283
Н	-3.53159	-3.46377	0.019956
С	-1.52694	-2.68826	-0.03541
Н	-1.06575	-3.66851	0.007349
0	2.139898	3.325221	-0.56693
0	0.090569	1.461396	2.720295
С	0.050655	1.400562	1.560288
С	1.295023	2.52831	-0.45693
Mn	-0.00451	1.262401	-0.26375
С	4.984191	-1.16058	-0.05908
Н	5.412981	-1.55883	0.868279
Н	5.448253	-1.7051	-0.88987
Н	5.279187	-0.1104	-0.13983
С	-4.99827	-1.14194	-0.06586
Н	-5.4616	-1.66608	-0.91011
Н	-5.43215	-1.55871	0.850919
Н	-5.28866	-0.08899	-0.12448
H(Iso=1)	0.289078	0.836121	-1.9403
H(Iso=1)	-0.41429	1.227576	-1.96943

Symbol	X	Y	Ζ
0	-2.11799	3.438541	-0.71928
N	1.302176	-0.16909	-0.12508
0	5.707495	-2.0312	-0.00477
С	0.731734	-1.41406	-0.08414
С	-1.29091	2.642096	-0.52155
С	2.648001	-0.06353	-0.10959
Н	3.085207	0.927993	-0.13361
С	3.473209	-1.18478	-0.06115
С	2.897161	-2.45355	-0.02807
Н	3.543473	-3.32582	0.008232

С	1.510609	-2.56635	-0.03914
Н	1.048755	-3.54611	-0.01015
С	4.949132	-1.06811	-0.04406
N	-1.30217	-0.1691	-0.12512
0	-5.70749	-2.03121	-0.00475
С	-0.73173	-1.41406	-0.08417
С	-2.648	-0.06354	-0.10969
Н	-3.0852	0.927985	-0.13373
С	-3.4732	-1.18479	-0.06129
С	-2.89715	-2.45356	-0.02818
Н	-3.54347	-3.32583	0.008091
С	-1.5106	-2.56636	-0.0392
Н	-1.04875	-3.54612	-0.0102
С	-4.94913	-1.06812	-0.04428
0	2.118015	3.438529	-0.71927
0	-8.4E-05	1.953578	2.694173
С	-2.2E-05	1.758398	1.545115
С	1.290928	2.642102	-0.52148
Mn	0.000003	1.384795	-0.20747
0	5.354133	0.225767	-0.07779
Н	6.329763	0.313183	-0.06582
0	-5.35413	0.225766	-0.07758
Н	-6.32975	0.313188	-0.06535

Table S22 The cartesian coordinates of the optimized structure for

$[Mn(dcbpy)(CO)_3(H_2)]^{+}$					
Symbol	Х	Y	Z		
О	-2.13547	3.501829	-0.39339		
Ν	1.303985	-0.17035	-0.15818		
О	5.701865	-2.04255	0.014527		
С	0.726418	-1.40852	-0.07746		
С	-1.30149	2.688858	-0.34918		

 $[Mn(dcbpy)(CO)_3(H_2)]^+$

С	2.649039	-0.06911	-0.14956
Н	3.088719	0.919935	-0.20877
С	3.469835	-1.19134	-0.06765
С	2.888868	-2.45647	0.010539
Н	3.531428	-3.32966	0.075461
С	1.503285	-2.56268	0.00618
Н	1.037282	-3.53871	0.071036
С	4.945928	-1.07959	-0.06054
N	-1.31121	-0.16684	-0.14215
0	-5.71201	-2.03657	-0.00577
С	-0.73619	-1.40696	-0.07878
С	-2.656	-0.06521	-0.13424
Н	-3.09551	0.924731	-0.17783
С	-3.47852	-1.18749	-0.07077
С	-2.89947	-2.45437	-0.01078
Н	-3.54309	-3.32776	0.038997
С	-1.51401	-2.56177	-0.01399
Н	-1.04906	-3.53928	0.034166
С	-4.95436	-1.07382	-0.06516
0	2.128017	3.484643	-0.54477
0	0.079649	1.628785	2.735858
С	0.044533	1.55374	1.577139
С	1.291978	2.680065	-0.43735
Mn	-0.00475	1.405216	-0.24927
0	5.356407	0.210608	-0.14785
Н	6.332474	0.293218	-0.14181
0	-5.36312	0.218105	-0.13538
Н	-6.33911	0.301616	-0.12991
H(Iso=1)	0.312513	1.029174	-1.93352
H(Iso=1)	-0.42816	1.345753	-1.94987

	-		
Symbol	X	Y	Z
0	-2.1232	3.48649	-0.72111
N	1.305358	-0.10942	-0.13289
С	0.728492	-1.35237	-0.08431
С	-1.29198	2.692711	-0.52486
С	2.64357	0.002739	-0.12431
Н	3.094432	0.987739	-0.15449
С	3.486068	-1.11589	-0.07277
С	2.910763	-2.38822	-0.02893
Н	3.521927	-3.28312	0.011331
С	1.523761	-2.49347	-0.03478
Н	1.067175	-3.47637	0.001584
N	-1.30533	-0.10943	-0.13292
С	-0.72846	-1.35238	-0.08431
С	-2.64355	0.002716	-0.12435
Н	-3.09442	0.987711	-0.15456
С	-3.48604	-1.11592	-0.07279
С	-2.91072	-2.38824	-0.02891
Н	-3.52188	-3.28315	0.011371
С	-1.52372	-2.49349	-0.03475
Н	-1.06712	-3.47638	0.001639
0	2.123227	3.486523	-0.72095
0	-0.00025	1.990472	2.689815
С	-8.1E-05	1.804642	1.538523
С	1.292005	2.692745	-0.52469
Mn	0.000008	1.439648	-0.21344
0	-4.80968	-0.84017	-0.07098
0	4.809706	-0.84013	-0.07094
С	5.770891	-1.92631	-0.01335
Н	6.745061	-1.44221	-0.02106

Table S23 The cartesian coordinates of the optimized structure for $[Mn(dOMebpy)(CO)_3]^+$

Н	5.647038	-2.50093	0.911086
Н	5.6702	-2.5761	-0.88955
С	-5.77085	-1.92636	-0.01337
Н	-5.647	-2.50095	0.911086
Н	-6.74503	-1.44227	-0.0211
Н	-5.67015	-2.57617	-0.88955

 $Table \ S24 \ The \ cartesian \ coordinates \ of \ the \ optimized \ structure \ for$

 $[Mn(dOMebpy)(CO)_3(H_2)]^+$

Symbol	X	Y	Z
0	-2.13986	3.551922	-0.38557
N	1.306968	-0.11115	-0.17627
С	0.721435	-1.34651	-0.09074
С	-1.3025	2.740628	-0.34957
С	2.644417	-0.00394	-0.17003
Н	3.098219	0.978323	-0.23243
С	3.481113	-1.12433	-0.08402
С	2.899629	-2.39247	0.000133
Н	3.506405	-3.28847	0.070042
С	1.513382	-2.4902	-0.00355
Н	1.051695	-3.4689	0.066123
N	-1.31665	-0.10542	-0.15464
С	-0.73523	-1.34395	-0.09154
С	-2.65349	0.003289	-0.14777
Н	-3.10648	0.987046	-0.19041
С	-3.4932	-1.11647	-0.08296
С	-2.91527	-2.38731	-0.02226
Н	-3.52412	-3.28314	0.029168
С	-1.52918	-2.4877	-0.02657
Н	-1.06958	-3.4687	0.021464
0	2.133693	3.529715	-0.56687
0	0.098174	1.647569	2.722311

С	0.054897	1.592334	1.562124
С	1.292983	2.729179	-0.45575
Mn	-0.00542	1.460717	-0.26233
О	4.806579	-0.85623	-0.09042
0	-4.81802	-0.84466	-0.0863
С	-5.77526	-1.93289	-0.01212
Н	-5.64922	-2.49341	0.920644
Н	-6.75122	-1.45246	-0.02667
Н	-5.67277	-2.59567	-0.87834
С	5.76093	-1.94553	0.004257
Н	6.738118	-1.46798	-0.01891
Н	5.633141	-2.48822	0.947259
Н	5.656908	-2.62394	-0.84959
H(Iso=1)	-0.41313	1.446838	-1.96828
H(Iso=1)	0.272987	1.025539	-1.93867

References in SI

- Oh, H.; Savchenko, I.; Mavrandonakis, A.; Heine, T.; Hirscher, M. ACS Nano 2014, 8 (1), 761–770.
- Weinrauch, I.; Savchenko, I.; Denysenko, D.; Souliou, S. M.; Kim, H.-H.; Le Tacon,
 M.; Daemen, L. L.; Cheng, Y.; Mavrandonakis, A.; Ramirez-Cuesta, A. J.;
 Volkmer, D.; Schütz, G.; Hirscher, M.; Heine, T. *Nat. Commun.* 2017, 8 (1), 14496.