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Figure S1. 'H NMR spectrum of complex A in CDCls.
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Figure S2. 3C {*H} NMR spectrum of complex A in CDCls.
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Figure S3. DEPT 135 {*H} NMR spectrum of complex A in CDCls.
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Figure S4. HSQC NMR spectrum of complex A in CDCls.
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Figure S5. 1°F NMR spectrum of complex A in CDCls.
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Figure S6. !B NMR spectrum of complex A in CDCls.
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Figure S7. 'H NMR spectrum of complex B in CDCls.
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Figure S8. 3C {*H} NMR spectrum of complex B in CDCls.
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Figure S9. DEPT 135 {*H} NMR spectrum of complex B in CDCls.
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Figure $10. *°F NMR spectrum of complex B in CDCls.
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Figure S11. *H NMR spectrum of precursor [Ru(dtbpy)2Clz] in CDCls.
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Figure $12. *H NMR spectrum of complex C in CD,Cls.
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Figure S13. *H NMR spectrum of complex D in CDCls.
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Figure S14. 13C {*H} NMR spectrum of complex D in CDCl,.
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Figure S15. DEPT 135 {*H} NMR spectrum of complex D in CD,Cl,.
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Figure $16. °F NMR spectrum of complex D in CD,Cl,.
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Figure S17. ESI* spectrum of complex A.
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Figure S18. Detail of the ESI* spectrum of complex A.
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Figure S19. ESI* spectrum of complex B.
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Figure S20. Detail of the ESI* spectrum of complex B.
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Figure S21. ESI* spectrum of complex C.
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Figure S22. Detail of the ESI* spectrum of complex C.
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Figure S23. ESI* spectrum of complex D.
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Figure S24. Detail of the ESI* spectrum of complex D.
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Figure S25. Orbital-interaction diagram of complexes A and B, calculated in acetonitrile using
charge decomposition analysis (see Experimental Section for further details). Fragment
orbitals are computed by dividing each complex into 2 fragments: the shared [Ru(dtbbpy),;]**
moiety and the third NAN ligand (i.e., another dtbbpy unit for B and the azaborine for A). Only
fragment-orbital contributions above 10% are reported.
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Figure S26. Orbital-interaction diagram of complexes B and C, calculated in acetonitrile using
charge decomposition analysis (see Experimental Section for further details). Fragment
orbitals are computed by dividing each complex into 2 fragments: the shared [Ru(dtbbpy),;]**
moiety and the third ligand (i.e., another dtbbpy unit for B and the anionic cyclometalating
ppy~ in the case of C). Only fragment-orbital contributions above 10% are reported.
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Figure $27. Orbital-interaction diagram of complexes A and D’, calculated in acetonitrile using
charge decomposition analysis (see Experimental Section for further details). Fragment
orbitals are computed by dividing each complex into 2 fragments: the shared [Ru(dtbbpy),;]**
moiety and the anionic ligand (i.e., the azaborine unit for A and the C=C counterpart for D’,
which is just a theoretical construction). Only fragment-orbital contributions above 10% are
reported.
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Figure $28. Orbital-interaction diagram of complexes D and D’, calculated in acetonitrile using
charge decomposition analysis (see Experimental Section for further details). Fragment
orbitals are computed by dividing each complex into 2 fragments: the shared [Ru(dtbbpy),;]**
moiety and the third cyclometalating ligand (i.e., the naft-py~ unit for D and the methylated
structural analogue in D’). The comparison is used to mainly assess the effect of the different
cyclometalation position on the naphthyl fragment. Only fragment-orbital contributions
above 10% are reported.
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Figure S29. Square-wave voltammograms of complexes A—D and of reference compound E in
acetonitrile solution at 298 K, recorded at a scan rate of 25 mV s! with a square-wave
amplitude of £20 mV and a frequency of 25 Hz. Sample concentration is 1.0 mM.

Table S1. Comparison between electrochemical data from cyclic voltammetry (Table 1) and
square-wave voltammetry in acetonitrile solution + 0.1 M TBAPFg at 298 K. All potential values
are reported vs. the ferrocene/ferrocenium couple, used as internal reference.

from square-wave voltammetry from cyclic voltammetry
Exx® Ereq” Eox (AEp)® Erea (AEp)
(vl (vl [V (mV)] [V (mV)]
A +0.064 —1.988,—-2.264 +0.06 (irr.) —1.991 (70), — 2.262 (73)
B +0.739 -1.827 +0.735(72) —1.825 (69)
C —0.009 —2.066, —2.332 —0.009 (68) —2.071(70),—2.333 (67)
D -0.015 -2.071,-2.333 —0.013 (73) —2.075(77),—2.328 (74)
E +0.891  -1.729,-1.922,-2.169  +0.889(73) —1.730(70), - 1.923(73), —2.172 (72)

9 The value in parenthesis is the peak-to-peak separation (AEy).
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Figure S30. Spin-density distributions of the oxidized and reduced radicals of complexes A-D
in their fully-relaxed geometries, computed by spin-unrestricted DFT in acetonitrile (isovalue:
0.002 e bohr™3). The DFT-estimated redox potentials vs. the ferrocene/ferrocenium couple is
also reported.
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Figure S31. Anodic cyclic voltammograms of complex [Ru(dtbbpy).(azab-py)]* (A) at different
scan rates in acetonitrile solution at 298 K (sample concentration: 1.0 mM). Experiments show
the complete irreversibility of the oxidation process at any scan rate.
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Figure S32. Comparison between the room-temperature absorption spectra of complexes A—
D recorded in acetonitrile (full) and dichloromethane (dashed) solutions.
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Table S2. Calculated NTOs couples describing the triplet excitations below 2.5 eV for
[Ru(dtbbpy)2(azab-py)]* (A) in acetonitrile. The A value is the natural transition orbital
eigenvalue associated with each NTOs {Motley, 2017, 13579-13592}{Motley, 2017, 13579-
13592}couple; orbital isovalue: 0.04 e %2 bohr=3/2,

Transition NTO couple
energy hole —  electron Nature
[eV_(nm)] (A)

SMLCT
from ruthenium to
dtbbpy ligand

So T 1.90 (652)

(96.3%)

SMLCT
from ruthenium to
dtbbpy ligand

T 1.96 (634)

(74.1%)

SMLCT
from ruthenium to
dtbbpy ligand

So—>Ts 2.02 (612)

SMLCT
from ruthenium to
dtbbpy ligand

So— Ts 2.11 (589)

SMLCT
from ruthenium to
dtbbpy ligand

So—Ts 2.14 (580)

(84.7%)
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So—Ts

2.37 (524)

SMLCT
from ruthenium to
dtbbpy ligand

So—> Ty

2.42 (512)

(90.5%)

mixed 3LC/3MLCT
involving the
azaborine ligand and
ruthenium ion

Table S3. Calculated NTOs couples describing the triplet excitations below 2.5 eV for
[Ru(dtbbpy)3]?* (B) in acetonitrile. The A value is the natural transition orbital eigenvalue
associated with each NTOs couple; orbital isovalue: 0.04 e™'/2 bohr=/2, State symmetry is also
reported, accordingly to the D3 point group.

Transition NTO couple
energy hole —  electron Nature
[eV_(nm)] (A)
S 5T SMLCT
O(E) ! 2.34 (530) from ruthenium to
dtbbpy ligand
S0 T SMLCT
O(E) 2 2.34 (530) from ruthenium to
dtbbpy ligand
O(A ) } 2.36 (524) from ruthenium to
2

(89.0%)

dtbbpy ligand
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SMLCT

SO(:)H 2.38 (521) from ruthenium to
2 dtbbpy ligand
So T SMLCT
O(E) > 2.47 (502) from ruthenium to
dtbbpy ligand
S 5T SMLCT
0 ’ 2.47 (502) from ruthenium to

(E)

(34.1%)

dtbbpy ligand
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Table S4. Calculated NTOs couples describing the triplet excitations below 2.5 eV for
[Ru(dtbbpy)2(ppy)]* (C) in acetonitrile. The A value is the natural transition orbital eigenvalue
associated with each NTOs couple; orbital isovalue: 0.04 e™/2 bohr™3/2,

Transition NTO couple
energy hole —  electron Nature
[eV_(nm)] (A)

SMLCT
from ruthenium to
dtbbpy ligand

So> T 1.83 (676)

SMLCT
from ruthenium to
dtbbpy ligand

So—>Ts 1.89 (657)

SMLCT
from ruthenium to
dtbbpy ligand

So—>Ts 1.93 (641)

SMLCT
from ruthenium to
dtbbpy ligand

So— Ts 2.05 (605)

SMLCT
from ruthenium to
dtbbpy ligand

So—>Ts 2.16 (574)

(98.3%)
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SMLCT
from ruthenium to
dtbbpy ligand

So — Te 2.18 (568)

{Motley, 2017,

So—T7 2.39 (518) 13579-13592}

(96.8%)

Table S5. Calculated NTOs couples describing the triplet excitations below 2.5 eV for
[Ru(dtbbpy)2(naft-py)]* (D) in acetonitrile. The A value is the natural transition orbital
eigenvalue associated with each NTOs couple; orbital isovalue: 0.04 e %2 bohr=/2,

Transition NTO couple
energy hole —  electron Nature
[eV_(nm)] (A)

SMLCT
from ruthenium to
dtbbpy ligand

So> T 1.83 (678)

SMLCT
from ruthenium to
dtbbpy ligand

So—>Ts 1.90 (653)

SMLCT
from ruthenium to
dtbbpy ligand

So—>Ts 1.94 (639)

(94.6%)
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So—> T4

2.06

(603)

SMLCT
from ruthenium to
dtbbpy ligand

So—Ts

2.14

(580)

SMLCT
from ruthenium to
dtbbpy ligand

So—Ts

2.18

(569)

SMLCT
from ruthenium to
dtbbpy ligand

So—> Ty

2.21

(560)

mixed 3LC/3MLCT
involving

the naft-py ligand

and ruthenium ion

So—Ts

2.37

(524)

(92.7%)

mixed 3LC/3MLCT
involving

the naft-py ligand

and ruthenium ion
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Table S6. Calculated NTOs couples describing the triplet excitations below 2.5 eV for
[Ru(dtbbpy)2(Me-naft-py)]* (D’) in acetonitrile. The A value is the natural transition orbital
eigenvalue associated with each NTOs couple; orbital isovalue: 0.04 e %2 bohr=/2,

Transition NTO couple
energy hole —  electron Nature
[eV_(nm)] (A)

SMLCT
from ruthenium to
dtbbpy ligand

So> T 1.83 (678)

SMLCT
from ruthenium to
dtbbpy ligand

T 1.90 (654)

SMLCT
from ruthenium to
dtbbpy ligand

So—Ts 1.93 (643)

SMLCT
from ruthenium to
dtbbpy ligand

So— Ts 2.09 (594)

mixed 3LC/3MLCT
involving the

Me-naft-py ligand

and ruthenium ion

So—Ts 2.13 (583)

(82.3%)
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So—Ts

2.13

(581)

SMLCT
from ruthenium to
dtbbpy ligand

So—> Ty

2.25

(552)

SMLCT
from ruthenium to
dtbbpy ligand

So—Ts

2.50

(494)

(95.7%)

mainly 3MLCT
involving
the naft-py ligand
and ruthenium ion
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Figure S33. Spin-density distribution of the lowest triplet states of complexes A-D in their
fully-optimized geometry, computed in acetonitrile (isovalues: 0.002 e bohr™3). For all the
complexes, the depicted triplets are 3MLCT in nature, formally involving the excitation of one
electron from the ruthenium(ll) centre to the t* orbitals of the dtbbpy ligands. Notably, two
very close 3MLCT triplets (T1 and T,) are found in A, C and D due to the asymmetry of the
azaborine or CAN ligand, removing the equivalency of the dtbbpy ligands (which, on the
contrary, is preserved in B). The energy difference between such minima is only 9 meV for A,
and 68 or 67 meV in the case of C or D.
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— [Ru(dtbbpy),(azab-py)][BF,] (A)
[Ru(dtbbpy),][BF ], (B)

— [Ru(dtbbpy),(ppy)I[BF,] (C)

— [Ru(dtbbpy),(naft-py)][BF,] (D)

Emission intensity / a.u.

= T T T T T T T T T T T
500 600 700 800 900 1000 1100 1200
Wavelength / nm

Figure S34. Normalized emission spectra of complexes A-D in 1% PMMA matrix at 298 K.
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