Supporting Information

Na₂B₁₂Si₆Se₁₈: A Novel B₁₂-Cluster-containing Quaternary Selenoborate Framework Material

Gopabandhu Panigrahi,[†] Hunter B. Tisdale,[†] Gregory Morrison,[†] and Hans-Conrad zur Loye^{†,*}

[†]Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC, 29208, United States *Corresponding Author E-mail: <u>zurloye@mailbox.sc.edu</u>

During an attempt to synthesize a pentanary compound with the target composition CaEuUSi₂Se₈, Na₂B_{1₂Si₆Se₁₈ was unexpectedly obtained. For this reaction, 30 mg of EuSe, 20 mg of U₃O₈, 20 mg of B, and 90 mg of Se were loaded in a heavily carbon-coated fused silica tube (12 mm outer diameter) along with 75 mg of a NaCl/CaCl₂ flux mixture. The tube was then evacuated to a pressure of 10⁻⁴ torr and flame-sealed using a methane/oxygen torch. The sealed tube was placed in a programmable muffle furnace and subjected to a precise thermal profile: it was heated to 800 °C over 12 hours, held at this temperature for 48 hours, and then gradually cooled to 550 °C over another 48 hours. Afterward, the furnace was turned off, allowing the tube to cool naturally to room temperature. The reaction yielded light yellow, transparent crystals along with black and red impurities (see Fig. S1 and S2). The EDS image of this clear crystal and its EDS plot are shown in Fig.S1 and S2, Table. S1.}

We conducted two additional reactions to investigate the role of EuSe and U₃O₈ in crystal formation. In the first reaction, we used EuSe along with other reactants but omitted U₃O₈, while in the second reaction, we used U₃O₈ along with other reactants but excluded EuSe. Both reactions followed an identical heating profile to ensure that any observed differences in crystal formation could be attributed to the presence or absence of these specific compounds. Interestingly, only the reaction containing EuSe yielded transparent crystals with the Na₂B₁₂Si₆Se₁₈ composition. This result suggested that the presence of EuSe was necessary for the formation of these crystals, while the absence of U₃O₈ did not impact their formation. To confirm the reproducibility of this result, we repeated the EuSe-based reaction multiple times. Each time, we prepared the reaction mixture

with 50 mg of EuSe, 20 mg of boron (B), and 90 mg of selenium (Se), supplemented with 75 mg of a NaCl/CaCl₂ flux mixture. Under these conditions, the transparent Na₂B₁₂Si₆Se₁₈ crystals consistently formed.

Subsequent reactions were conducted to optimize the synthesis of Na₂B₁₂Si₆Se₁₈. Stoichiometric amounts of Na₂Se, Si, B, and Se were used in a molar ratio of 1:6:12:17, both with and without the NaCl/CaCl₂ eutectic flux, following the previously established thermal profile. These experiments produced very small microcrystals or polycrystalline Na₂B₁₂Si₆Se₁₈, but the crystal quality was not satisfactory for SCXRD data collection.

Fig. S1 The (a) SEM image of Na₂B₁₂Si₆Se₁₈ single crystal and (b) optical microscopic image of Na₂B₁₂Si₆Se₁₈ single crystals (transparent crystals are Na₂B₁₂Si₆Se₁₈)

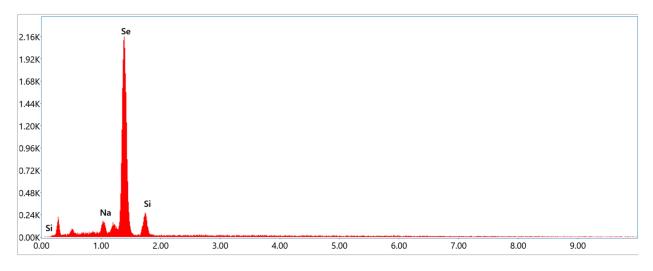


Fig.S2 The EDS plot of $Na_2B_{12}Si_6Se_{18}$ single crystal

Element	Weight %	Atomic %
Na	4.1	10.8
Si	11.7	25.1
Se	84.2	64.1

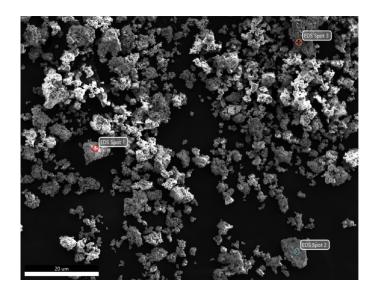
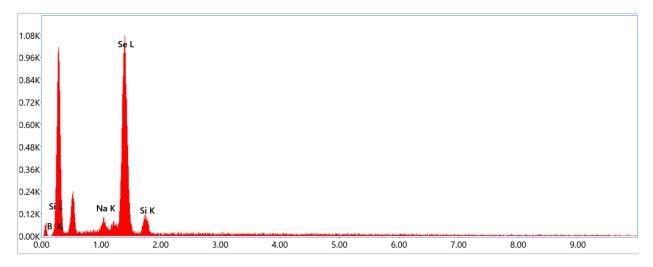
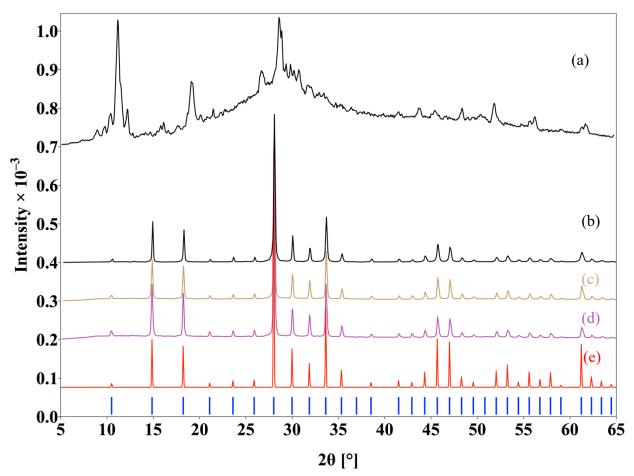


Fig. S3 The SEM image showing where EDS data were collected on polycrystalline $Na_2B_{12}Si_6Se_{18}$.

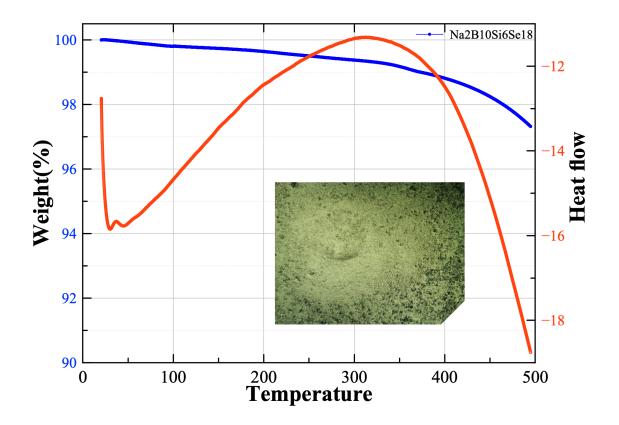

Fig.S4 The EDS plot of polycrystalline Na₂B₁₂Si₆Se₁₈ compound.

Table.S2 Average elemental compositions of polycrystalline $Na_2B_{12}Si_6Se_{18}$ compound (spot 1-3) as determined by EDS.

Element	Weight %	Atomic %
Na	4.45	11.55
Si	12.15	25.75
Se	83.35	62.85

Fig. S5 The PXRD pattern of (a) $Na_2B_{12}Si_6Se_{18}$ compound quench@ 600 °C after dwelling of 36h, (b) $Na_2B_{12}Si_6Se_{18}$ compound quench@ 800 °C after dwelling of 36h, (c) $Na_2B_{12}Si_6Se_{18}$ compound quench@ 800 °C after dwelling of 12h, (d) $Na_2B_{12}Si_6Se_{18}$ compound slow cooling after dwelling of 48h@ 800 °C, (e) Simulated pattern of $Na_2B_{12}Si_6Se_{18}$, and Bragg position of $Na_2B_{12}Si_6Se_{18}$ (blue lines).

Fig.S6 The TGA/DSC plot of polycrystalline Na₂B₁₂Si₆Se₁₈ compound in N₂-atmosshere (inset shows the color of polycrystalline compound).

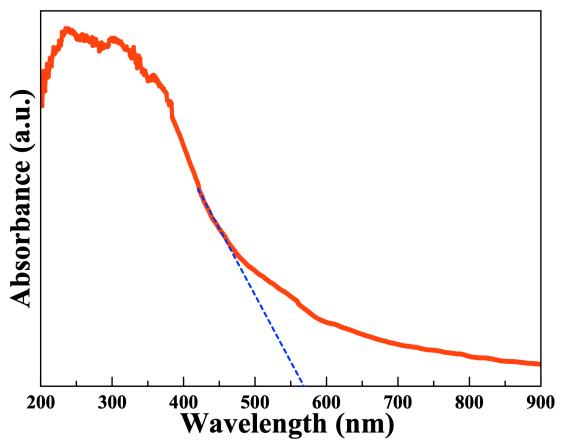


Fig. S7 The optical absorption plot of polycrystalline Na₂B₁₂Si₆Se₁₈ compound.