
Supplementary Information (SI) for Dalton Transactions. This journal is © The Royal Society of Chemistry 2024

Electronic Supplementary Information (ESI)

Rocksalt-type heavy rare earth monoxides TbO, DyO, and ErO exhibiting the metallic electronic states and ferromagnetism

Satoshi Sasaki,^a Daichi Oka,^{a,b} Daisuke Shiga,^c Ryunosuke Takahashi,^d Suguru Nakata,^d Koichi Harata,^e Yuichi Yamasaki,^f Miho Kitamura,^{g,h} Hironori Nakao,^g Hiroki Wadati,^d Hiroshi Kumigashira^{c,g} and Tomoteru Fukumura*a,i,j

- ^a Department of Chemistry, Graduate School of Science, Tohoku University, Sendai 980-8578, Japan E-mail: tomoteru.fukumura.e4@tohoku.ac.jp
- ^b Department of Chemistry, Graduate School of Science, Tokyo Metropolitan University, Tokyo 192-0397, Japan
- ^c Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Sendai 980-8577, Japan
- ^d Graduate School of Material Science, University of Hyogo, Hyogo 678-1297, Japan
- ^e Institute for Materials Research, Tohoku University, Sendai 980-8577, Japan
- ^f Center for Basic Research on Materials, National Institute for Materials Science (NIMS), Tsukuba, Ibaraki 305-0047, Japan.
- g Photon Factory, Institute of Materials Structure Science, High Energy Accelerator Research Organization (KEK), Tsukuba 305-0801, Japan
- h NanoTerasu Center, National Institutes for Quantum Science and Technology (QST), Sendai, Miyagi 980-8572, Ja-pan
- ⁱ WPI Advanced Institute for Materials Research, Tohoku University, Sendai 980-8577, Japan
- ^j Center for Science and Innovation in Spintronics, Organization for Advanced Studies, Tohoku University, Sendai 980-8577, Japan

Fig. S1 XRD θ –2 θ pattern of spark plasma sintered (Ca_{0.5}Sr_{0.5})CO₃ target with the powder XRD pattern of CaCO₃ (space group: R-3cH, ICSD No. 18164) and SrCO₃ (space group: Pmcn, ICSD No.15195) calculated by VESTA.¹ Mixture of CaCO₃ and SrCO₃ powder with the molar ratio of 1:1 was pressed, and then sintered at 1200 °C under 50 MPa for 30 minutes.

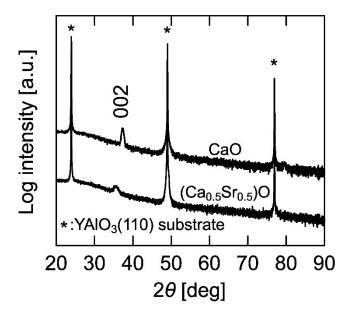
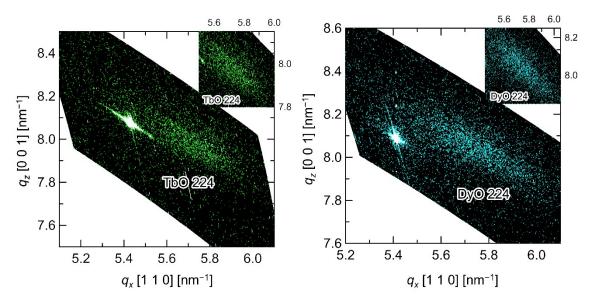
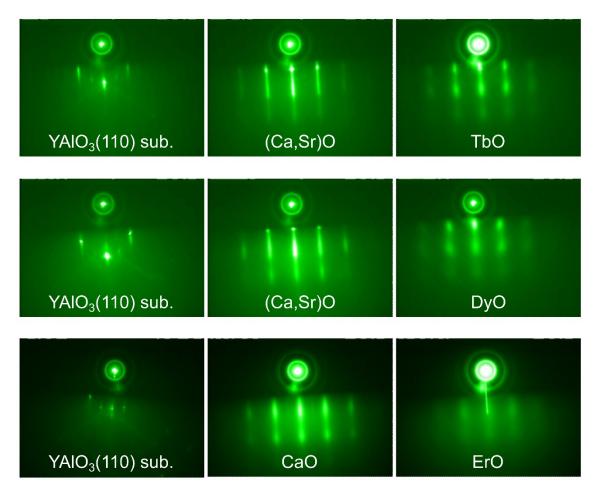




Fig. S2 XRD θ -2 θ patterns of (Ca_{0.5}Sr_{0.5})O and CaO thin films with the same thickness as those of buffer layers for the *RE*O thin films in Table 1.

Fig. S3 Reciprocal space maps for TbO (left) and DyO (right) thin films around the *REO* 224 and YAlO₃ 334 diffraction peaks. Insets show the magnified images around *REO* 224 peaks.

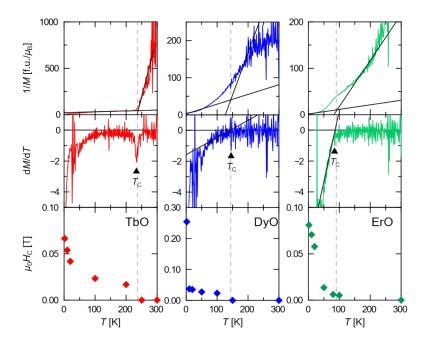

Fig. S4 *In-situ* RHEED patterns of YAlO₃ substrates, (Ca,Sr)O and CaO buffer layers, and TbO, DyO, and ErO thin films along [010] during the deposition (see Fig. 1).

Fig. S5 φ scans taken for TbO (111), DyO (111), ErO (111), and YAlO₃ (101) peaks.

Table S1 The $3d_{5/2}$ binding energy (in the unit of eV) of Tb and Dy metals, monoxides and sesquioxides.^{2–4}

RE element	RE metal	REO	RE_2O_3
Tb	1239.4	1240.4	1241.2
Dy	1293.3	1295.3	1296.5

Fig. S6 Temperature dependences of (top panels) M^{-1} , (middle panels) dM/dT under field-cooling at 0.1 T along in-plane from red curves in Fig. 4a–c, and (bottom panels) coercive force (H_c) evaluated from magnetic hysteresis loops in Fig. 4d–f for the REO thin films. The T_C was evaluated as the local minimum of dM/dT for TbO and the onset of dM/dT for DyO and ErO, being consistent with crossing points of linear extrapolation curves (black curves) in $M^{-1}-T$ curves.

References

- 1. K. Momma, and F. Izumi, J. Appl. Cryst. 2011, 44, 1272–1276.
- 2. B. D. Padalia, W. C. Lang, P. R. Norris, L. M. Watson and D. J. Fabian, *Proc. R. Soc. London. A. Math. Phys. Sci.*, 1977, **354**, 269–290.
- 3. D. J. Morgan, Surf. Sci. Spectra, 2023, 30, 024017.
- 4. D. Barreca, A. Gasparotto, A. Milanov, E. Tondello, A. Devi and R. A. Fischer, *Surf. Sci. Spectra*, 2007, **14**, 52–59.