## **Electronic Supplementary Information**

## Homochiral layered indium phosphonates: solvent modulation of morphology and chiral discrimination adsorption

Qian Teng, Song-Song Bao, Ran Gao, Li-Min Zheng\*

State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210023, P. R. China

\* Corresponding author. E-mail: Imzheng@nju.edu.cn

 Table S1 Crystal data and structure refinements for S-1C.

| Compounds                                   | S-1C                                                                                          |
|---------------------------------------------|-----------------------------------------------------------------------------------------------|
| Formula                                     | C <sub>18</sub> H <sub>32</sub> In <sub>2</sub> N <sub>4</sub> O <sub>16</sub> P <sub>2</sub> |
| М                                           | 852.05                                                                                        |
| Crystal system                              | monoclinic                                                                                    |
| Space group                                 | <b>P</b> 21                                                                                   |
| <i>a</i> (Å)                                | 18.9319(9)                                                                                    |
| b (Å)                                       | 7.7064(4)                                                                                     |
| <i>c</i> (Å)                                | 10.0756(5)                                                                                    |
| β (°)                                       | 102.547(2)                                                                                    |
| V (Å <sup>3</sup> )                         | 1434.89(12)                                                                                   |
| Ζ                                           | 2                                                                                             |
| <i>D</i> <sub>c</sub> (g cm <sup>-3</sup> ) | 1.972                                                                                         |
| $\mu$ (mm <sup>-1</sup> )                   | 9.926                                                                                         |
| F (000)                                     | 848.0                                                                                         |
| R <sub>int</sub>                            | 0.0566                                                                                        |
| GoF on <i>F</i> <sup>2</sup>                | 1.108                                                                                         |
| $R_1, wR_2^{[a]} [l > 2\sigma(l)]$          | 0.0407, 0.1189                                                                                |
| CCDC                                        | 2402002                                                                                       |

 $R_{1} = \Sigma ||F_{o}| - |F_{c}|| / \Sigma |F_{o}|, \quad \overline{wR_{2}} = [\Sigma w(F_{o}^{2} - F_{c}^{2})^{2} / \Sigma w(F_{o}^{2})^{2}]^{1/2}$ 

TableS2. Selected bond lengths [Å] and bond angles [°] of S-1C.

| In1-O1      | 2.132(7) | In2-02      | 2.137(7)   | P1-01       | 1.499(7)   |
|-------------|----------|-------------|------------|-------------|------------|
| In1-O3A     | 2.137(6) | In2-05      | 2.118(7)   | P1-02       | 1.524(7)   |
| In1-O4      | 2.124(7) | In2-O6B     | 2.136(7)   | P1-O3       | 1.531(7)   |
| In1-O7      | 2.081(7) | In2-08      | 2.097(7)   | P2-O4       | 1.521(7)   |
| In1-07A     | 2.092(7) | In2-08C     | 2.090(7)   | P2-05       | 1.502(7)   |
| In1-O1W     | 2.227(7) | In2-O2W     | 2.223(7)   | P2-06       | 1.517(7)   |
| 01-In1-03A  | 170.9(3) | 07-In1-04   | 93.7(3)    | 08-In2-02   | 94.8(3)    |
| 01-In1-01W  | 87.3(3)  | 07-In1-07A  | 172.14(12) | 08C-In2-05  | 92.4(3)    |
| O3A-In1-O1W | 83.7(3)  | 07-In1-01W  | 86.5(3)    | 08-In2-05   | 84.0(3)    |
| 04-In1-01   | 97.1(3)  | O7A-In1-O1W | 86.8(3)    | 08C-In2-06B | 88.5(2)    |
| 04-In1-03A  | 91.9(3)  | 02-In2-02W  | 177.7(3)   | 08-In2-06B  | 93.9(3)    |
| 04-In1-01W  | 175.6(3) | 05-In2-02   | 95.7(3)    | 08C-In2-08  | 172.06(12) |
| 07-In1-01   | 91.2(3)  | 05-In2-06B  | 170.8(4)   | 08-In2-02W  | 86.5(3)    |
| 07A-In1-01  | 84.4(3)  | 05-In2-02W  | 86.3(3)    | 08C-In2-02W | 86.2(3)    |
| 07A-In1-03A | 95.2(3)  | 06B-In2-02  | 93.4(3)    | In1-07-In1D | 135.6(3)   |
| 07-In1-03A  | 88.2(2)  | O6B-In2-O2W | 84.7(3)    | In2B-O8-In2 | 134.7(3)   |
| 07A-In1-04  | 93.3(3)  | 08C-In2-02  | 92.6(3)    |             |            |

Symmetry transformations used to generate equivalent atoms: A: -x+1, y-1/2, -z+1; B:-x+1, y+1/2, -z; C: -

*x*+1, *y*-1/2, -*z*; D: -*x*+1, *y*+1/2, -*z*+1.

| D-H…A        | d(D-H) [Å] | d(H…A) [Å] | d(D…A) [Å] | <dha [°]<="" td=""></dha> |
|--------------|------------|------------|------------|---------------------------|
| O7-H7⋯O14    | 0.85       | 2.15       | 2.952(12)  | 158                       |
| O8-H8⋯O11    | 0.85       | 2.44       | 3.253(13)  | 160                       |
| O1W-H1WA…O12 | 0.90       | 2.04       | 2.922(13)  | 167                       |
| O1W-H1WB…O6  | 0.90       | 1.89       | 2.779(10)  | 167                       |
| O2W-H2WA…O9  | 0.90       | 2.04       | 2.916(12)  | 165                       |
| O2W-H2WB…O3  | 0.90       | 1.93       | 2.791(10)  | 159                       |
| N1-H1A…O14   | 0.91       | 2.03       | 2.889(19)  | 157                       |
| N1-H1B…O10   | 0.91       | 1.95       | 2.852(11)  | 174                       |
| N2-H2A…O11   | 0.91       | 2.09       | 2.976(19)  | 163                       |
| N2-H2B…O13   | 0.91       | 1.96       | 2.872(11)  | 179                       |

## TableS3. Hydrogen bonds in S-1C.



**Fig. S1.** PXRD patterns of the reaction products after solvothermal reactions of  $In(NO_3)_3 \cdot 5H_2O$  and S-pempH<sub>2</sub> in 50 vol% TEG/H<sub>2</sub>O at 100°C, when metal:ligand molar ratio were 2:1 and 1:1.



**Fig. S2.** SEM images showing the morphology of reaction products of In<sup>3+</sup>/S-pempH<sub>2</sub> (2:1) obtained in different volume ratio of TEG/H<sub>2</sub>O (total volume 10 mL) at 100 °C.



**Fig. S3.** PXRD patterns of the reaction products of In<sup>3+</sup>/*S*-pempH<sub>2</sub> (2:1) obtained in different volume ratio of TEG/H<sub>2</sub>O (total volume 10 mL) at 100 °C.



Fig. S4. PXRD patterns of simulated from the single-crystal data of S-1C, as-synthesized *R*-, S-1C and *R*-, S-1MF.



Fig. S5. The IR spectra of *R*, S-1C and *R*, S-1MF (Left: 4000-400 cm<sup>-1</sup>, Right: 2000-400 cm<sup>-1</sup>).



Fig. S6. The UV-Vis absorption spectra of *R*-, S-1C and *R*-, S-1MF.



Fig. S7. TGA curves of *R-,* S-1C and *R-,* S-1MF.



Fig. S8. Coordination environment of the asymmetric unit in S-1C.



Fig. S9. Packing diagrams of structures of S-1C. The dotted lines represent the hydrogen bonding interactions.



**Fig. S10.** SEM images showing the morphology of reaction products of In(NO<sub>3</sub>)<sub>3</sub>/S-pempH<sub>2</sub> (1:1) obtained in different volume ratio of MeOH/H<sub>2</sub>O (total volume 10 mL) at 100 °C.



**Fig. S11.** PXRD patterns of the reaction products of In(NO<sub>3</sub>)<sub>3</sub>/*S*-pempH<sub>2</sub> (1:1) obtained in different volume ratio of MeOH/H<sub>2</sub>O (total volume 10 mL) at 100 °C.



**Fig. S12** IR spectra of the reaction products of In(NO<sub>3</sub>)<sub>3</sub>/S-pempH<sub>2</sub> (1:1) obtained in different volume ratio of MeOH/H<sub>2</sub>O (total volume 10 mL) at 100 °C.



**Fig. S13.** SEM images showing the morphology of reaction products of In(NO<sub>3</sub>)<sub>3</sub>/S-pempH<sub>2</sub> (1:1) obtained in different volume ratio of EtOH/H<sub>2</sub>O (total volume 10 mL) at 100 °C.



**Fig. S14.** PXRD patterns of the reaction products of In(NO<sub>3</sub>)<sub>3</sub>/*S*-pempH<sub>2</sub> (1:1) obtained in different volume ratio of EtOH/H<sub>2</sub>O (total volume 10 mL) at 100 °C.



**Fig. S15.** IR spectra of the reaction products of In(NO<sub>3</sub>)<sub>3</sub>/S-pempH<sub>2</sub> (1:1) obtained in different volume ratio of EtOH/H<sub>2</sub>O (total volume 10 mL) at 100 °C.



**Fig. S16.** SEM images showing the morphology of reaction products of In(NO<sub>3</sub>)<sub>3</sub>/S-pempH<sub>2</sub> (1:1) obtained in different volume ratio of NPA/H<sub>2</sub>O (total volume 10 mL) at 100 °C.



**Fig. S17.** PXRD patterns of the reaction products of In(NO<sub>3</sub>)<sub>3</sub>/*S*-pempH<sub>2</sub> (1:1) obtained in different volume ratio of NPA/H<sub>2</sub>O (total volume 10 mL) at 100 °C.



Fig. S18. IR spectra of the reaction products of  $ln(NO_3)_3/S$ -pempH<sub>2</sub> (1:1) obtained in different volume ratio of NPA/H<sub>2</sub>O (total volume 10 mL) at 100 °C.



**Fig. S19.** SEM images showing the morphology of reaction products of In(NO<sub>3</sub>)<sub>3</sub>/S-pempH<sub>2</sub> (1:1) obtained in different volume ratio of IPA/H<sub>2</sub>O (total volume 10 mL) at 100 °C.



**Fig. S20.** PXRD patterns of the reaction products of In(NO<sub>3</sub>)<sub>3</sub>/*S*-pempH<sub>2</sub> (1:1) obtained in different volume ratio of IPA/H<sub>2</sub>O (total volume 10 mL) at 100 °C.



**Fig. S21.** IR spectra of the reaction products of  $In(NO_3)_3/S$ -pempH<sub>2</sub> (1:1) obtained in different volume ratio of IPA/H<sub>2</sub>O (total volume 10 mL) at 100 °C.



**Fig. S22.** SEM images showing the morphology of reaction products of In(NO<sub>3</sub>)<sub>3</sub>/S-pempH<sub>2</sub> (1:1) obtained in different volume ratio of NBA/H<sub>2</sub>O (total volume 10 mL) at 100 °C.



**Fig. S23.** PXRD patterns of the reaction products of In(NO<sub>3</sub>)<sub>3</sub>/*S*-pempH<sub>2</sub> (1:1) obtained in different volume ratio of NBA/H<sub>2</sub>O (total volume 10 mL) at 100 °C.



**Fig. S24.** IR spectra of the reaction products of In(NO<sub>3</sub>)<sub>3</sub>/S-pempH<sub>2</sub> (1:1) obtained in different volume ratio of NBA/H<sub>2</sub>O (total volume 10 mL) at 100 °C.



**Fig. S25.** The PXRD patterns (left) and IR spectra (right) of the In(NO<sub>3</sub>)<sub>3</sub>/S-pempH<sub>2</sub> assemblies obtained in 90 vol% alcohol/H<sub>2</sub>O at 100 °C.



Fig. S26. TEM images of the self-assembled products of In(NO<sub>3</sub>)<sub>3</sub>/S-pempH<sub>2</sub> in 90 vol% IPA/H<sub>2</sub>O at 100 °C before

90 min.



**Fig. S27.** PXRD patterns of the self-assembled products of ln(NO<sub>3</sub>)<sub>3</sub>/S-pempH<sub>2</sub> in 90 vol% IPA/H<sub>2</sub>O at 100 °C for different periods of reaction time.



**Fig. S28.** IR spectra of the self-assembled products of In(NO<sub>3</sub>)<sub>3</sub>/S-pempH<sub>2</sub> in 90 vol% IPA/H<sub>2</sub>O at 100 °C for different periods of reaction time.



**Fig. S29.** PXRD patterns of the as-synthesized and post-treated samples of **S-1C** by soaking in water, boiling water and different HCI/NaOH aqueous solutions in the pH range of 1 to 11 for 24 hours.



**Fig. S30.** PXRD patterns of the as-synthesized and post-treated samples of **S-1MF** by soaking in water, boiling water and different HCI/NaOH aqueous solutions in the pH range of 1 to 11 for 24 hours.



Fig. S31. The N<sub>2</sub> adsorption (filled) and desorption (open) isotherms at 77K for *R*-1MF, S-1MF, and S-1C.



Fig. S32. Barrett-Joyner-Halenda (BJH) pore size distribution of R-1MF, S-1MF, and S-1C.



Fig. S33. S- and R-2-Butanol adsorption (filled) and desorption (open) isotherms for activated compounds of R-

1MF at 298 K.



Fig. S34. PXRD patterns of S-1C, S-1MF and R-1MF after adsorption testing. The simulated pattern of S-1C is given for comparison.