

High Temperature Interactions of Lead Palmitate with Linseed Oil

Ruslan Barannikov^{1,2}, Joen Hermans^{3,4,5}, Jiří Plocek¹, Petr Bezdička¹, Anna Vykydalová¹, Andrii Mahun⁶, Libor Kobera⁶,
Silvie Švarcová^{1*}

¹Institute of Inorganic Chemistry of the Czech Academy of Sciences, Husinec 1001, 250 68 Husinec-Řež, Czech Republic

²Department of Inorganic Chemistry, Faculty of Science, Charles University in Prague, Hlavova 2030/8, 128 40 Prague, Czech Republic

³Van 't Hoff Institute for Molecular Sciences, University of Amsterdam, PO Box 94157, 1090GD Amsterdam, The Netherlands

⁴Conservation & Restoration, Amsterdam School of Heritage, Memory and Material Culture, University of Amsterdam, PO Box 94552, 1090GN Amsterdam, The Netherlands

⁵Conservation & Science, Rijksmuseum, Hobbemastraat 22, 1071ZC Amsterdam, The Netherlands

⁶Institute of Macromolecular Chemistry of the Czech Academy of Sciences, Heyrovského nam. 2, 162 00, Prague 6, Czech Republic

*corresponding author: e-mail: svarcova@iic.cas.cz, phone number: +420 311 236 946;

e-mails: barannikov@iic.cas.cz, j.j.hermans@uva.nl, plocek@iic.cas.cz, bezdicka@iic.cas.cz, vykydalova@iic.cas.cz, mahun@imc.cas.cz, kobera@imc.cas.cz, svarcova@iic.cas.cz

Table of content

Fig. S1 Experimental setup used to prepare Pb(C16)₂+LO_112°C sample

Fig. S2 Linear regression analysis of FTIR diamond phonon signal

Fig. S3 DSC records of powder Pb(C16)₂ (a) and Pb(C18)₂ (b)

Table S1 The melting temperatures (T_m), melting enthalpies (ΔH_m) and crystallization temperatures (T_c), crystallization enthalpies (ΔH_m^c) values for powder Pb(C16)₂ and Pb(C18)₂

Fig. S4 Reproduced DSC measurement of Pb(C16)₂+LO_mix

Fig. S5 In-situ high-temperature XRPD patterns of Pb(C16)₂+LO_mix during cooling. The dashed lines indicate shifting of additional diffraction signals

Fig. S6 In-situ high-temperature XRPD patterns of powder Pb(C16)₂ during cooling from 100-25 °C

Free Fatty acid content in linseed oil (Fig. S7-S9, Table S2-S3)

Fig. S7 ¹H NMR spectrum of linseed oil sample.

Fig. S8 ¹³C {¹H} NMR spectrum of linseed oil sample.

Fig. S9 ¹³C {¹H} NMR spectrum of free fatty acids separated from the linseed oil sample.

Table S2 Content of FFAs in a mixture separated from linseed oil

Table S3 Fatty acid composition of linseed oil (mol%)

Fig. S10 Temperature dependent FTIR spectra of powder Pb(C16)₂ cooling from 150-35 °C

Reproduction of the quenching experiment (Fig. S11-S12)

Fig. S11 Comparison of XRPD (a) and FTIR (b) measurement of originally quenched Pb(C16)₂+LO_112°C and reproduced samples Pb(C16)₂+LO_112°C_rep

Fig. S12 FTIR spectra of Pb(C16)₂+LO_112°C_rep sampled from different areas of the specimen

Fig. S13 Experimental ²⁰⁷Pb WURST-CPMG NMR spectrum of hemi-directed Pb(C8)₂ compared to high-temperature hemi-directed phase of Pb(C16)₂

Fig. S14 XRPD pattern of Pb(C16)₂+LO_112°C 0 h and 306 h after quenching

Quantitative phase analysis

Fig. S15 Structural model of Pb(C16)₂ adjusted to fit h00 lines

Table S4 Weight percent (wt. %) of the high-temperature phase and low-temperature phase obtained during fitting

Fig. S16 Comparison of the 1st derivative of low-temperature phase with an average RH and temperature inside diffractometer

Fig. S17 Deconvolution of FTIR spectra of Pb(C16)₂+LO_112°C

Fig. S18 FTIR spectra of the sample Pb(C16)₂+LO_112°C in carbonyl spectra region

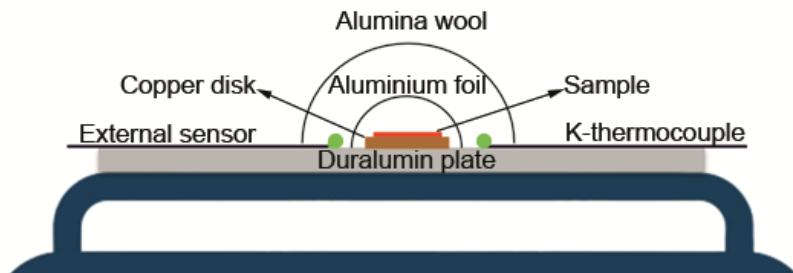
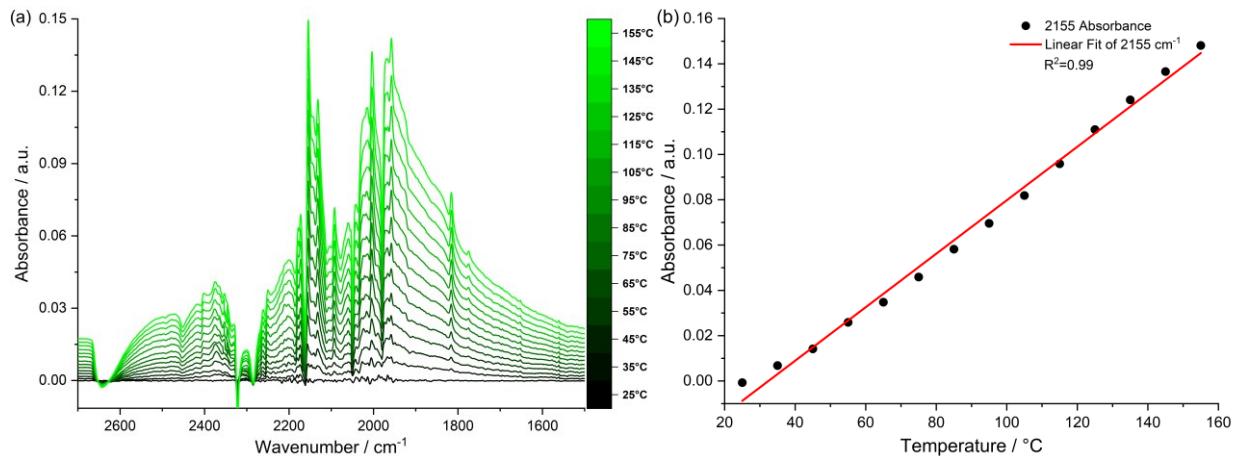

Descriptive kinetics of polymorphic transformation in Pb(C16)₂+LO_112°C

Fig. S19 Fitting of the zero-order kinetic equation applied to (a) the primary dataset and (b) complementary data obtained from a previous experiment



References

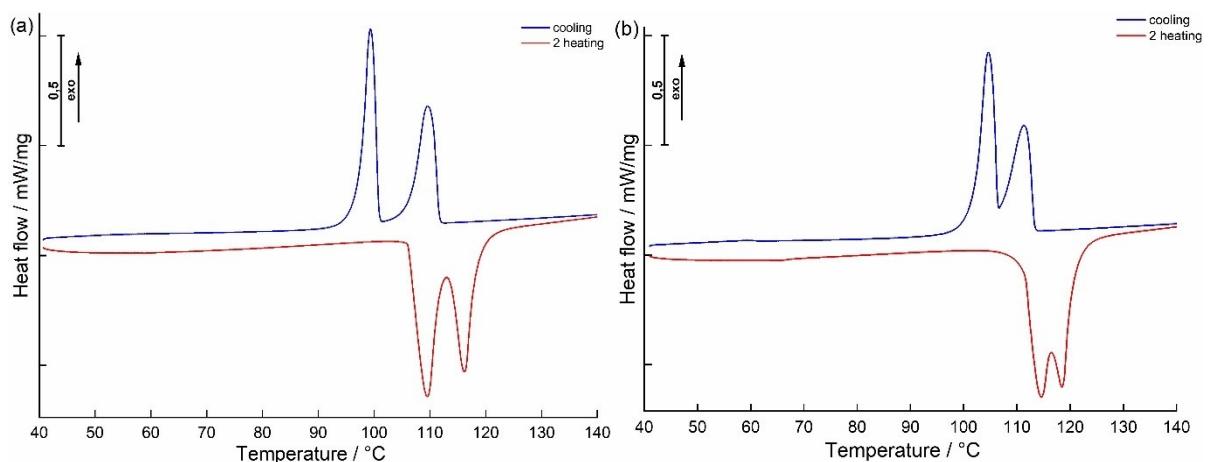
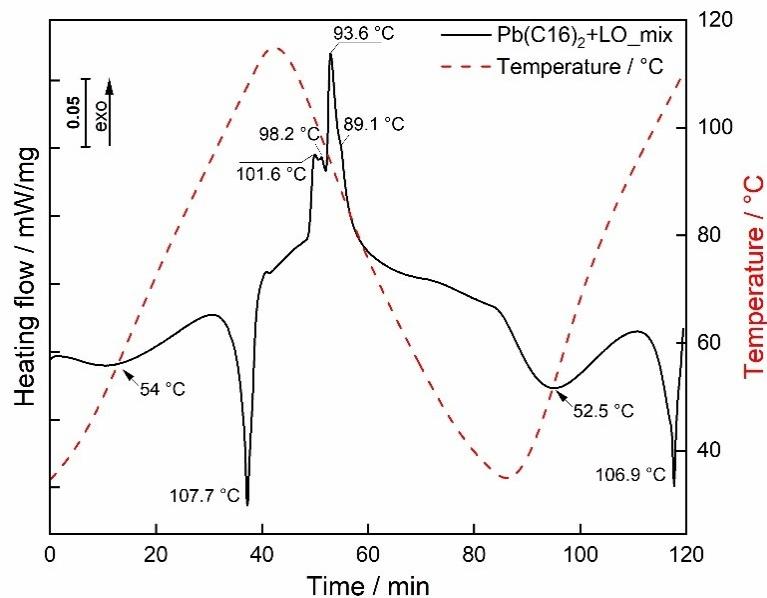


Fig. S1 Experimental setup used to prepare $\text{Pb}(\text{C16})_2 + \text{LO}_{-112^\circ\text{C}}$ sample


Fig. S2 A sequence of ATR-FTIR spectra acquired in the absence of a sample, ranging from 25 to 155 °C, with a reference baseline set at 25 °C, revealing the temperature-related variations in the ATR diamond's phonon signal (a). A linear regression analysis applied to the intensity at 2155 cm^{-1} , illustrating the background signal exhibits an approximately linear correlation with temperature (b). This finding establishes the diamond's background signal as a reliable "thermometer" enabling the precise monitoring of sample temperature in temperature-dependent ATR-FTIR experiments

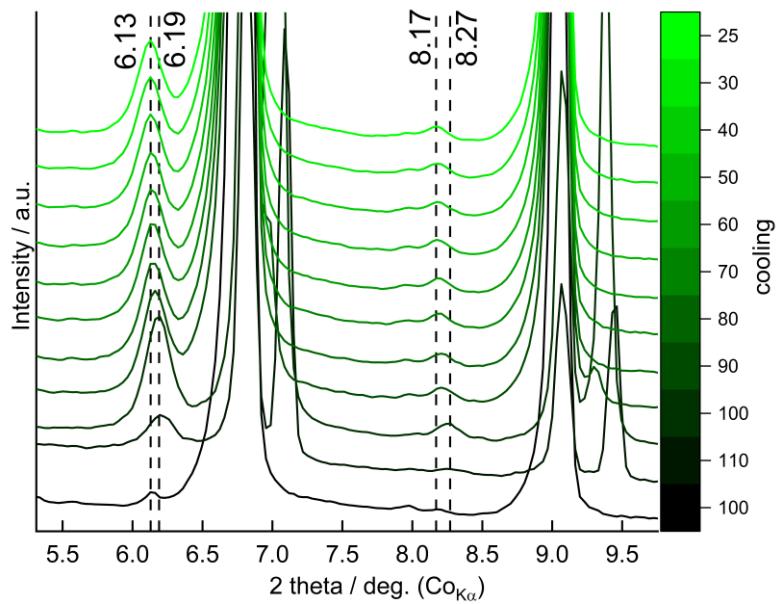

Fig. S3 DSC records of powder $\text{Pb}(\text{C16})_2$ (a) and $\text{Pb}(\text{C18})_2$ (b)

Table S1 The melting temperatures (T_m), melting enthalpies (ΔH_m) and crystallization temperatures (T_c), crystallization enthalpies (ΔH_m^c) values for powder $\text{Pb}(\text{C}16)_2$ and $\text{Pb}(\text{C}18)_2$. Enthalpies are calculated based on total sample weight

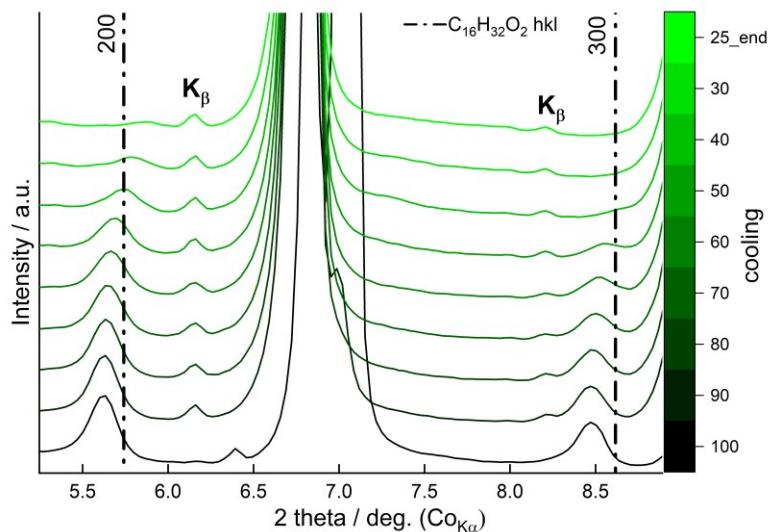

Sample	Phase transition	2 nd heating		cooling	
		T_m / °C	ΔH_m / J/g	T_c / °C	ΔH_m^c / J/g
$\text{Pb}(\text{C}16)_2$	$\text{SII} \leftrightarrow \text{SI}$	109.5	149.4	99.6	-147.4
	$\text{SI} \leftrightarrow \text{IL}$	116.2		110.1	
$\text{Pb}(\text{C}18)_2$	$\text{SII} \leftrightarrow \text{SI}$	114.3	155.7	104.7	-153.8
	$\text{SI} \leftrightarrow \text{IL}$	118.7		111.9	

Fig. S4 Reproduced DSC measurement of $\text{Pb}(\text{C}16)_2+\text{LO_mix}$

Fig. S5 In-situ high-temperature XRPD patterns of $\text{Pb}(\text{C16})_2 + \text{LO_mix}$ during cooling. The dashed lines indicate shifting of additional diffraction signals

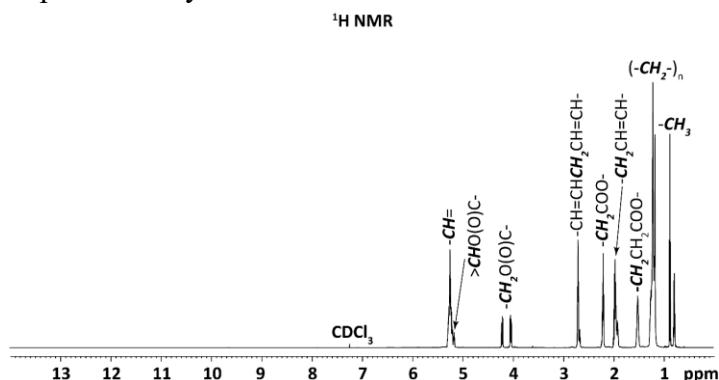
Fig. S6 In-situ high-temperature XRPD patterns of powder $\text{Pb}(\text{C16})_2$ during cooling from 100-25 °C. The dashed lines indicate hkl positions of crystalline palmitic acid at room temperature

Free Fatty acid content in linseed oil

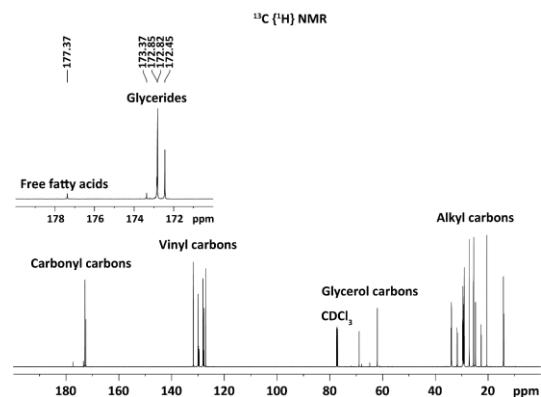
A) High-resolution Nuclear Magnetic Resonance (HR-NMR)

¹H and ¹³C HR-NMR spectra were recorded using a Bruker Avance III 600 spectrometer (14.1 T) operating at 600.2 MHz and 150.9 MHz for ¹H and ¹³C respectively. The sample was dissolved in deuterated chloroform (CDCl₃-d) and the NMR experiments were performed at 298 K. ¹H NMR spectrum was acquired by applying a 90° pulse (width = 18 µs) with a 10 s recycle delay and 32 scans. ¹³C NMR spectra were recorded using a 14 µs 90° pulse with 13 s recycle delay and 4k scans. Proton decoupling (inverse-gated mode) was used for removing heteronuclear ¹H-¹³C interactions.

The ¹H chemical shifts were calibrated using residual proton signals from the deuterated solvent (7.24 ppm from TMS). The ¹³C chemical shifts were calibrated using signal from the solvent (77.23 ppm from TMS). The spectra were processed using Bruker TopSpin 4.1.1 software.


¹H HR-NMR spectrum of the linseed oil sample was recorded and analyzed. The spectrum (Fig. S7) displays a set of signals corresponding to triglycerides (TGs) commonly found in linseed oil.¹ The signal assignment has been done based on literature data.²⁻⁴ Since the signals from the triglycerides and free fatty acids (FFAs) that might be present in the sample are overlapped, the ¹³C HR-NMR experiment has been performed to resolve the presence of FFAs. In order to do this, the carbonyl region (see magnification in Fig. S8) can be used.^{5,6} In this region, the FFAs are easily distinguished from triglycerides since they yield signals in a range of 174-180 ppm whereas the signals from triglycerides are typically found in the 170-174 ppm range.^{3,6} Therefore, it is evidenced that the investigated sample contains a small amount of FFAs giving ¹³C NMR signal at 177.37 ppm. Based on the comparison of the integral intensity of the signals corresponding to FFAs with those corresponding to triglycerides the molar content of the former can be estimated using the following equation:⁵

$$Mol\% \text{ FFAs} = \frac{I_{FFAs}}{I_{FFAs} + I_{TGs}} \quad (\text{eq 1})$$


where I_{FFA} is the integral of the free fatty acids carbonyl region, and I_{TGs} is the integral of the triglycerides carbonyl region. Using equation 1 the total content of the FFAs in the investigated sample was evaluated to be 4 (± 0.5) mol%.

Furthermore, chromatography was used to separate FFAs and TGs, and ¹³C HR-NMR experiment was performed on FFAs-rich fraction. This was done in order to determine which free acids were present in the linseed oil sample. Fig. S9 displays a set of signals inherent to unsaturated and saturated fatty acids. Since linseed oil typically consists of triglycerides formed by linolenic, linoleic, oleic, stearic, and palmitic acids,¹ the presence of these acids in a free form in the investigated linseed oil is suggested. All of the above-mentioned acids were detected in the obtained ¹³C NMR spectrum (Fig. S9) based on analysis of chosen peaks (methyl and vinyl carbons) position and its comparison with the literature data.⁷⁻¹⁰ Furthermore, based on the integral intensity of the respective signals, the quantitative content of each acid was obtained and is summarized in Table S2. It was found that the majority of acids (88 mol% in total) in the mixture are unsaturated, with linolenic acid as a main component (58 mol%), and the rest 12 mol% are saturated acid(s). Since stearic and palmitic acids possess similar structures and yield similar NMR signals, it is impossible to distinguish them in the mixture using the ¹³C NMR spectrum. However,

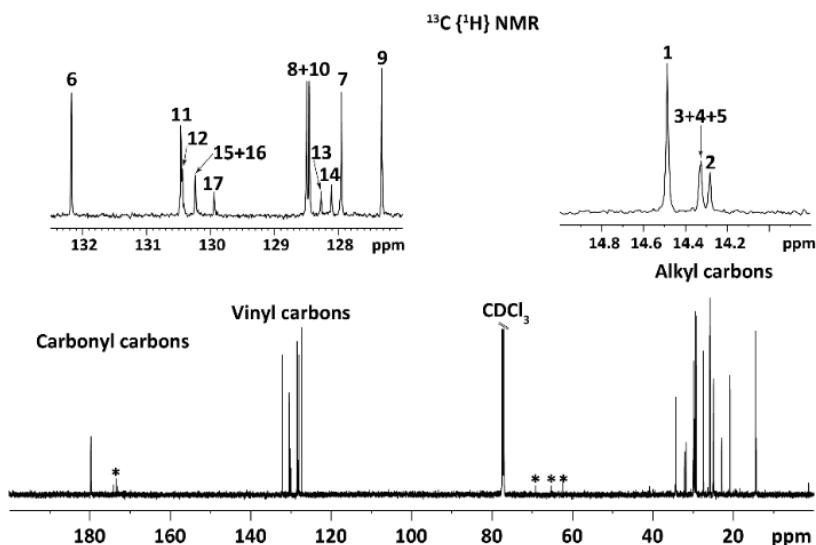
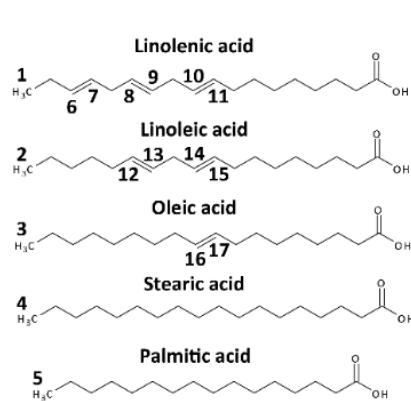


assuming even decomposition of triglycerides, the presence of both acids is suggested. The obtained ratio of FFAs is consistent with the total content of FAs in TGs of linseed oil reported in the literature¹ and experimentally measured within this research.

Fig. S7 ^1H NMR spectrum of linseed oil sample

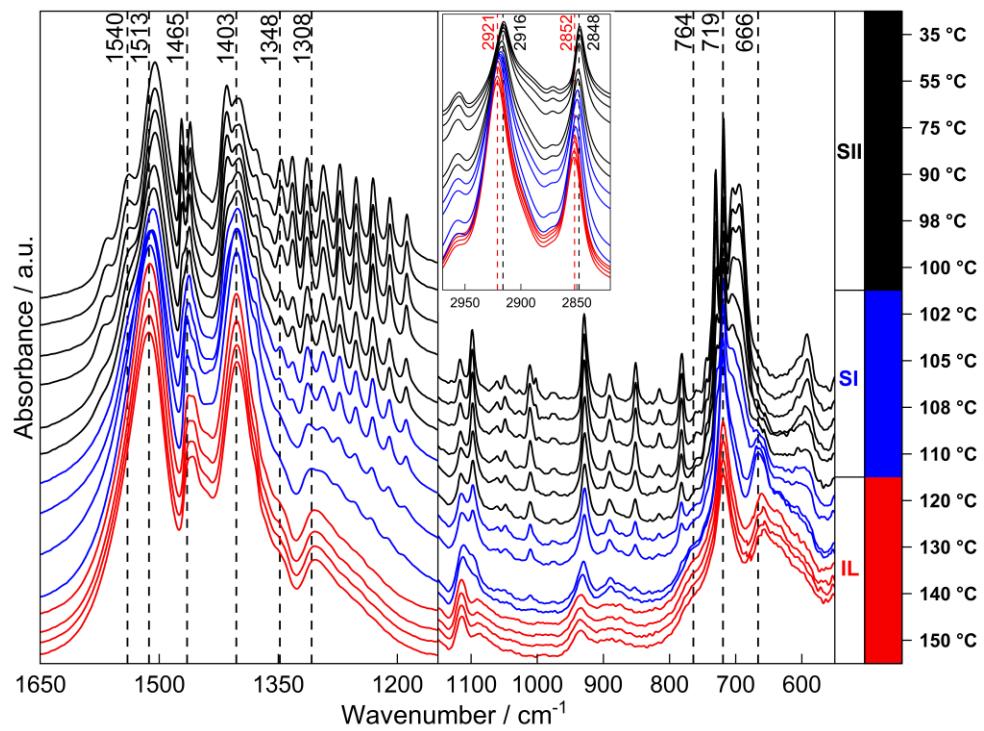
Fig. S8 ^{13}C $\{^1\text{H}\}$ NMR spectrum of linseed oil

Fig. S9 ^{13}C { ^1H } NMR spectrum of free fatty acids separated from the linseed oil sample. Signals denoted by an asterisk (*) originate from the triglycerides residuals

Table S2 Content of particular FFAs in a FFAs fraction separated from linseed oil*

<i>Fatty acid</i>	<i>Content, mol%</i>
α -Linolenic	58
Linoleic	16
Oleic	14
Stearic/Palmitic	12

*total FFAs content in LO is 4.0 ± 0.5 mol %


B) Determination of fatty acids in linseed oil by GC-FID analysis

The fatty acid profile of the linseed oil used for mixture with lead palmitate was analyzed by gas chromatography with flame ionization detector (GC-FID) according to a certified procedure in the Metrological and Testing Laboratory of University of Chemistry and Technology Prague (Testing laboratory 1316.2 accredited by the CAI according to the EN ISO/IEC 17025:2018). The determined fatty acids are given in Table S3.

Table S3 Fatty acid composition of linseed oil (mol%)

Fatty acid*	(mol%)
palmitic (C16:0)	5.22
stearic (C18:0)	3.06
vaccenic (C18:1n11c)	1.10
oleic (C18:1n9c)	18.26
linoleic (C18:2n6c)	14.12
α -linolenic (C18:3n3)	50.98
γ -linolenic (C18:3n6)	0.18
arachidic (C20:0)	0.15
cis-11-eicosenoic (C20:1n9)	0.20
cis-11,14,17-eicosatrienoic acid	0.10
behenic (C22:0)	0.11

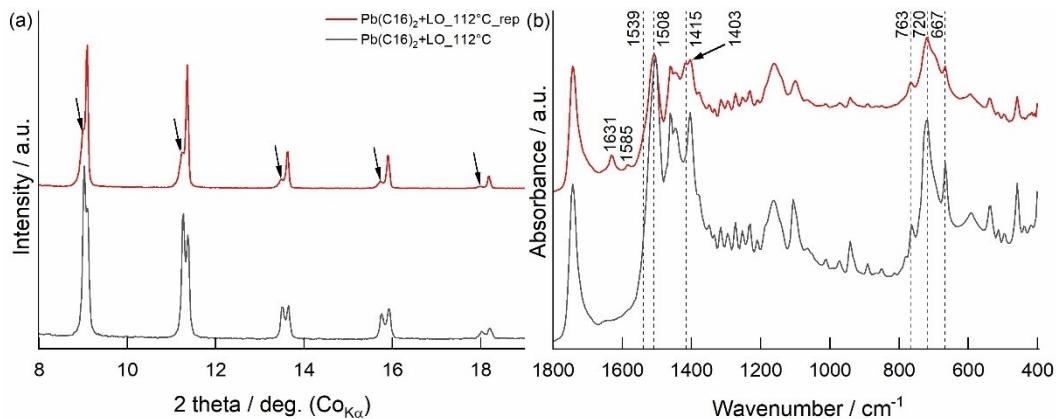
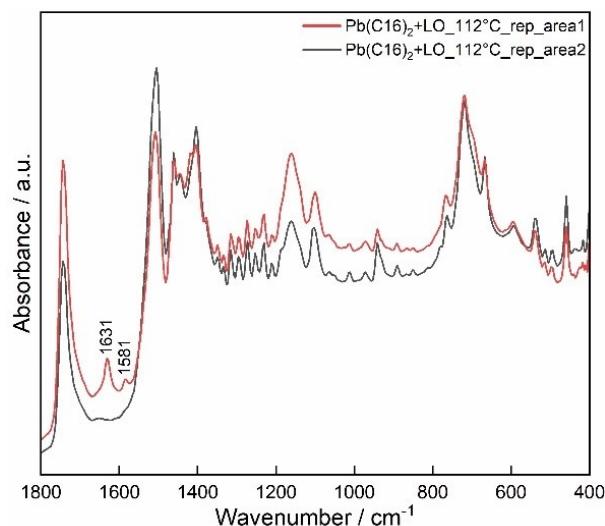

*the acids of the concentration lower than <0.1 mol% i.e. below the limit of quantitation (LOQ) are not listed

Fig. S10 Temperature dependent FTIR spectra of powder $\text{Pb}(\text{C16})_2$ cooling from 150-35 $^{\circ}\text{C}$


Reproduction of the quenching experiment

X-ray powder diffraction (XRPD) patterns reveal no significant structural differences between the $\text{Pb}(\text{C16})_2 + \text{LO}_{-112^\circ\text{C}}$ and $\text{Pb}(\text{C16})_2 + \text{LO}_{-112^\circ\text{C}}\text{rep}$ samples (Fig. S11a). The primary distinction lies in the intensities of the splitting diffraction lines, which reflect varying amounts of the high-temperature phase present in the mixture. FTIR spectrum of $\text{Pb}(\text{C16})_2 + \text{LO}_{-112^\circ\text{C}}\text{rep}$, while largely similar to that of $\text{Pb}(\text{C16})_2 + \text{LO}_{-112^\circ\text{C}}$, exhibit notable new signals at 1631 cm^{-1} and 1585 cm^{-1} (Fig. S11b).

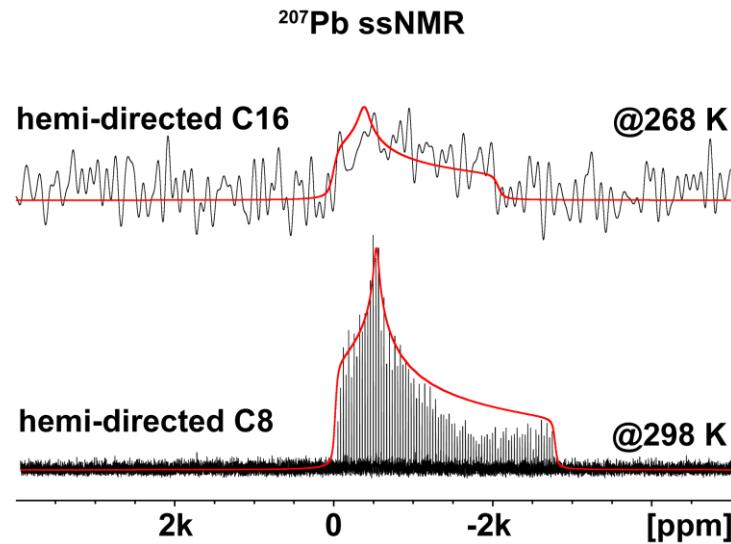


Fig. S11 Comparison of XRPD (a) and FTIR (b) measurement of originally quenched $\text{Pb}(\text{C16})_2 + \text{LO}_{-112^\circ\text{C}}$ and reproduced samples $\text{Pb}(\text{C16})_2 + \text{LO}_{-112^\circ\text{C}}\text{rep}$

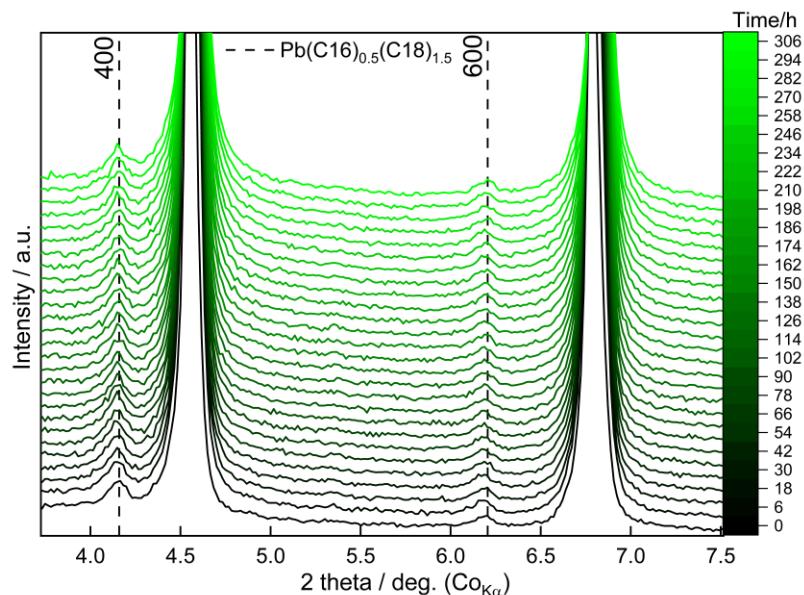

These signals have not been previously documented in either the SI phase of lead palmitate or the SII phase of lead octanoate. Several studies have reported the formation of similar bands in the $1630\text{-}1500\text{ cm}^{-1}$ region during natural aging or heating of linseed oil in the presence of lead-based pigments.¹¹⁻¹⁴ Considering the positions of these newly observed bands, it is generally suggested that they are attributed to the formation of lead carboxylates with different coordination structures. However, the formation mechanisms and nature of these newly observed signals remain unknown, making interpretation challenging. Further experiments are necessary to thoroughly investigate this phenomenon. The observed discrepancy between FTIR spectra of the $\text{Pb}(\text{C16})_2 + \text{LO}_{-112^\circ\text{C}}$ and $\text{Pb}(\text{C16})_2 + \text{LO}_{-112^\circ\text{C}}\text{rep}$ samples likely result from the inhomogeneity of the quenched sample. Fig. S12 accurately represents this discrepancy when sampling different areas of the specimen.

Fig. S12 FTIR spectra of $\text{Pb}(\text{C16})_2 + \text{LO}_{-112^\circ\text{C}}\text{rep}$ sampled from different areas of the specimen

Fig. S13 Experimental ^{207}Pb WURST-CPMG NMR spectrum of hemi-directed $\text{Pb}(\text{C8})_2$ compared to high-temperature hemi-directed phase of $\text{Pb}(\text{C16})_2$

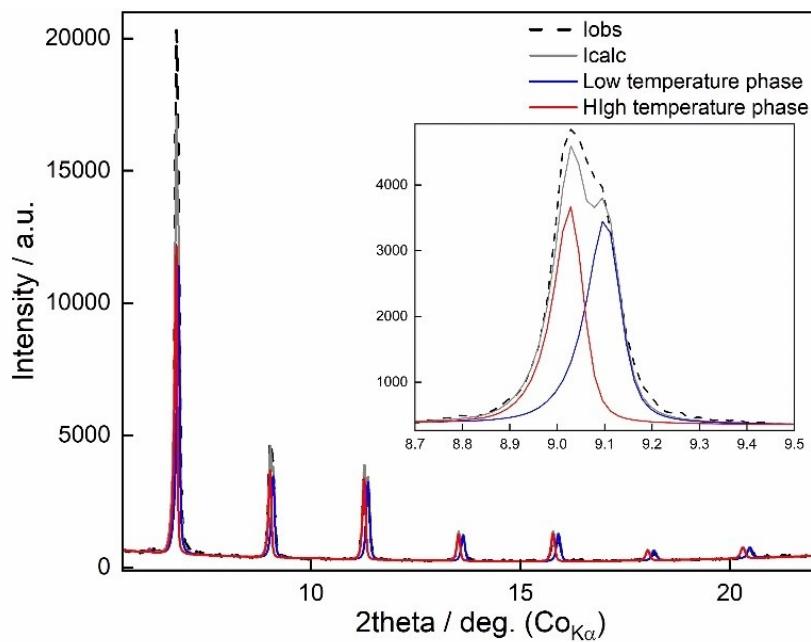
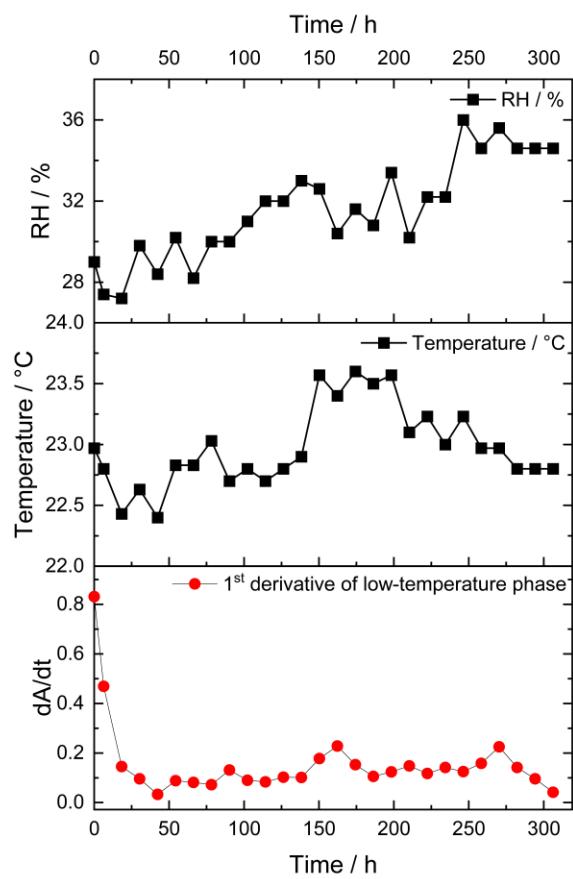


Fig. S14 XRPD pattern of $\text{Pb}(\text{C16})_2 + \text{LO}$ 112°C 0h and 306h after quenching

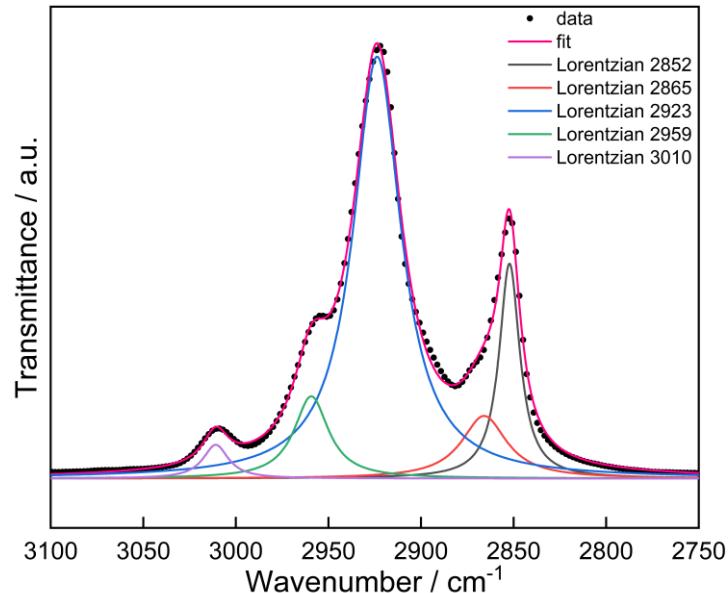
Quantitative phase analysis

The differences between the high and low temperature polymorphs are only visible and clearly distinguishable in the low angle region as the splitting of $h00$ diffraction lines. Therefore, we estimated mass fractions of both lead palmitate polymorphs by modifying the Rietveld method to fit the low angle region with the $h00$ diffraction lines. However, there is a lack of an appropriate standard for estimating the instrumental broadening in such low angle region. Therefore, we chose the Profex / BGWN software suite which is based on fundamental parameters approach for fitting the diffraction line profiles including the contribution of instrumental broadening¹⁵.

The structural model of the high temperature polymorph of lead palmitate has not been determined yet. The low temperature and high temperature polymorphs are chemically identical and the most important differences lie in the coordination neighborhood of the lead atom. These basal diffraction lines of $h00$ family correspond to arrangement of long aliphatic chains of palmitate anions. The splitting of lines is caused by a subtle rearrangement of those chains due to changes in the coordination sphere of Pb atoms. Therefore, we used the constrained models of lead palmitate with the a unit cell parameter left to be adjusted for both phases independently. This simplified procedure led to estimation of mass fractions of both polymorphs with the sufficient accuracy that permitted to estimate the kinetic model of the high temperature polymorph transformation.


Fig. S15 Structural model of $\text{Pb}(\text{C16})_2$ adjusted to fit $h00$ lines

The ESD values presented in the table S4 are based on the results of the Rietveld fit. These ESD values represent only the random errors, e.g., counting statistics and/or mathematical procedure of fit. Thus, the values of ESD are obviously smaller than the real bias¹⁶. In the case of the estimations of mass fractions are the errors calculated as the ESD multiplied by GOF values as recommended by Degen *et al.*¹⁷ for quantitative estimations.


Table S4 Mass fractions w (%) of the high-temperature phase and low-temperature phase obtained during fitting

Time / h	High temperature phase			Low temperature phase			
	w / %	ESD	ESD*GOF	w / %	ESD	ESD*GOF	GOF
0	53.82	0.99	2.81	46.18	0.99	2.81	2.84
6	48.59	0.96	3.48	51.41	0.96	3.48	3.62
18	47.30	0.91	3.31	52.70	0.91	3.31	3.64
30	45.10	0.86	3.09	54.90	0.86	3.09	3.59
42	44.99	0.86	3.10	55.01	0.86	3.10	3.61
54	44.30	0.85	3.08	55.70	0.85	3.08	3.62
66	42.87	0.85	3.07	57.13	0.85	3.07	3.61
78	42.35	0.85	3.04	57.65	0.85	3.04	3.57
90	41.14	0.81	2.79	58.86	0.81	2.79	3.44
102	39.20	0.79	2.67	60.80	0.79	2.67	3.37
114	38.98	0.78	2.59	61.02	0.78	2.59	3.32
126	37.19	0.76	2.45	62.81	0.76	2.45	3.23
138	36.52	0.78	2.48	63.48	0.78	2.48	3.18
150	34.76	0.77	2.36	65.24	0.77	2.36	3.06
162	32.26	0.73	2.12	67.74	0.73	2.12	2.91
174	29.28	0.72	2.03	70.72	0.72	2.03	2.82
186	28.59	0.72	1.91	71.41	0.72	1.91	2.65
198	26.75	0.74	1.85	73.25	0.74	1.85	2.50
210	25.62	0.82	2.00	74.38	0.82	2.00	2.44
222	23.20	1.00	2.27	76.80	1.00	2.27	2.27
234	22.80	1.10	2.46	77.20	1.10	2.46	2.24
246	19.80	1.20	2.60	80.20	1.20	2.60	2.17
258	19.80	1.50	3.10	80.20	1.50	3.10	2.06
270	16.00	1.50	3.03	84.00	1.50	3.03	2.02
282	14.40	1.50	2.96	85.60	1.50	2.96	1.97
294	12.60	1.40	2.79	87.40	1.40	2.79	1.99
306	12.10	1.50	2.92	87.90	1.50	2.92	1.95
407	12.90	0.85	1.29	87.10	0.85	1.29	1.52
475	12.14	0.83	1.22	87.86	0.83	1.22	1.47
1892	5.65	0.88	1.51	94.35	0.88	1.51	1.71
<i>Dataset from earlier experiment</i>							
17	50.41	0.52	2.14	49.59	0.52	2.14	4.12
70	38.26	0.24	0.84	61.74	0.24	0.84	3.49
138	18.15	0.52	1.05	81.85	0.52	1.05	2.02
209	7.42	0.62	1.05	92.58	0.62	1.05	1.70
498	0.00			100.00			1.91

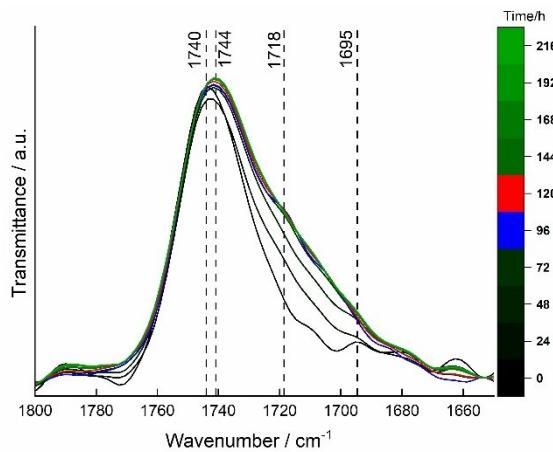
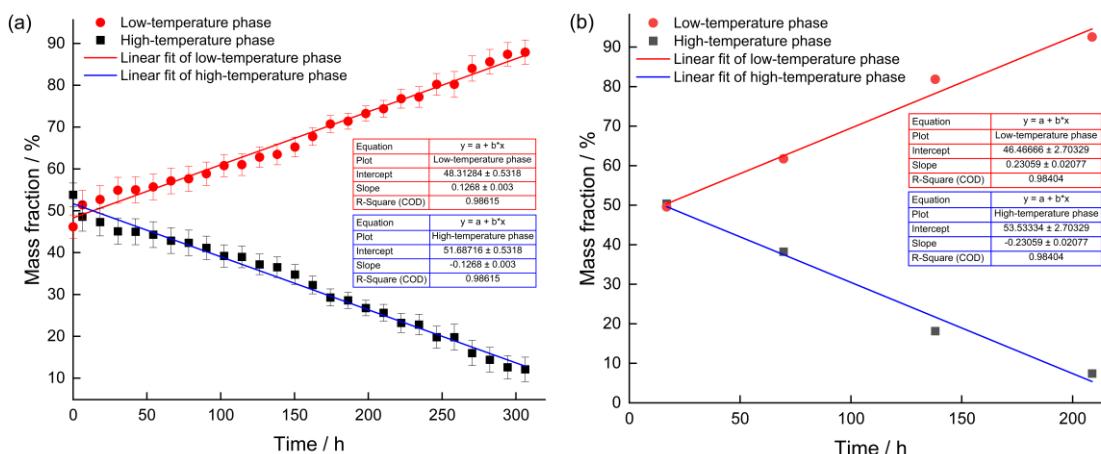

* the asterisk-marked values are omitted from plots and data analysis, as they solely indicate transformation completion and were obtained using inconsistent measurement intervals

Fig. S16 Comparison of the 1st derivative of low-temperature phase with an average RH and temperature inside diffractometer

Fig. S17 The FTIR spectrum of $\text{Pb}(\text{C16})_2\text{+LO}_{112^\circ\text{C}}$ was deconvoluted in the region of $3100\text{-}2750\text{ cm}^{-1}$ using five Lorentzian band shapes. The deconvolution was performed using non-linear curve fitting in OriginPro 2021, with constraints applied to peak's number and position


Fig. S18 FTIR spectra of the sample $\text{Pb}(\text{C16})_2+\text{LO}_{-112^\circ\text{C}}$ in carbonyl spectra region baseline-corrected at 1850 cm^{-1}

Descriptive kinetics of polymorphic transformation in $\text{Pb}(\text{C16})_2+\text{LO}_{-112^\circ\text{C}}$

This kinetic analysis presents a descriptive model characterizing the phase transformation behavior of lead palmitate dispersed in a linseed oil matrix after quenching. While the analysis does not investigate the underlying molecular mechanisms, it employs a linear fitting approach based on zero-order kinetic equations to quantify the observed transformation.

The linear fits presented in Fig. S19a demonstrate high correlation coefficients ($R^2 > 0.98$) with equal but opposite slopes, indicating a direct transformation between two phases that follows zero-order kinetics. This linear relationship suggests that the transformation rate remains constant and independent of reactant concentration. Comparable fitting parameters were obtained from complementary datasets from earlier experiments, despite having fewer data points and varying measurement intervals (Fig. S19b).

Minor deviations from linearity, along with transformation rate variations observed in the first derivative analysis of the low-temperature phase (Fig. 10) and slight fitting inconsistencies (Fig. S19), likely stem from external factors such as temperature fluctuations, humidity variations, and oil polymerization rather than changes in material concentration.

Fig. S19 Fitting of the zero-order kinetic equation applied to (a) the primary dataset and (b) complementary data obtained from a previous experiment

References

1. V. Popa, A. Gruia, D.- Raba, D. Dumbrava, C. Moldovan, D. Bordean and C. Mateescu, *J. Agroaliment. Process. Technol.* 2012, **18**, 136–140.
2. B. Nieva-Echevarría, E. Goicoechea, M.J. Manzanos and M.D. Guillén, *Food Res. Int.*, 2017, **91**, 171–182.
3. M. Tůsar, L. Tůsar, S. Bohanec and J. Zupan, *J. Chem. Inf. Comput. Sci.*, 1992, **32**, 299–303.
4. M.A. Brescia and A. Sacco, *Mod. Magn. Reson.*, 2008, **chapter**, 1645–1650.
5. M.E. Di Pietro, A. Mannu and A. Mele, *Processes.*, 2020, **8**, 1–15.
6. R. Sacchi, I. Medina, S.P. Aubourg, I. Giudicianni, L. Paolillo and F. Addeo, *J. Agric. Food Chem.*, 1993, **41**, 1247–1253.
7. X. Zhong, R. Song, D. Shan, X. Ren, Y. Zheng, F. Lv, Q. Deng, Y. He, X. Li, R. Li, L. Yan and G. She, *Bioorg. Chem.*, 2023, **140**, 106790.
8. A. Leggio, R. De Marco, F. Perri, M. Spinella and A. Liguori, *European J. Org. Chem.*, 2012, 114–118.
9. W. Xiong, Y. Wang, X. Yang and W.H. Liu, *Org. Lett.*, 2023, **25**, 2948–2952.
10. W.Y. Tan, Y. Lu, J.F. Zhao, W. Chen and H. Zhang, *Org. Lett.*, 2021, **23**, 6648–6653.
11. J. van der Weerd, A. van Loon and J. J. Boon, *Stud. Conserv.*, 2005, **50**, 3–22.
12. R. J. Meilunas, J. G. Bentsen and A. Steinberg, *Stud. Conserv.*, 1990, **35**, 33–51.
13. L. de Viguerie, P. A. Payard, E. Portero, Ph. Walter and M. Cotte, *Prog. Org. Coat.*, 2016, **93**, 46–60.
14. G. DePolo, P. Iedema, K. Shull and J. Hermans, *Macromolecules*, 2024, **57**, 8263–8276.
15. J. Bergmann, P. Friedel and R. Kleeberg, CPD Newsletter (Commission of Powder Diffraction, International Union of Crystallography), 1998, **20**, 5–8.
16. I. C. Madsen, N. V. Y. Scarlett, R. Kleeberg, K. Knorr, “Quantitative Phase Analysis”, in C. J. Gilmore, J. A. Kaduk, H. Schenk, H., eds. International Tables for Crystallography, Vol. H, Chapter 3.9, pp 344-373, IUCr, 2019, ISBN 978-1-118-41628-0.
17. T. Degen, T. Dortmann, HighScorePlus, version 5.3.0.33005, October 1, 2024, XHP_CHMPrint.pdf file, page 421.