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1. Synthesis and self-assembly of L

L was synthesized according to the previous literature [S11,
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Scheme S1. Synthesis of L.
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Figure S1. 'H NMR spectrum (400 MHz, DMSO-ds, 298 K) of L.
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Figure S2. 3C NMR spectrum (151 MHz, DMSO-ds, 298 K) of L.
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Figure S3. 'H-'H COSY NMR spectrum (400 MHz, DMSO-dg, 298 K) of L.
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Figure S4. '"H NMR spectrum (400 MHz, D,O/CD;CN, v/v = 19/1,298 K) of the self-
assembly of L and tmedPd(NO;)s.
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Figure S5. 13C NMR spectrum (151 MHz, DMSO-ds, 298 K) of the self-assembly of

L and tmedPd(NOs),.
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Figure S6. 'H-'H COSY NMR spectrum (400 MHz, D,O/CD;CN, v/v = 19/1, 298 K)
of the self-assembly of L and tmedPd(NOs),.
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Figure S7. ESI-TOF-MS of the monomer and dimer mixture.

We used Bruker TopSpin 4.0.6 software for precise data fitting, and determined
the diffusion coefficients based on intensities as a function of the diffusion delay time.
The average diffusion coefficients (D values) obtained are 2.33 x 1019 m?s! (¢ = 2.5
mM) for 1 in D,O/CD;CN (v/v = 19/1), and 9.00x1071° m?s-! for 1 in CD3CN. The
fitted decay curves and the '"H DOSY spectra are shown in Figures S8-S9.
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Figure S8. 'H DOSY spectrum of 1 (400 MHz, 298 K, D,0O/CDsCN, v/v = 19/1, ¢ =
2.5 mM, Diffusion Coefficient D = 2.33x101 m?s-!, d = 1.85 nm).
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Figure S9. 'H DOSY spectrum of 1 (400 MHz, 298 K, CD;CN, ¢ = 1 mM, Diffusion
Coefficient D = 9.00x10-1 m?s!, d = 1.24 nm).
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2. Single crystal X-ray diffraction study:

X-ray diffraction study for 1 was conducted at a Rigaku XtaLAB Synergy R
diffractometer using MoK radiation (A = 0.71073 A). Data reduction was performed
with the CrysAlisPro package.!S?] Subsequently, the structures were solved through
the direct method and refined using full-matrix least-squares on F, with consideration
of anisotropic displacement, employing the SHELX software package.[53! Solvent
molecules were highly disordered and could not be reasonably located.
PLATON/SQUEEZE routine!3* was used to remove the contribution of the electron
density associated with the remaining highly disordered solvents. Thermal parameter
restraints (SIMU, DELU) were applied to the framework to obtain the chemical-
reasonable models and reasonable atomic displacement parameters. OMIT restraint
was also used to delete two reflections with large Error/esd values.

Crystal data for 1: Space group P-1, a = 17.1274(2) A, b = 17.2676(3) A, ¢ =
19.2750(3) A, V = 4850.30(15) A3, Z =2, T = 100(2) K. Anisotropic least-squares
refinement on 19463 independent merged reflections (R, = 0.0494) converged at
residual ,,R, = 0.2256 for all data; residual R; = 0.0592 for 15546 observed data [I >
20 (I)], and goodness of fit (GOF) =0.933. (CCDC 2404246)

Note: PLATON/SQUEEZE routine gave a total potential solvent accessible void
of 1827 A3 per unit cell and a total of approximately 590 electron count. Due to the
presence of three possible disordered solvents in the crystal (water, DMSO, and THF),
the identity of the masked solvents could not be conclusively determined. These
molecules have not been included in the molecular formula. As a result, the reported
molecular weight and density are underestimated.
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Figure S10. Ortep drawing of the asymmetric unit in the crystal structure of 1 at 30%
probability level.
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Table S1. Crystal data and structure refinement for 1.

Identification code J99-230318 auto sq
Empirical formula C,0H74N150:,Pd,
Formula weight 1572.27
Temperature 100(2) K
Wavelength 0.71073 A

Crystal system Triclinic

Space group P-1

Unit cell dimensions a=17.1274(2) A

b=17.2676(3) A
c=19.2750(3) A

Volume 4850.30(15) A3

V4 2

Density (calculated) 1.077 Mg/m?

Absorption coefficient 0.425 mm!

F(000) 1616

Crystal size 0.2x0.18 x 0.15 mm?

Theta range for data collection 1.537 to 28.342°.

Index ranges -22<=h<=21, -22<=k<=22, -24<=1<=24
Reflections collected 78239

Independent reflections 19463 [R(int) = 0.0494]
Completeness to theta = 25.242° 98.4 %

Refinement method Full-matrix least-squares on F?
Data / restraints / parameters 19463 / 1694 / 927
Goodness-of-fit on F2 0.933

Final R indices [[>2sigma(I)] R1=0.0592, wR2 =0.2113

R indices (all data) R1=10.0742, wR2 =0.2256
Extinction coefficient 1.943 and -1.019 e. A"

3. Weak Interaction Analysis

The independent gradient model (IGM) analysis was conducted using the
Multiwfn 3.8 program to explore the weak interactions between the host and NO;~.
During the calculation process, the host—guest complex is split into two fragments
(the host and guest NOj;) to study their interactions. The contribution degree of
atomic pair and atoms to the weak interaction is quantified as a percentage using the
og index. The molecular structure diagram, depicting the color-coded atomic Jg index
and 0g;,., isosurface, was generated using the VMD 1.9.3 program. The color scale,
ranging from red to orange (-0.8 to 0.2), effectively visualizes the dg index variations
among different atoms. The smaller value of dg;,., isosurface is set to ensure the ideal

visualization of the vdw between the host and guest.”
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Figure S11. Color-coded sign scale bar of IGM analysis.

4. Calculation of K,:

Since the process of monomer dimerization is actually a fast exchange process,
we adopted the Hill equation[®3! for fitting to calculate the dimerization constant. The

details are modified as follows:
1+ 1'=2(1),

0.

i

1-0,

L

Ad,

i

9. =
' A(Smax

log

= nlog [A1] + nlog [K ]

n = Hill coef ficient
(17 =[1]-[1],

K, = dimerization constant

Where the value of §; was obtained by using Ad; as compared against the maximum
change of chemical shift Ad . of Hy in 'TH NMR spectra, n is the Hill coefficient
describing cooperativity, and K, is the apparent dimerization constant. The Hill
coefficient n describes the cooperative binding, where n > 1 indicates positive
cooperativity, n» < 1 indicates negative cooperativity, and » = 1 indicates no
cooperativity.
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Figure S12. Titration curve fitting with Hill function for different concentrations in

CDsCN.
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Figure S13. 'H NMR titration (400 MHz, D,O/CD;CN, v/v = 4/1, 298 K) of 1 with

different concentrations.
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Figure S14. Titration curve fitting with Hill function for different concentrations in a
mixture of D,0 and CD;CN (D,O/CD;CN, v/v = 4/1).

4. Photophysical properties of 1:
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Figure S15. UV-Vis spectrum of 1 in CH3CN (0.01 mM).
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Figure S16. Fluorescence excitation and emission spectra of 1 in CH3;CN (A = 357
nm, Aey, =430 nm, 0.01 mM, slits: 3.0 - 2.0).
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Figure S17. Fluorescence excitation and emission spectra of (1), in HO/CH;CN (v/v
=19/1) (Aex = 414 nm, A, = 520 nm, 5 mM, slits: 3.0 - 2.0).
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Figure S18. Fluorescence decay curve of 1 in HyO/CH;CN (v/v = 4/1) (Aex = 375 nm,
Aem = 430 nm, 1 mM).
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Figure S19. Fluorescence decay and fitted curves of 1 in H,O/CH;CN (v/v = 19/1)
(Aex =375 nm, Aeyy = 520 nm, 1 mM).

Figure S20. Simulated structures of another conformation of 1 under the conditions A)
before optimization and B) after optimization.
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5. Sensing of TNP and other nitro-compounds
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Figure S21. Chemical structures of commonly considered explosive nitro-aromatic
compounds.
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Figure S22. Fluorescence emission spectra of 1 in a mixture of H,O and CH;CN (v/v
=4/1) (Aex =405 nm, 1 mM, slits: 3.0 - 2.0) with increasing concentrations of TNT.
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Figure S23. Fluorescence emission spectra of 1 in a mixture of H,O and CH;CN (v/v
=4/1) (Aex =405 nm, 1 mM, slits: 3.0 - 2.0) with increasing concentrations of 2-NT.
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Figure S24. Fluorescence emission spectra of 1 in a mixture of H,O and CH;CN (v/v
=4/1) (Aex =405 nm, 1 mM, slits: 3.0 - 2.0) with increasing concentrations of 3-NT.
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Figure S25. Fluorescence emission spectra of 1 in a mixture of H,O and CH;CN (v/v
=4/1) (Aex =405 nm, 1 mM, slits: 3.0 - 2.0) with increasing concentrations of 4-NT.
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Figure S26. '"H NMR spectrum (400 MHz, DMSO-d;, 298 K) of N-methylacridine.
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Figure S27. Fluorescence emission spectra of N-methylacridine with varying
concentrations of TNP (0-50 ppm) in a mixture of H,O and CH;CN (v/v =4/1) (c =
2.0 mM, A, = 363 nm). Inset: The S-V plot of fluorescence intensity (Iy/I - 1) versus

TNP concentration, ranging from 0 to 50 ppm.
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Figure S28. IR spectra of the complex before and after the addition of TNP.
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Figure S29. ESI-MS spectra of the complex after the addition of TNP.
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Figure S30. UV-Vis spectra of TNP.
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Figure S31. UV-Vis titration of 1 (1 mM) with 1-10 ppm of TNP.

Figure S32. Simulated structure of 1 with TNP. Multiple hydrogen bonds mainly
formed between benzimidazolium C-H and nitro group and hydroxyl anion of TNP-,
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