Electronic Supplementary Information

Controlling pseudopolymorphism *via* robust and repetitive solvent-containing supramolecular interactions in ureabased isostructural coordination polymers

Ghazale Khorshidi and Behrouz Notash*

Department of Inorganic Chemistry, Shahid Beheshti University, 1983969411,

Tehran, Iran.

E-mail: b_notash@sbu.ac.ir; Tel: +98 2129904363; Fax:+98 2122431663.

List of Supporting Information provided in this file

Synthesis of 1,3-di(pyridine-4-yl)urea (4bpu) ligand	.3
Fig. S1 ¹ H NMR and ¹³ C NMR spectra of 4bpu in DMSO- <i>d</i> ₆	.4
Fig. S2 FT-IR spectrum of 4bpu ligand in KBr pellet	.5
Fig. S3 FT-IR spectrum of Zn-MeOH in KBr pellet	6
Fig. S4 FT-IR spectrum of Zn-EtOH in KBr pellet	.6
Fig. S5 FT-IR spectrum of Cd-MeOH in KBr pellet	7
Fig. S6 FT-IR spectrum of Cd-EtOH in KBr pellet	7
Fig. S7 FT-IR spectrum of Hg-MeOH in KBr pellet	8
Fig. S8 FT-IR spectrum of Hg-EtOH in KBr pellet	8
Fig. S9 ORTEP diagram of the coordination environment around metal centers in compounds N	A -
MeOH and M-EtOH (M=Zn, Cd and Hg)	9

Fig. S10 I/ σ (I) vs. Resolution and Rmerge vs. Resolution plots for Zn-MeOH and Zn-EtOH10
Fig. S11 $I/\sigma(I)$ vs. Resolution and Rmerge vs. Resolution plots for Cd-MeOH and Cd-EtOH11
Fig. S12 I/ σ (I) vs. Resolution and Rmerge vs. Resolution plots for Hg-MeOH and Hg-EtOH12
Fig. S13 Dihedral angles between pyridyl-urea and pyridyl-pyridyl planes of ligand in compounds
M-MeOH and M-EtOH (M=Zn, Cd and Hg)13
Fig. S14 M…M distances [Å] and M…M…M angles [°] in zig-zag chains of Zn-MeOH, Cd-MeOH
and Hg-MeOH 14
Fig. S15 M…M distances [Å] and M…M…M angles [⁰] in zig-zag chains of Zn-EtOH, Cd-EtOH
and Hg-EtOH15
Fig. S16 Supramolecular interactions in Zn-MeOH, Cd-MeOH and Hg-MeOH16
Fig. S17 Supramolecular interactions in Zn-EtOH, Cd-EtOH and Hg-EtOH17
Fig. S18 3D supramolecular constructs obtained from XPac analysis for the isostructural
pairs18
Fig. S19 1D supramolecular constructs obtained from XPac analysis for the isostructural
pairs19
Fig. S20 ATR-FTIR spectra of compounds M-MeOH and M-EtOH ($M = Zn$, Cd and Hg) 20
Fig. S21 PXRD patterns of Zn-MeOH, Cd-MeOH and Hg-MeOH21
Fig. S22 PXRD patterns of Zn-EtOH, Cd-EtOH and Hg-EtOH
Fig. S23 Simulated PXRD patterns from the X-ray single-crystal data of compounds M-MeOH
and M-EtOH ($M = Zn$, Cd and Hg)23
Fig. S24 TGA curves of compounds M-MeOH and M-EtOH (M = Zn, Cd and Hg)23
Table S1 Selected bond lengths [Å] and angles [0] for compounds M-MeOH and M-EtOH (M =
Zn, Cd and Hg)24
Table S2 τ_4 parameter for compounds M-MeOH and M-EtOH (M = Zn, Cd and Hg)25
Table S3 Temperature range and percentage of weight loss for MeOH and EtOH in compounds
M-MeOH and M-EtOH ($M = Zn$, Cd and Hg)25
X-ray crystallography25

Synthesis of 1,3-di(pyridin-4-yl)urea (4bpu) ligand:

The **4bpu** ligand was synthesized according to the reported procedure.¹ Isonicotinic acid hydrazide (3 mmol, 410 mg) was dissolved in 10 ml 25% aq. HCl at 0 °C and NaNO₂ (5 mmol, 350 mg) dissolved in 5 mL ice cold water was added to it with stirring. Stirring was continued for 1 h, maintaining the temperature below 5 °C. The solution was neutralized by adding solid Na₂CO₃ and extracted with 65 ml toluene. The organic extracts were dried over Na₂SO₄ and filtered. 4-aminopyridine (3 mmol, 282 mg) was added to the filtrate and refluxed for 12 h. The precipitate was filtered and dried to afford **4bpu** in 70% yield. mp: 206-208 °C. ¹H NMR (DMSO-*d*₆, 300 MHz) (Fig. S1a): δ = 7.47(d, 4H), 8.42(d, 4H), 9.36(s, 2H). ¹³C NMR (DMSO-*d*₆, 75 MHz) (Fig. S1b): δ = 122.97, 146.45, 150.70, 152.26. IR data (KBr pellet, cm⁻¹) (Fig. S2): 3402(m), 3079(m), 1940(w), 1831(w), 1739(s), 1640(m), 1604(s), 1586(s), 1537(m), 1517(s), 1496(m), 1423(m), 1335(m), 1325(m), 1286(m), 1245(m), 1191(m), 1004(m), 898(w), 828(s), 791(m), 737(m), 657(w), 645(w), 527(s).

(b) 13 C NMR spectrum of **4bpu** in DMSO- d_{6} , 75 MHz.

Fig. S2 FT-IR spectrum of 4bpu ligand in KBr pellet.

Fig. S3 FT-IR spectrum of Zn-MeOH in KBr pellet.

Fig. S4 FT-IR spectrum of Zn-EtOH in KBr pellet.

Fig. S5 FT-IR spectrum of Cd-MeOH in KBr pellet.

Fig. S6 FT-IR spectrum of Cd-EtOH in KBr pellet.

Fig. S7 FT-IR spectrum of Hg-MeOH in KBr pellet.

Fig. S8 FT-IR spectrum of Hg-EtOH in KBr pellet.

Fig. S9 ORTEP diagram of the coordination environment around metal centers with atom labeling scheme in compounds **M-MeOH** and **M-EtOH** (M= Zn, Cd and Hg). Thermal ellipsoids are at the 30% probability level. Color code: Zn, light blue; Cd, pink; Hg, orange; O, red; N, blue; C, grey; I, purple and H, white.

Fig. S10 $I/\sigma(I)$ vs. Resolution and Rmerge vs. Resolution plots for Zn-MeOH and Zn-EtOH.

Fig. S11 $I/\sigma(I)$ vs. Resolution and Rmerge vs. Resolution plots for Cd-MeOH and Cd-EtOH.

Fig. S12 $I/\sigma(I)$ vs. Resolution and Rmerge vs. Resolution plots for Hg-MeOH and Hg-EtOH.

mean: C9 C10 N4 C7 C11 C8

Compounds	∠ Mean plane of py1 – urea [°]	∠ Mean plane of py2 – urea [°]	∠ Mean plane of py1 – py2 [°]
Zn-MeOH	6.29	5.37	7.67
Cd-MeOH	7.22	6.21	10.00
Hg-MeOH	6.39	5.16	8.11
Zn-EtOH	6.64	5.63	9.25
Cd-EtOH	6.39	5.51	8.17
Hg-EtOH	7.24	5.57	6.77

Fig. S13 Dihedral angles between pyridyl-urea and pyridyl-pyridyl planes of ligand in compounds **M-MeOH** and **M-EtOH** (M=Zn, Cd and Hg).

Fig. S14 M···M distances (D, d/ Å) and M···M···M angle (α / deg.) in zig-zag chains of (a) Zn-MeOH, (b) Cd-MeOH and (c) Hg-MeOH.

Fig. S15 M···M distances (D, d/ Å) and M···M···M angle (α / deg.) in zig-zag chains of (a) **Zn-EtOH**, (b) **Cd-EtOH** and (c) **Hg-EtOH**.

Fig. S16 Supramolecular interactions in compounds (a) Zn-MeOH, (b) Cd-MeOH and (c) Hg-MeOH.

Fig. S17 Supramolecular interactions in compounds (a) Zn-EtOH, (b) Cd-EtOH and (c) Hg-EtOH.

Fig. S18 3D supramolecular constructs obtained from XPac analysis for the isostructural pairs (a) **Zn-EtOH** and **Zn-MeOH**, (b) **Cd-EtOH** and **Cd-MeOH**, (c) **Hg-EtOH** and **Hg-MeOH**, (d) **Cd-MeOH** and **Hg-MeOH**, (e) **Cd-EtOH** and **Hg-EtOH**, (f) **Cd-MeOH** and **Hg-EtOH** and **Hg-MeOH**.

Fig. S19 1D supramolecular constructs obtained from XPac analysis for the isostructural pairs (a) Cd-MeOH and Zn-MeOH, (b) Hg-MeOH and Zn-MeOH, (c) Cd-EtOH and Zn-EtOH, (d) Hg-EtOH and Zn-EtOH, (e) Cd-EtOH and Zn-MeOH and (f) Hg-EtOH and Zn-MeOH.

Fig. S20 ATR-FTIR spectra of compounds M-MeOH and M-EtOH (M = Zn, Cd and Hg).

Fig. S21 PXRD patterns of M-MeOH (M = Zn, Cd and Hg). Black: Simulated from the X-ray single-crystal data; Cyan: observed for the as-synthesized **Zn-MeOH** solids, Purple: observed for the as-synthesized **Cd-MeOH** solids and Orange: observed for the as-synthesized **Hg-MeOH** solids.

Fig. S22 PXRD patterns of **M-EtOH** (M = Zn, Cd and Hg). Black: Simulated from the X-ray singlecrystal data; Light blue: observed for the as-synthesized **Zn-EtOH** solids, Pink: observed for the as-synthesized **Cd-EtOH** solids and Pale orange: observed for the as-synthesized **Hg-EtOH** solids.

Fig. S23 Simulated PXRD patterns from the X-ray single-crystal data of compounds M-MeOH and M-EtOH (M = Zn, Cd and Hg).

Fig. S24 TGA curves of compounds M-MeOH and M-EtOH (M = Zn, Cd and Hg).

Selected bond lengths [Å] and angles [°] for Zn-MeOH			
Zn(1)—I(1)	2.547(3)	I(1) - Zn(1) - N(1)	107.8(6)
Zn(1)—I(2)	2.575(4)	I(2) - Zn(1) - N(1)	108.2(5)
Zn(1)—N(1)	2.057(19)	I(1)—Zn(1)—N(4) ^{#1}	109.0(5)
Zn(1)—N(4) ^{#1}	2.041(17)	$I(2) - Zn(1) - N(4)^{\#1}$	106.4(5)
I(1)-Zn(1)-I(2)	121.43(11)	$N(1)$ — $Zn(1)$ — $N(4)^{\#1}$	102.4(7)
Symmetry code: $\#1: -x + 1$	/2, y - 1/2, z + 1/2		
	Selected bond lengths [Å] a	and angles [°] for Zn-EtOH	
Zn(1)—I(1)	2.548(3)	I(1) - Zn(1) - N(1)	109.6(6)
Zn(1)—I(2)	2.559(4)	I(2) - Zn(1) - N(1)	108.0(5)
Zn(1)—N(1)	2.07(2)	I(1)— $Zn(1)$ — $N(4)$ ^{#1}	109.9(5)
$Zn(1)-N(4)^{\#1}$	2.055(17)	$I(2) - Zn(1) - N(4)^{\#1}$	106.2(6)
I(1) - Zn(1) - I(2)	119.63(13)	$N(1)$ — $Zn(1)$ — $N(4)^{#1}$	102.1(8)
Symmetry code: $\#1: -x + 3$	8/2, y − 1/2, z − 1/2		
	Selected bond lengths [Å] a	nd angles [°] for Cd-MeOH	
Cd(1)—I(1)	2.695(2)	I(1)-Cd(1)-N(1)	106.4(5)
Cd(1)—I(2)	2.712(3)	I(2)-Cd(1)-N(1)	105.3(5)
Cd(1)—N(1)	2.293(16)	$I(1)-Cd(1)-N(4)^{\#1}$	107.4(4)
$Cd(1) - N(4)^{\#1}$	2.041(17)	$I(2)$ — $Cd(1)$ — $N(4)^{\#1}$	104.3(5)
I(1)-Cd(1)-I(2)	129.57(8)	$N(1)$ — $Cd(1)$ — $N(4)^{\#1}$	100.2(6)
Symmetry code: $\#1: -x + 3$	B/2, y − 1/2, z − 1/2		
	Selected bond lengths [Å] a	and angles [°] for Cd-EtOH	
Cd(1)—I(1)	2.695(3)	I(1)-Cd(1)-N(1)	108.2(5)
Cd(1)—I(2)	2.712(3)	I(2)—Cd(1)—N(1)	106.3(5)
Cd(1)—N(1)	2.270(18)	$I(1)$ — $Cd(1)$ — $N(4)^{\#1}$	107.7(5)
Cd(1)—N(4) ^{#1}	2.266(19)	$I(2)$ — $Cd(1)$ — $N(4)^{#1}$	104.8(5)
I(1)-Cd(1)-I(2)	126.50(8)	$N(1)$ — $Cd(1)$ — $N(4)^{\#1}$	100.2(7)
Symmetry code: $\#1: -x + 1$	/2, y – 1/2, z – 1/2		
Selected bond lengths [Å] and angles [°] for Hg-MeOH			
Hg(1)—I(1)	2.658(4)	I(1) - Hg(1) - N(1)	105.3(9)
Hg(1)—I(2)	2.659(4)	I(2)—Hg(1)—N(1)	101.2(9)
Hg(1)—N(1)	2.37(4)	$I(1) - Hg(1) - N(4)^{\#1}$	103.7(9)
Hg(1)—N(4) ^{#1}	2.39(4)	$I(2) - Hg(1) - N(4)^{\#1}$	104.8(9)
I(1) - Hg(1) - I(2)	139.13(16)	N(1)—Hg(1)—N(4) ^{#1}	94.1(14)
Symmetry code: $\#1: -x + 1/2$, $y - 1/2$, $z - 1/2$			
Selected bond lengths [Å] and angles [°] for Hg-EtOH			
Hg(1)—I(1)	2.645(4)	I(1)—Hg(1)—N(1)	105.3(7)
Hg(1)—I(2)	2.665(4)	I(2)—Hg(1)—N(1)	102.5(8)
Hg(1)—N(1)	2.38(3)	$I(1) - Hg(1) - N(4)^{\#1}$	104.4(8)
Hg(1)—N(4) ^{#1}	2.38(3)	$I(2) - Hg(1) - N(4)^{\#1}$	103.5(8)
I(1)—Hg(1)—I(2)	137.43(15)	N(1)—Hg(1)—N(4) ^{#1}	96.7(11)
Symmetry code: $\#1: -x + 3/2$, $y - 1/2$, $z + 1/2$			

Table S1 Selected bond lengths [Å] and angles [°] for compounds M-MeOH and M-EtOH (M= Zn, Cd and Hg).

Compounds	τ ⁴ Parameter	Coordination geometry
Zn-MeOH	0.92	distorted trigonal-pyramidal
Zn-EtOH	0.93	distorted trigonal-pyramidal
Cd-MeOH	0.87	distorted trigonal-pyramidal
Cd-EtOH	0.89	distorted trigonal-pyramidal
Hg-MeOH	0.82	distorted trigonal-pyramidal
Hg-EtOH	0.83	distorted trigonal-pyramidal

Table S2 τ_4 parameter for compounds **M-MeOH** and **M-EtOH** (M = Zn, Cd and Hg).

Table S3 Temperature range and percentage of weight loss for MeOH and EtOH in compoundsM-MeOH and M-EtOH (M = Zn, Cd and Hg).

Compounds	Temperature range (°C)	Calculated (%)	Observed (%)
Zn-MeOH	41-124	5.66	5.20
Zn-EtOH	38-128	7.95	8.10
Cd-MeOH	35-94	5.23	2.81
Cd-EtOH	30-112	7.36	5.32
Hg-MeOH	30-108	4.57	4.58
Hg-EtOH	35-111	6.45	6.30

X-ray crystallography

The crystallographic data for compounds were collected on a STOE IPDS-II diffractometer with graphite-monochromated Mo-K α radiation (λ = 0.71073 Å). Single crystals with appropriate dimensions were chosen under a polarizing microscope and were mounted onto a glass fiber for data collection. Cell constants and orientation matrices for data collection were obtained by least-square refinement of the diffraction data. All diffraction data were collected at 298(2) K in a series of ω scans in 1° oscillations and was integrated using the Stoe X-AREA² software. A numerical absorption correction was applied using X-RED³ and X-SHAPE⁴ software. The reflection data were corrected for Lorentz and polarizing effects. The structures were solved by direct methods⁵ and subsequent difference Fourier maps and then refined on F² by a full-matrix least-squares procedure using anisotropic displacement parameters.⁶ All the hydrogen atoms attach to carbon atoms in compounds were added in idealized positions. The atomic factors were taken from International Tables for X-ray Crystallography.⁷ All refinements were performed using the X-STEP32 crystallographic software package.⁸

References

- 1. Chandran, S.K.; Nath, N.K.; Cherukuvada, S.; Nangia, A. N–H...N(pyridyl) and N–H...O(urea) hydrogen bonding and molecular conformation of N-aryl-N'-pyridylureas. *J. Mol. Struct.* **2010**, *968*, 99-107.
- 2. *X-AREA:*, *Program for the Acquisition and Analysis of Data, version 1.30*, **Darmstadt, Germany**, 2005.
- 3. X-RED:, Program for Data Reduction and Absorption Correction, version 1.28b, Darmstadt, Germany, 2005.
- 4. *X-SHAPE:*, *Program for Crystal Optimization for Numerical Absorption Correction, version 2.05*, **Darmstadt, Germany**, 2004.
- 5. G. M. Sheldrick, SHELX97; Program for Crystal Structure Solution, University of Göttingen: Göttingen, Germany, 1997.
- 6. G. M. Sheldrick, *SHELX97; Program for Crystal Structure Refinement, University of Göttingen: Göttingen*, **Germany**, 1997.
- 7. V. C. International Tables for X-ray Crystallography, Dordrecht, The Netherlands, Kluwer Academic Publisher:, 1995.
- 8. X-STEP32:, *Crystallographic Package, version 1.07b*, **Darmstadt, Germany**, 2000.