Angle dependance Spin Crossover properties in polymorphic Iron(II) complexes based on pyridine-triazole derivatives

Emmelyne Cuza, *^a Nicolas Delsuc, ^b Jerôme Marrot,^c William Shepard,^d Clotilde Policar,^b Christian Serre^a, Antoine Tissot^{*a}

a. Institut des Matériaux Poreux de Paris, UMR 8004 CNRS, Ecole Normale Supérieure, Ecole Supérieure de Physique et de Chimie Industrielles de Paris, PSL University, 75005 Paris, France.

^{h.} Laboratoire des biomolécules, Ecole Normale Supérieure, PSL University, Sorbonne université, CNRS, 75005 Paris, France.

^c Institut Lavoisier de Versailles, UMR 8180 CNRS, Université de Versailles – Saint-Quentin-En-Yvelines, Université Paris-Saclay, 78035 Versailles, France.
 ^d Synchrotron SOLEIL, L'Orme des Merisiers, Départementale 128, 91190 Saint-Aubin, France.

+ Footnotes relating to the title and/or authors should appear here.

Electronic Supplementary Information (ESI) available: [details of any supplementary information available should be included here]. See DOI: 10.1039/x0xx00000x

Table of content:

GeneralitiesP2
SynthesisP2
Single crystal X-ray diffraction analysisP6

1– Generalities

1.1 – Chemicals

Metal salts, starting compounds and solvents were purchased from Sigma-Aldrich, Acros Organic and Fisher scientific. Deuterated solvents were purchased from Eurisotop (Cambridge Isotope Laboratories). Distilled water was obtained from MilliQ water, Millipore system.

1.2 – Physical measurements and characterizations

<u>Powder X-ray Diffraction</u> (PXRD) data were recorded on a high-throughput Bruker D8 Advance diffractometer working on transmission mode and equipped with a focusing Göbel mirror producing CuK α radiation (λ = 1.5418 Å) and a LynxEye detector.

Infrared spectroscopy was measured with a Nicolet iS5 FTIR ThermoFisher spectrometer at room temperature, with a resolution of 1 cm⁻¹, averaging 16 scans at 1.0 cm⁻¹ min.

<u>Magnetic susceptibility</u> was recorded with a Quantum Design SQUID Magnetometer between 10 and 300 K at a sweep rate of 2 K/min under an applied field of 5 kOe. Samples of ca. 10 mg were enclosed in a diamagnetic sample holder. The data were normalized to get the magnetic susceptibility by mole of iron complex.

<u>NMR</u> ¹H and ¹³C were measured with Bruker 300 Ultrashield spectrometer.

2- Synthesis

2.1 – Ligand synthesis: 1H-1,2,3-triazole-1-acetamide-(N-3-methoxy-3-oxopropyl)-4-(2-pyridyl) (PytaCOOMe)

The ligand name PytaCOOMe was synthesized following an already know procedure.^[1]

Scheme.S1 Synthesis of the ester functionalized pyridine-triazole ligand. *Reaction conditions*: (a) chloroacetyl chloride, DIEA, dry DCM, 1h, 0°C to RT, 66%, (b) NaN₃, NaI, acetone/water (3:1 v:v), 16h, 35°C, 79%, (c) 2-ethynylpyridine, CuSO₄, sodium ascorbate, acetone/water (2:1 v:v), 2h, RT, 70%,.

2.1.1 – β-alanine (N-2-chloroacetyl) methyl ester (1)

 β -alanine methyl ester hydrochloride salt (1.33 g, 9.5 mmol, 1.2 equiv) was suspended in dry DCM (15 mL) under argon. Dry DIEA (3.5 mL, 20 mmol, 2.5 equiv) was added, and the suspension was cooled down in an ice bath. Chloroacetyl chloride (0.64 mL, 8 mmol, 1 equiv) was added dropwise at 0°C, and the reaction mixture was stirred for one hour at room temperature. The organic layer was then diluted with DCM (15 mL), washed once with 0.1N HCl aqueous solution (30 mL), once with 10% NaHCO₃ aqueous solution (30 mL) and once with brine (30 mL). It was then dried over MgSO₄, filtered, and concentrated to yield the expected compound as a colorless oil (0.947 g, 5.3 mmol, 66%).

¹**H-NMR** (300 MHz, CDCl3): δ 7.17 (s, 1H), 4.03 (s, 2H), 3.72 (s, 3H), 3.58 (q, *J* = 6.0 Hz, 2H), 2.58 (t, *J* = 6.0 Hz, 2H).

¹³C-NMR (101 MHz, CDCl3): δ 172.40, 166.14, 51.68, 42.40, 35.14, 33.32.

HRMS (ESI+): *m*/*z* calculated for [C₆H₁₀CINO₃+Na]⁺ 202.02414, found 202.02438 error: 1.2 ppm.

2.1.2 – β-alanine (N-2-azidoacetyl) methyl ester (2)

Compound 1 (0.947 g, 5.3 mmol, 1 equiv) was dissolved in a 3:1 v:v mixture of acetone (15.6 mL) and water (5.2 mL). Sodium azide (0.69 g g, 10.6 mmol, 2 equiv) and sodium iodide (0.079 g, 0.53 mmol, 0.1 equiv) were then added, and the mixture was stirred at 35°C (bath temperature) for 16 h. Acetone was removed by rotary evaporation and the solution was diluted with DCM (15 mL) and water (5 mL). The mixture was then decanted, the organic layer dried over MgSO₄, filtered and concentrated to yield compound 2 as a colorless oil (0.78 g, 4.2 mmol, 79%).

¹H-NMR (300 MHz, CDCl3): δ 6.87 (s, 1H), 3.97 (s, 2H), 3.72 (s, 3H), 3.57 (q, J = 6.0 Hz, 2H), 2.57 (t, J = 6.0 Hz, 2H).
 ¹³C-NMR (101 MHz, CDCl3): δ 172.18, 166.94, 52.00, 51.43, 34.67, 33.26.

2.1.2 - 1H-1,2,3-triazole-1-acetamide-(N-3-methoxy-3-oxopropyl)-4-(2-pyridyl) (3),

Compound 2 (0.51 g, 2.74 mmol, 1 equiv) was dissolved in a 2:1 v:v mixture of acetone (36 mL) and water (18 mL). 2ethynylpyridine (0.28 mL, 2.74 mmol, 1 equiv), copper sulfate (0.17 g, 0.69 mmol, 0.25 equiv) and sodium ascorbate (0.14 g, 0.69 mmol, 0.25 equiv) were then added, and the suspension was sonicated for a few minutes, during which a light brownish precipitate formed. The reaction mixture was then stirred for 2h at room temperature (until the solution turned greenish). The solution was then poured into a 28% ammonia solution and extracted three times with DCM. The organic layers were combined, dried over Na₂SO₄, filtered and concentrated. The resulting brown solid was purified by silica gel column chromatography (DCM:EtOAc:MeOH 50:50:0 to 0:98:2 v:v:v) to yield compound 3 (0.56 g, 70%) as a white solid. ¹H-NMR (400 MHz, CDCl3): δ 8.56 (ddd, *J* = 4.9, 1.8, 0.9 Hz, 1H), 8.28 (s, 1H), 8.10 (dt, *J* = 7.9, 1.0 Hz, 1H), 7.78-7.73 (m, 1H), 7.22 (ddd, *J* = 7.5, 4.9, 1.2 Hz, 1H), 6.88 (s, 1H), 5.11 (s, 2H), 3.62 (s, 3H), 3.53 (q, *J* = 6.2 Hz, 2H), 2.53 (t, *J* = 6.2 Hz, 2H). ¹³C-NMR (101 MHz, CDCl3): δ 172.49, 165.19, 149.58, 136.98, 123.77, 123.16, 120.37, 53.16, 51.97, 35.42, 33.57. HRMS (ESI+): *m/z* calculated for [C₁₃H₁₅N₅O₃+H]⁺ 290.12477, found 290.1125527, error: 1.7 ppm.

2.2 - Synthesis of complex

2.2.1 - Synthesis of complex (1)

Compound **(1)** was synthesized in thin slow diffusion tubes of 25 mm long 5 mm diameter, where 2/3 of the tube was filled with 6 mL solution (water) where iron(II) tetrafluoroborate hexahydrate salt (70 mg, 0.21 mmol) was dissolved with potassium thiocyanate (36 mg, 0.42 mmol). The top layer of the tube was covered with 4 mL of a methanolic solution of PytaCOOMe (97.9 mg, 0.42 mmol). After 7 days, little yellow crystals plate appeared, with the formation of polycrystalline micro-powder. (Yield: 28%)

2.2.2 - Synthesis of complex (2)

Compound (2) was synthesized using the same solution/concentration as compound (1). However, both solutions were mixed at room temperature for 10 minutes before being place in a large beaker, crystals were recovered in less than 30 minutes as yellow more needle like crystals. (Yield: 49%)

Figure.S3 Infrared spectrum of (2).

Figure.S4 Experimental and calculated PXRD patterns of (2).

Figure.S5 Superposition of infrared spectra of (1) and (2).

Figure.S6 Superposition of PXRD patterns of (1)-HS and (2).

3. Single crystal X-ray diffraction analysis.

Figure.S7 Crystal packing of (left) compound (1) at 200 K in the a) (011), b) (101) and c) (110) plans and of (right) compound (2) in the a) (011), b) (101) and c) (110) plans.

Figure.S8 Crystal packing overlay of (left) compounds (1) at 110 K in red and (2) at 200 K in blue viewed in the a) (011), b) (101) and c) (110) plans and of (right) compounds (1) at 200 K in orange and (2) at 200 K in blue viewed in the a) (011), b) (101) and c) (110) plans.

Experimental:

For (1), single crystal X-ray diffraction data were recorded at 100 and 200K at Synchrotron SOLEIL using the PROXIMA2 beamline. For both structures, the low data completeness at high angle is due to geometrical constraints on the beamline that prevents measuring images at high angle.

For (2), single crystal X-Ray diffraction data were measured at 180K with a four-circle kappa-axis Bruker D8 Venture diffractometer equipped with Mo wavelength X-ray microsource and photon III C14 detector. For this structure, the limited data quality at high angle is due to the limited scattered intensity (small crystal thickness).

The structural solution involved a dual-method approach, employing SHELXT for initial solving, followed by refinement using full-matrix least-squares methods against F2 conducted by XL with Olex2 and SHELXLE. Anisotropic displacement parameters were applied to refine all non-hydrogen atoms. Hydrogen atoms underwent isotropic refinement at calculated positions, employing a riding model.[2] For (1), the potential disorder on the aliphatic chains was not modelled, as it resulted in a lowering of the refinement quality.

Compound (1) 110 K data set:

Empirical formula	
	D_6S_2
Formula weight 750.61	
Temperature/K 110.00	
Crystal system monoclini	с
Space group P2 ₁ /c	
a/Å 13.4990(3	5)
b/Å 14.2794(4	.)
c/Å 9.1679(3))
α/° 90	
β/° 103.635(3	5)
γ/° 90	
Volume/Å ³ 1717.38(1)	1)
Z 2	
$\rho_{calc}g/cm^3$ 1.452	
μ/mm ⁻¹ 0.661	
F(000) 776.0	
Crystal size/mm ³ 0.07 × 0.05 ×	0.01
Radiation synchrotron (λ = 0	.72932 Å)
20 range for data collection/° 3.186 to 55.	532
Index ranges $-14 \le h \le 14, -17 \le k \le 1$	l7, -10 ≤ l ≤ 10
Reflections collected 17135	
Independent reflections 3006 [R _{int} = 0.0652, R _s	_{igma} = 0.0452]
Data/restraints/parameters 3006/0/22	24
Goodness-of-fit on F ² 1.015	
Final R indexes $[I > 2\sigma (I)]$ R ₁ = 0.0714, wR ₂	= 0.2143
Final R indexes [all data] R ₁ = 0.0878, wR ₂	= 0.2356
Largest diff peak/hole / e Å ⁻³ 0 96/-0 44	4

 Table.S1 Crystal data and structure refinement of (1) 110 K.

Atom	x	У	Z	U(eq)
Fe1	5000	5000	5000	42.2(3)
S1	2694.1(12)	4919.1(9)	173.0(16)	70.2(5)
01	1588(2)	2547(3)	4538(3)	68.3(10)
02	-615(3)	3639(4)	4486(5)	102.4(14)
03	-1318(3)	3828(5)	6516(6)	119.6(18)
N1	3962(3)	5016(2)	3070(5)	50.2(9)
N2	5715(2)	3931(2)	4148(3)	43.3(8)
N3	4313(2)	3877(3)	5651(4)	47.4(8)
N4	3582(3)	3742(3)	6347(4)	51.0(9)
N5	3440(2)	2827(3)	6391(3)	47.9(9)
N6	866(3)	2049(3)	6389(4)	63.3(11)
C1	3436(4)	4980(3)	1861(6)	51.7(11)
C2	6416(3)	4028(3)	3318(5)	51.0(10)
C3	6866(3)	3273(3)	2803(5)	51.7(11)
C4	6605(3)	2376(3)	3129(4)	52.2(11)
C5	5878(3)	2257(3)	3955(4)	47.2(10)
C6	5447(3)	3048(3)	4425(4)	42.6(9)
C7	4629(3)	3032(3)	5234(4)	43.0(9)
C8	4065(3)	2341(3)	5699(4)	47.6(10)
C9	2622(3)	2459(3)	7045(4)	50.8(11)
C10	1632(3)	2366(3)	5850(5)	54.4(11)

Atom	x y		x y z	
C11	-118(3)	-118(3) 1774(5) 5449(6)		75.0(16)
C12	-950(4)	2294(5)	5875(6)	86.2(18)
C13	-930(4)	3325(6)	5529(6)	89.8(19)
C14	-1307(8)	4897(5)	6243(14)	134(4)

Table.S2 Fractional Atomic Coordinates (×10⁴) and Equivalent Isotropic Displacement Parameters ($Å^2 \times 10^3$) for (1) at 110 K. U_{eq} is defined as 1/3 of the trace of the orthogonalised U_{ll} tensor.

Atom	U ₁₁	U ₂₂	U ₃₃	U ₂₃	U ₁₃	U ₁₂
Fe1	42.1(6)	52.4(6)	37.1(5)	1.3(3)	19.6(4)	1.5(3)
S1	73.0(10)	80.6(10)	53.8(9)	4.9(6)	8.3(7)	0.1(6)
01	49.5(18)	129(3)	29.3(15)	6.3(17)	15.7(12)	-0.8(18)
02	104(3)	139(4)	68(3)	2(3)	30(2)	-12(3)
03	83(3)	175(5)	104(4)	-45(3)	29(3)	-3(3)
N1	54(2)	53(2)	51(2)	0.0(15)	26.1(18)	2.5(15)
N2	39.3(17)	59(2)	33.6(17)	2.2(15)	13.6(13)	-0.1(15)
N3	42.3(18)	66(2)	37.3(18)	2.9(16)	16.7(14)	4.0(16)
N4	46.2(19)	74(3)	36.4(18)	3.1(16)	17.9(14)	1.0(17)
N5	42.6(18)	71(2)	32.4(17)	3.3(15)	14.1(13)	-3.0(17)
N6	47(2)	111(3)	33.4(18)	-0.6(19)	12.6(15)	-15(2)
C1	55(3)	53(3)	51(3)	2.1(19)	21(2)	1.7(18)
C2	45(2)	68(3)	45(2)	-1(2)	21.3(18)	-3(2)
C3	40(2)	74(3)	46(2)	-5(2)	20.6(18)	-2(2)
C4	43(2)	71(3)	45(2)	-10(2)	14.3(17)	5(2)
C5	44(2)	59(2)	39(2)	0.1(18)	9.3(17)	1.3(19)
C6	38(2)	62(3)	27.5(18)	1.5(16)	7.1(15)	1.4(17)
C7	37(2)	61(3)	30.8(19)	1.2(17)	9.2(15)	2.9(18)
C8	39(2)	68(3)	37(2)	1.5(19)	11.1(16)	1.5(19)
C9	40(2)	84(3)	33(2)	5(2)	16.1(16)	-2.7(19)
C10	50(2)	81(3)	36(2)	-5(2)	17.0(18)	-4(2)
C11	50(3)	127(5)	49(3)	-3(3)	13(2)	-12(3)
C12	68(4)	131(5)	60(3)	7(3)	15(3)	-20(3)
C13	70(4)	145(6)	58(3)	-6(4)	20(3)	-14(4)
C14	144(8)	99(6)	191(11)	-44(5)	100(8)	-23(4)

Table.S3 Anisotropic Displacement Parameters ($Å^2 \times 10^3$) for (1) at 110 K. The Anisotropic displacement factor exponent takes
the form: $-2\pi^2[h^2a^{*2}U_{11}+2hka^*b^*U_{12}+...]$.

Atom	Atom	Length/Å	Atom	Atom	Length/Å
Fe01	N1	1.981(5)	N3	C7	1.364(5)
Fe01	N11	1.981(5)	N4	N5	1.323(5)
Fe01	N2	2.056(3)	N5	C8	1.359(5)
Fe01	N2 ¹	2.055(3)	N5	C9	1.471(5)
Fe01	N31	2.013(3)	N6	C10	1.326(5)
Fe01	N3	2.012(3)	N6	C11	1.457(6)
S1	C1	1.636(6)	C2	C3	1.374(6)
01	C10	1.218(5)	C3	C4	1.380(7)
02	C13	1.220(7)	C4	C5	1.385(6)
03	C13	1.354(7)	C5	C6	1.385(6)
03	C14	1.547(9)	C6	C7	1.468(5)
N1	C1	1.168(7)	C7	C8	1.374(6)
N2	C2 1.354(5)		C9	C10	1.521(6)
N2	C6	1.353(5)	C11	C12	1.475(8)
N3	N4	1.310(4)	C12	C13	1.507(10)

Table.S4 Bond Lengths for compound (1) at 110 K. ¹1-X,1-Y,1-Z

Atom	Atom	Atom	Angle/°	Atom	tom Atom Atom		Angle/°
N1	Fe01	N11	180.0	N4	N5	C9	119.5(3)
N1 ¹	Fe01	N2	88.04(13)	C8	N5	C9	128.0(4)
N1	Fe01	N21	88.04(13)	C10	N6	C11	123.6(4)
N11	Fe01	N21	91.96(13)	N1	C1	S1	179.4(4)
N1	Fe01	N2	91.96(13)	N2	C2	C3	122.5(4)
N1	Fe01	N3	90.26(14)	C2	C3	C4	119.9(4)
N11	Fe01	N31	90.26(14)	C3	C4	C5	118.8(4)
N11	Fe01	N3	89.74(14)	C6	C5	C4	118.3(4)
N1	Fe01	N31	89.74(14)	N2	C6	C5	123.5(3)
N21	Fe01	N2	180.0	N2	C6	C7	112.0(3)
N31	Fe01	N2	100.85(14)	C5	C6	C7	124.5(4)
N31	Fe01	N21	79.15(14)	N3	C7	C6	116.8(3)
N3	Fe01	N2	79.15(14)	N3	C7	C8	108.4(3)
N3	Fe01	N2 ¹	100.85(14)	C8	C7	C6	134.8(4)
N3	Fe01	N31	180.0	N5	C8	C7	103.2(4)
C13	03	C14	113.3(6)	N5	C9	C10	110.8(3)
C1	N1	Fe01	172.1(4)	01	C10	N6	125.4(4)
C2	N2	Fe01	126.2(3)	01	C10	C9	121.5(4)
C6	N2	Fe01	116.8(2)	N6	C10	C9	113.0(4)
C6	N2	C2	117.0(3)	N6	C11	C12	110.7(5)
N4	N3	Fe01	135.6(3)	C11	C12	C13	112.5(5)
N4	N3	C7	109.2(3)	02	C13	03	126.1(8)
C7	N3	Fe01	115.2(2)	02	C13	C12	123.5(6)
N3	N4	N5	106.9(3)	03	C13	C12	110.4(5)
N4	N5	C8	112.3(3)				

 Table.S5 Bond angle for compound (1) at 110 K. 11-X,1-Y,1-Z

Α	В	С	D	Angle/°	Α	В	С	D	Angle/°
Fe01	N2	C2	C3	179.4(3)	C2	N2	C6	C7	-175.7(3)
Fe01	N2	C6	C5	-178.5(3)	C2	C3	C4	C5	1.1(6)
Fe01	N2	C6	C7	3.3(4)	C3	C4	C5	C6	-0.3(6)
Fe01	Ν3	N4	N5	177.3(3)	C4	C5	C6	N2	-1.6(6)
Fe01	N3	C7	C6	2.3(4)	C4	C5	C6	C7	176.5(4)
Fe01	N3	C7	C8	-177.5(3)	C5	C6	C7	N3	178.1(3)
N2	C2	C3	C4	0.0(7)	C5	C6	C7	C8	-2.2(7)
N2	C6	C7	N3	-3.6(5)	C6	N2	C2	C3	-1.7(6)
N2	C6	C7	C8	176.0(4)	C6	C7	C8	N5	179.8(4)
N3	N4	N5	C8	-1.1(4)	C7	Ν3	N4	N5	0.8(4)
N3	N4	N5	C9	-176.9(3)	C8	N5	C9	C10	-85.2(5)
N3	C7	C8	N5	-0.5(4)	C9	N5	C8	C7	176.3(3)
N4	N3	C7	C6	179.6(3)	C10	N6	C11	C12	-124.5(5)
N4	Ν3	C7	C8	-0.2(4)	C11	N6	C10	01	6.9(8)
N4	N5	C8	C7	1.0(4)	C11	N6	C10	C9	-171.0(5)
N4	N5	C9	C10	89.9(5)	C11	C12	C13	02	30.8(8)
N5	C9	C10	01	2.8(6)	C11	C12	C13	03	-150.0(5)
N5	C9	C10	N6	-179.1(4)	C14	03	C13	02	-1.7(10)
N6	C11	C12	C13	67.3(6)	C14	03	C13	C12	179.2(6)
C2	N2	C6	C5	179.4(3)					

Table.S6 Torsion Angles for (1) at 110 K.

Atom	x	y z		U(eq)
H6	957.24	2002.76	7369.25	76
H2	6604.81	4641	3083.46	61
H3	7354.5	3369.02	2222.73	62
H4	6919.81	1849.33	2792.29	63
H5	5679.64	1648.04	4193.04	57
H8	4103.22	1683.35	5568.99	57
H9A	2518.24	2886.79	7845.7	61
H9B	2823.62	1839.26	7501.76	61
H11A	-220.27	1093.64	5559.62	90
H11B	-129.01	1900.93	4383.87	90
H12A	-895.79	2212.42	6963.74	103
H12B	-1612.1	2028.91	5331.56	103
H14A	-997.43	5024.71	5398.5	202
H14B	-910.33	5207.41	7146.45	202
H14C	-2007.61	5136	6010.98	202

H14C-2007.6151366010.98202Table.S7 Hydrogen Atom Coordinates ($Å \times 10^4$) and Isotropic Displacement Parameters ($Å^2 \times 10^3$) for (1) at 110 K.

≤ 11
924]

Table.58 Crystal data and structure refinement of (1) 200 K.

Atom	n x y		Z	U(eq)
Fe01	5000	5000	5000	45.3(4)
S1	2690.1(17)	4955.9(11)	59(2)	87.4(6)
01	8454(3)	7569(3)	5546(4)	70.3(12)
O2	10577(5)	6384(4)	5503(7)	129(2)
O3	11303(5)	6182(6)	3469(9)	160(3)
N1	3899(4)	5034(3)	2974(6)	59.5(12)
N2	4289(3)	6135(2)	5908(4)	45.2(10)
N3	5722(3)	6205(2)	4353(4)	48.0(10)
N4	6448(3)	6362(3)	3669(5)	50.9(10)
N5	6599(3)	7261(3)	3697(4)	46.7(10)
N6	9158(3)	7982(3)	3664(5)	64.6(13)
C1	3396(5)	3396(5) 5007(3) 1751(7)		59.2(14)
C2	3586(4)	6051(3)	6704(6)	57.1(14)
C3	3138(4)	6804(3)	7230(6)	54.2(13)
C4	3446(4)	7659(3)	6916(6)	52.6(13)
C5	4173(4)	7764(3)	6128(5)	48.1(12)
C6	4593(3)	6989(3)	5643(5)	41.9(11)
C7	5407(4)	7007(3)	4838(5)	43.0(11)
C8	5975(4)	7687(3)	4426(5)	46.2(12)
С9	7404(3)	7627(3)	3080(5)	47.9(12)
C10	8396(4)	7707(4)	4234(6)	51.9(13)
C11	10154(4)	8219(5)	4603(7)	77.5(18)
C12	10951(6)	7703(6)	4155(8)	102(3)
C13	10931(6)	6659(7)	4451(11)	115(3)
C14	11248(11)	5123(7)	3723(19)	211(8)

Table.S9 Fractional Atomic Coordinates (×10⁴) and Equivalent Isotropic Displacement Parameters ($Å^2 \times 10^3$) for **(1)** at 200 K. U_{eq} is defined as 1/3 of the trace of the orthogonalised U_{11} tensor.

Atom	U ₁₁	U ₂₂	U ₃₃	U ₂₃	U ₁₃	U ₁₂
Fe01	57.4(6)	25.6(5)	59.2(7)	-0.8(4)	26.0(5)	1.3(4)
S1	119.0(15)	57.6(10)	75.2(12)	5.8(8)	2.3(10)	-1.6(9)
01	62(2)	107(3)	45(2)	9(2)	16.8(18)	-4(2)
02	145(5)	120(5)	127(5)	11(4)	41(4)	-17(4)
03	109(5)	190(8)	185(7)	-86(6)	40(5)	18(4)
N1	74(3)	33(2)	74(3)	1(2)	22(3)	5(2)
N2	56(3)	32(2)	53(2)	-0.4(17)	24(2)	-1.1(17)
N3	60(3)	37(2)	55(2)	1.1(19)	29(2)	3.6(18)
N4	62(3)	41(2)	56(3)	3(2)	25(2)	0.0(19)
N5	52(2)	40(2)	51(2)	2.6(19)	17(2)	-0.6(19)
N6	53(3)	93(4)	47(2)	4(2)	10(2)	-16(2)
C1	76(4)	33(3)	73(4)	8(3)	25(3)	2(3)
C2	65(4)	44(3)	68(4)	1(3)	27(3)	-4(2)
C3	56(3)	47(3)	67(3)	-4(3)	28(3)	3(2)
C4	61(3)	39(3)	61(3)	-4(2)	20(3)	5(2)
C5	59(3)	28(2)	57(3)	0(2)	14(3)	2(2)
C6	48(3)	29(2)	49(3)	-3(2)	11(2)	1.8(19)
C7	50(3)	33(2)	45(3)	1(2)	11(2)	3(2)
C8	52(3)	36(2)	54(3)	1(2)	18(2)	-3(2)
C9	48(3)	51(3)	48(3)	7(2)	18(2)	-3(2)
C10	57(3)	56(3)	47(3)	0(2)	22(3)	-4(2)
C11	55(4)	111(5)	68(4)	-4(4)	17(3)	-17(3)
C12	81(5)	138(7)	83(5)	13(5)	12(4)	-30(5)

Atom	U ₁₁	U ₂₂	U ₃₃	U ₂₃	U ₁₃	U ₁₂
C13	81(5)	144(9)	111(7)	38(6)	5(5)	-26(5)
C14	223(15)	104(9)	370(20)	-69(10)	195(16)	-37(8)

Table.S10 Anisotropic Displacement Parameters ($Å^2 imes 10^3$) for (1) at 200 K. The Anisotropic displacement factor exponent
takes the form: $-2\pi^2[h^2a^{*2}U_{11}+2hka^*b^*U_{12}+]$.

Atom	Atom	Length/Å	Atom	Atom	Length/Å		
Fe01	N1	2.094(5)	N3	C7	1.359(6)		
Fe01	N1 ¹	2.094(5)	N4	N5	1.329(5)		
Fe01	N2	2.182(4)	N5	C8	1.350(6)		
Fe01	N2 ¹	2.182(4)	N5	C9	1.445(6)		
Fe01	N3 ¹	2.166(4)	N6	C10	1.326(6)		
Fe01	N3	2.166(4)	N6	C11	1.461(7)		
S1	C1	1.624(7)	C2	C3	1.398(7)		
01	C10	1.210(6)	C3	C4	1.370(7)		
02	C13	1.245(9)	C4	C5	1.363(6)		
03	C13	1.333(11)	C5	C6	1.387(6)		
03	C14	1.570(13)	C6	C7	1.467(7)		
N1	C1	1.171(7)	C7	C8	1.365(6)		
N2	C2	1.337(6)	C9	C10	1.506(7)		
N2	C6	1.354(5)	C11	C12	1.454(9)		
N3	N4	1.307(5)	C12	C13	1.552(12)		

Table.S11 Bond Lengths for compound (1) at 200 K. 11-X,1-Y,1-Z

Atom	Atom	Atom	Angle/°	Atom	Atom	Atom	Angle/°
N1	Fe01	N1 ¹	180.0	N4	N5	C9	119.0(4)
N1 ¹	Fe01	N2	87.79(16)	C8	N5	C9	130.0(4)
N1	Fe01	N2 ¹	92.21(16)	C10	N6	C11	122.2(5)
N11	Fe01	N21	87.79(16)	N1	C1	S1	179.2(5)
N1	Fe01	N2	92.21(16)	N2	C2	C3	122.8(4)
N1	Fe01	N3	89.58(16)	C2	C3	C4	117.8(5)
N11	Fe01	N31	90.42(16)	C3	C4	C5	120.6(4)
N1 ¹	Fe01	N3	90.42(16)	C6	C5	C4	118.8(4)
N1	Fe01	N31	89.58(16)	N2	C6	C5	122.0(4)
N21	Fe01	N2	180.00(18)	N2	C6	C7	113.8(4)
N31	Fe01	N2	75.84(14)	C5	C6	C7	124.2(4)
N31	Fe01	N21	104.16(14)	N3	C7	C6	118.9(4)
N3	Fe01	N2	75.84(14)	N3	C7	C8	107.2(4)
N3	Fe01	N21	104.16(14)	C8	C7	C6	133.9(4)
N3	Fe01	N31	180.0	N5	C8	C7	105.2(4)
C13	03	C14	112.0(9)	N5	C9	C10	112.3(4)
C1	N1	Fe01	170.1(5)	01	C10	N6	125.1(5)
C2	N2	Fe01	125.2(3)	01	C10	C9	121.9(4)
C6	N2	Fe01	118.0(4)	N6	C10	C9	113.0(4)
C6	N2	C2	116.9(3)	N6	C11	C12	110.6(6)
N4	N3	Fe01	135.6(3)	C11	C12	C13	114.6(7)
N4	N3	C7	109.8(4)	02	C13	03	129.5(10)
C7	N3	Fe01	114.4(3)	02	C13	C12	118.8(10)
N3	N4	N5	107.0(4)	03	C13	C12	111.7(8)
N4	N5	C8	112.2(3)				

Table.S12 Bond angle for compound (1) at 200 K. 11-X,1-Y,1-Z

Α	В	С	D	Angle/°	Α	В	С	D	Angle/°
Fe01	N2	C2	C3	-178.5(4)	C2	N2	C6	C7	175.8(3)
Fe01	N2	C6	C5	178.1(4)	C2	C3	C4	C5	-1.3(6)
Fe01	N2	C6	C7	-3.1(5)	C3	C4	C5	C6	0.5(6)
Fe01	Ν3	N4	N5	-175.6(3)	C4	C5	C6	N2	1.5(6)
Fe01	Ν3	C7	C6	-3.6(5)	C4	C5	C6	C7	176.7(4)
Fe01	Ν3	C7	C8	176.1(3)	C5	C6	C7	N3	-0.6(8)
N2	C2	С3	C4	-0.5(8)	C5	C6	C7	C8	0.3(8)
N2	C6	C7	Ν3	4.5(6)	C6	N2	C2	C3	1.2(7)
N2	C6	C7	C8	-175.2(5)	C6	C7	C8	N5	-177.5(5)
N3	N4	N5	C8	0.9(5)	C7	Ν3	N4	N5	-176.7(4)
N3	N4	N5	C9	176.8(4)	C8	N5	C9	C10	3.6(8)
N3	C7	C8	N5	0.7(5)	C9	N5	C8	C7	1.8(8)
N4	Ν3	C7	C6	-179.9(4)	C10	N6	C11	C12	-179.6(5)
N4	Ν3	C7	C8	-0.1(5)	C11	N6	C10	01	-0.5(5)
N4	N5	C8	C7	-1.0(5)	C11	N6	C10	C9	84.1(6)
N4	N5	C9	C10	-90.9(5)	C11	C12	C13	02	-176.3(4)
N5	C9	C10	01	-7.5(7)	C11	C12	C13	03	126.1(7)
N5	C9	C10	N6	175.6(4)	C14	03	C13	02	-4.8(9)
N6	C11	C12	C13	-67.4(8)	C14	03	C13	C12	171.9(5)
C2	N2	C6	C5	-2.2(7)		-	-		

Table.S13 Torsion Angles for (1) at 200 K.

Atom	x	У	Z	U(eq)
H6	9059.43	8023.19	2686.79	77
H2	3382.57	5454.9	6920.6	68
H3	2635.92	6725.63	7787.44	65
H4	3149.7	8183.88	7250.5	63
H5	4388.44	8356.56	5913.71	58
H8	5938.79	8323.62	4612.8	55
H9A	7200.39	8238.67	2651.5	57
H9B	7499.95	7224.64	2260.26	57
H11A	10278.15	8882.11	4515.24	93
H11B	10167.93	8084.7	5660.23	93
H12A	11619.66	7947.73	4695.5	122
H12B	10890.07	7801.17	3073.82	122
H14A	10882.73	4829.52	2794.28	316
H14B	10887.68	5005.57	4510.42	316
H14C	11938.71	4873.45	4024.76	316

 Table.S14 Hydrogen Atom Coordinates ($Å \times 10^4$) and Isotropic Displacement Parameters ($Å^2 \times 10^3$) for (1) at 200 K.

Compound (2) data set:

Empirical formula	$C_{28}H_{30}FeN_{12}O_6S_2$
Formula weight	750.61
Temperature/K	180.00
Crystal system	monoclinic
Space group	P21/c
a/Å	13.271(3)
b/Å	13.139(3)
c/Å	9.619(2)
α/°	90
β/°	99.910(7)
γ/°	90
Volume/Å ³	1652.3(6)
Z	2
$\rho_{calc}g/cm^3$	1.509
µ/mm⁻¹	0.645
F(000)	776.0
Crystal size/mm ³	$0.12 \times 0.08 \times 0.02$
Radiation	ΜοΚα (λ = 0.71073)
20 range for data collection/°	5.3 to 50.216
Index ranges	-15 ≤ h ≤ 15, -15 ≤ k ≤ 15, -11 ≤ l ≤ 11
Reflections collected	31560
Independent reflections	2930 [R _{int} = 0.1771, R _{sigma} = 0.0739]
Data/restraints/parameters	2930/0/224
Goodness-of-fit on F ²	1.164
Final R indexes [I>=2σ (I)]	1.170
Final R indexes [all data]	$R_1 = 0.0937$, $wR_2 = 0.1671$
Largest diff. peak/hole / e Å ⁻³	$R_1 = 0.1310$, $wR_2 = 0.1812$

Table.S15 Crystal data and structure refinement of (2).

Atom	x	у	Z	U(eq)
Fe1	5000	5000	10000	29.2(3)
S1	8154.4(14)	4914.0(15)	8147.6(19)	46.3(5)
01	1484(3)	7159(3)	6798(4)	38.7(11)
O2A	-1088(18)	5284(12)	4857(15)	102(6)
O2A	-1088(18)	5284(12)	4857(15)	102(6)
03	-1004(4)	6234(4)	2953(5)	55.4(14)
N1	6278(5)	4701(4)	9045(6)	40.0(14)
N2	5605(4)	6571(4)	10386(5)	30.9(12)
N3	4266(4)	5853(3)	8139(5)	31.3(12)
N4	3591(4)	5657(4)	7019(5)	34.5(13)
N5	3343(4)	6564(4)	6377(5)	30.7(12)
N6	889(4)	7364(4)	4473(5)	34.6(13)
C1	7076(5)	4797(4)	8688(6)	30.0(14)
C2	6319(5)	6866(5)	11436(6)	32.7(15)
C3	6664(5)	7866(5)	11606(7)	41.6(17)
C4	6226(5)	8584(5)	10651(7)	40.2(17)
C5	5476(5)	8286(5)	9556(7)	37.1(16)
C6	5186(5)	7273(4)	9423(6)	29.1(14)
C7	4452(5)	6868(4)	8253(6)	26.8(13)
C8	3858(5)	7323(5)	7119(6)	32.1(15)
C9	2549(5)	6636(5)	5155(6)	33.7(15)

Atom	x	У	Z	U(eq)
C10	1585(5)	7089(4)	5572(6)	30.8(14)
C11	-82(5)	7819(5)	4629(7)	41.2(17)
C12A	-749(11)	7022(11)	5149(17)	42(3)
C12B	-1000(30)	7260(30)	5010(70)	42(3)
C13A	-1020(20)	6097(15)	4290(30)	53(3)
C13B	-1010(70)	6240(40)	4310(110)	53(3)
C14	-1141(7)	5313(6)	2108(8)	59(2)

Table.S16 Fractional Atomic Coordinates ($\times 10^4$) and Equivalent Isotropic Displacement Parameters ($\mathring{A}^2 \times 10^3$) for (2). U_{eq} isdefined as 1/3 of the trace of the orthogonalised U_{ll} tensor.

Atom	U 11	U ₂₂	U ₃₃	U ₂₃	U ₁₃	U ₁₂
Fe1	34.9(8)	20.5(6)	33.5(7)	1.1(6)	9.9(6)	0.4(6)
S1	40.5(10)	50.9(11)	50.7(11)	0.1(9)	16.6(8)	2.1(9)
01	49(3)	47(3)	22(2)	-1.6(19)	14(2)	2(2)
02A	174(17)	80(9)	54(7)	19(5)	23(8)	-51(9)
02A	174(17)	80(9)	54(7)	19(5)	23(8)	-51(9)
03	78(4)	54(3)	35(3)	0(2)	10(3)	-7(3)
N1	50(4)	28(3)	46(3)	-7(2)	17(3)	-2(2)
N2	34(3)	28(3)	33(3)	0(2)	13(2)	-1(2)
N3	39(3)	20(3)	36(3)	2(2)	8(3)	0(2)
N4	36(3)	34(3)	33(3)	1(2)	7(3)	-1(2)
N5	32(3)	29(3)	33(3)	0(2)	12(2)	3(2)
N6	38(3)	38(3)	32(3)	2(2)	18(3)	3(2)
C1	45(4)	18(3)	29(3)	-1(2)	12(3)	1(3)
C2	36(4)	32(3)	31(4)	-1(3)	10(3)	2(3)
C3	40(4)	41(4)	46(4)	-7(3)	14(3)	-14(3)
C4	52(5)	28(3)	44(4)	-5(3)	17(4)	-10(3)
C5	53(5)	26(3)	35(4)	5(3)	16(3)	-6(3)
C6	37(4)	26(3)	31(3)	2(3)	21(3)	-2(3)
C7	30(4)	21(3)	33(3)	3(3)	15(3)	2(3)
C8	41(4)	25(3)	33(4)	1(3)	14(3)	2(3)
C9	41(4)	37(4)	24(3)	0(3)	11(3)	-1(3)
C10	37(4)	30(3)	26(3)	-1(3)	7(3)	2(3)
C11	33(4)	52(4)	34(4)	-4(3)	-7(3)	13(3)
C12A	18(6)	71(8)	39(6)	-11(5)	9(6)	23(5)
C12B	18(6)	71(8)	39(6)	-11(5)	9(6)	23(5)
C13A	44(5)	76(8)	42(5)	1(6)	16(4)	-22(7)
C13B	44(5)	76(8)	42(5)	1(6)	16(4)	-22(7)
C14	75(6)	54(5)	53(5)	-6(4)	23(4)	-21(4)

Table.S17 Anisotropic Displacement Parameters ($Å^2 \times 10^3$) for (2). The Anisotropic displacement factor exponent takes the
form: $-2\pi^2[h^2a^{*2}U_{11}+2hka^*b^*U_{12}+...]$.

Atom	Atom	Length/Å	Atom	Atom	Length/Å
Fe1	N1	2.100(6)	N5	C8	1.343(8)
Fe1	N11	2.100(6)	N5	C9	1.440(8)
Fe1	N2	2.222(5)	N6	C10	1.329(8)
Fe1	N21	2.222(5)	N6	C11	1.451(8)
Fe1	N3	2.193(5)	C2	C3	1.391(9)
Fe1	N31	2.193(5)	C3	C4	1.374(9)
S1	C1	1.611(7)	C4	C5	1.376(9)
01	C10	1.213(7)	C5	C6	1.385(8)
03	C14	1.452(8)	C6	C7	1.456(8)
03	C13A	1.31(3)	C7	C8	1.369(8)

Atom	Atom	Length/Å	Atom	Atom	Length/Å		
03	C13B	1.31(10)	C9	C10	1.526(9)		
N1	C1	1.176(8)	C11	C12A	1.511(11)		
N2	C2	1.319(8)	C11	C12B	1.53(2)		
N2	C6	1.357(8)	02A	C13A	1.209(19)		
N3	N4	1.303(7)	C12A	C13A	1.476(14)		
N3	C7	1.357(7)	O2B	C13B	1.20(2)		
N4	N5	1.357(7)	C12B	C13B	1.49(2)		
Table \$18 Bond Lengths for compound (2) 11-X 1-Y 2-7							

Table.S18	Bond	Lengths	for	compound	(2)	. 1 1-X,1	-Y,2-Z
-----------	------	---------	-----	----------	-----	------------------	--------

Atom	Atom	Atom	Angle/°	Atom	Atom	Atom	Angle/°
N1	Fe1	N1 ¹	180.0	C10	N6	C11	122.5(5)
N1	Fe1	N2	87.22(19)	N1	C1	S1	178.1(6)
N11	Fe1	N2	92.79(19)	N2	C2	C3	123.1(6)
N11	Fe1	N21	87.21(19)	C4	C3	C2	118.5(6)
N1	Fe1	N21	92.78(19)	C3	C4	C5	118.9(6)
N1	Fe1	N31	89.0(2)	C4	C5	C6	119.8(6)
N11	Fe1	N31	91.0(2)	N2	C6	C5	121.0(6)
N1	Fe1	N3	91.0(2)	N2	C6	C7	114.9(5)
N11	Fe1	N3	89.0(2)	C5	C6	C7	124.1(6)
N2 ¹	Fe1	N2	180.0	N3	C7	C6	120.6(5)
N3	Fe1	N21	103.96(18)	N3	C7	C8	107.0(5)
N3	Fe1	N2	76.04(18)	C8	C7	C6	132.4(5)
N3 ¹	Fe1	N2	103.96(18)	N5	C8	C7	105.7(5)
N31	Fe1	N21	76.04(18)	N5	C9	C10	109.9(5)
N31	Fe1	N3	180.0	01	C10	N6	125.1(6)
C13A	03	C14	114.6(9)	01	C10	C9	121.5(6)
C13B	03	C14	123(2)	N6	C10	C9	113.3(5)
C1	N1	Fe1	160.8(5)	N6	C11	C12A	109.2(8)
C2	N2	Fe1	126.3(4)	N6	C11	C12B	126.0(19)
C2	N2	C6	118.6(5)	C13A	C12A	C11	119.0(12)
C6	N2	Fe1	115.1(4)	03	C13A	C12A	113.2(15)
N4	N3	Fe1	136.0(4)	02A	C13A	03	125.5(18)
N4	N3	C7	110.6(5)	O2A	C13A	C12A	121(2)
C7	N3	Fe1	112.8(4)	C13B	C12B	C11	105(3)
N3	N4	N5	106.3(5)	03	C13B	C12B	117(6)
N4	N5	C9	121.0(5)	O2B	C13B	03	104(7)
C8	N5	N4	110.4(5)	O2B	C13B	C12B	121(6)
C8	N5	C9	128.2(5)		•		

Table.S19 Bond angles for compound **(2)**. ¹1-X,1-Y,2-Z

Α	В	С	D	Angle/°	Α	В	С	D	Angle/°
Fe1	N2	C2	C3	179.6(5)	C3	C4	C5	C6	-0.8(10)
Fe1	N2	C6	C5	178.5(5)	C4	C5	C6	N2	2.3(10)
Fe1	N2	C6	C7	-3.3(6)	C4	C5	C6	C7	-175.7(6)
Fe1	N3	N4	N5	170.5(4)	C5	C6	C7	N3	174.8(6)
Fe1	N3	C7	C6	8.1(7)	C5	C6	C7	C8	-4.0(11)
Fe1	N3	C7	C8	-172.8(4)	C6	N2	C2	C3	0.1(9)
N2	C2	C3	C4	1.3(10)	C6	C7	C8	N5	179.0(6)
N2	C6	C7	N3	-3.3(8)	C7	N3	N4	N5	0.9(6)
N2	C6	C7	C8	177.8(6)	C8	N5	C9	C10	-68.9(8)
Ν3	N4	N5	C8	-0.9(6)	C9	N5	C8	C7	174.1(5)
N3	N4	N5	C9	-175.0(5)	C10	N6	C11	C12A	-70.8(10)
Ν3	C7	C8	N5	0.1(7)	C10	N6	C11	C12B	-76(3)

Α	В	С	D	Angle/°	Α	В	С	D	Angle/°
N4	N3	C7	C6	-179.7(5)	C11	N6	C10	01	2.0(10)
N4	Ν3	C7	C8	-0.6(7)	C11	N6	C10	C9	-179.5(5)
N4	N5	C8	C7	0.5(7)	C11	C12A	C13A	03	-26(3)
N4	N5	C9	C10	104.1(6)	C11	C12A	C13A	02A	144.2(18)
N5	C9	C10	01	-13.8(8)	C11	C12B	C13B	03	-54(9)
N5	C9	C10	N6	167.6(5)	C11	C12B	C13B	O2B	176(9)
N6	C11	C12A	C13A	-59(2)	C14	03	C13A	02A	3(4)
N6	C11	C12B	C13B	-36(6)	C14	03	C13A	C12A	172.9(15)
C2	N2	C6	C5	-1.9(9)	C14	03	C13B	O2B	-35(9)
C2	N2	C6	C7	176.2(5)	C14	03	C13B	C12B	-172(4)
C2	C3	C4	C5	-0.9(10)					

Table.S20 Torsion Angles for (2).

Atom	Y	V	7	LI(eq)
	1021 50	7205.04	2017.24	0(eq)
Hb	1021.58	7265.64	3617.24	42
H2	6611.86	6372.99	12108.42	39
H3	7190.33	8047.72	12364.4	50
H4	6438.03	9275.02	10745.01	48
H5	5158.69	8772.99	8892.01	45
H8	3818.98	8028.19	6900.68	39
H9A	2396.19	5950.66	4744.14	40
H9B	2782.47	7071	4433.35	40
H11A	-426.49	8092.21	3709.66	49
H11B	35.89	8389.35	5310.37	49
H11C	-334	8169	3723.96	49
H11D	85.61	8362.12	5345.02	49
H14A	-548.52	4866.02	2378.25	89
H14B	-1205.95	5489.76	1106.96	89
H14C	-1761.94	4960.33	2268.73	89
H12A	-403.57	6803.23	6096.5	51
H12B	-1396.2	7356.56	5271.18	51
H12C	-933.08	7177.03	6048.21	51
H12D	-1644 21	7632 69	4663.09	51

 H12D
 -1644.21
 7632.69
 4663.09
 51

 Table.S21
 Hydrogen Atom Coordinates (Å×10⁴) and Isotropic Displacement Parameters (Å²×10³) (2).

	(:	(2)	
т/к	110	200	180
Fe1-N1	1.981(5)	1.971(4)	2.100(6)
Fe1-N2	2.056(3)	2.045(3)	2.222(5)
Fe1-N3	2.055(3)	2.094(5)	2.193(5)
<d(fe-n)></d(fe-n)>	2.0165(5)	2.1489 (5)	2.1720(6)
N1-Fe1-N2	88.04(13)	87.79(16)	87.21(19)
N1-Fe1-N3	89.74(14)	89.58(16)	89.0(2)
N2-Fe1-N3	79.15(14)	75.84(14)	76.03(18)
Σ <n-fe-n></n-fe-n>	52.2956	67.4108	70.8659
θ < N-Fe-N>	201.2079	262.0193	260.0641

Table S.22 Fe–N Bond Distances (Å) and Distortion Parameters (\sum and Θ in deg) for (1) and (2)

Compounds	Spin state	<fe1-n-c></fe1-n-c>	d <fe1-n> (Å)</fe1-n>	Σ <n-fe1-n></n-fe1-n>	θ <n-fe1-n></n-fe1-n>
[Fe(FTP) ₂ (NCS) ₂]CHCl ₃ ^[3]	T _{1/2} = 85 K, T _{LIESST} = 47 K	167.60	2.1571	75.29	265.39
Fe(FTP) ₂ (NCSe) ₂]CHCl ₃ ^[3]	T = 169 K T = 20 K	166.08	2.1577	72.13	261.60
Fe(FTP) ₂ (NCSe) ₂]CHCl ₃ ^[3]	$I_{1/2} = 168 \text{ K}, I_{\text{LIESST}} = 39 \text{ K}$	172.45	1.9955	58.33	175.84
[Fe ^{II} (FTP) ₂ (NCS) ₂] ^[4]	HS	145.70	2.1686	73.14	257.44
[Fe(tzpy-py) ₂ (NCSe) ₂] ^[5]	<i>T</i> _{1/2} = 250 K	168.73	2.1458	72.40	259.48
[Fe(tzpy-py) ₂ (NCSe) ₂] ^[5]	<i>T</i> _{1/2} = 250 K	171.20	1.9807	53.59	176.57
[Fe(tzpy) ₂ (NCS) ₂]·2CHCl ₃ ^[6]	incomplete HS \leftrightarrow LS	178.89	2.1757	70.26	275.15
Fe(tzpy-py) ₂ (NCS)2] A ^[7]	<i>T</i> _{1/2} = 150 K	174.46	2.1652	74.84	271.78
Fe(tzpy-py) ₂ (NCS) ₂] A ^[7]	<i>T</i> _{1/2} = 150 K	174.98	1.9762	51.99	171.67
Fe(tzpy-py) ₂ (NCS) ₂] A' ^[7]	<i>T</i> _{1/2} = 150 K	177.53	2.1576	72.69	172.05
Fe(tzpy-py) ₂ (NCS) ₂] B ^[7]	<i>T</i> _{1/2} = 110 K	175.40	2.1548	76.91	267.03

Table.S23 Angle and bond length, theta and zeta for related compounds^[3] (HS LS)

1. S. Hostachy, J.-M. Swiecicki, C. Sandt, N. Delsuc, C. Policar, Dalton Trans., 2016, 45, 2791.

- C. B. Hübschle, G. M. Sheldrick and B. Dittrich, 0021-8898, 2011, 44, 1281; c. O. V Dolomanov, L. J. Bourhis, R. J. Gildea, J. A. K. Howard and H. Puschmann, J. Appl. Cryst, 2009, 42, 339; d. C. F. MacRae, I. Sovago, S. J. Cottrell, P. T. A. Galek, P. McCabe, E. Pidcock, M. Platings, G. P. Shields, J. S. Stevens, M. Towler and P. A. Wood, J. Appl. Crystallogr., 2020, 53, 226–235; e. I.J. Bruno, J. C. Cole, P. R. Edgington, M. Kessler, C. F. Macrae, P. McCabe, J. Pearson, R. Taylor and IUCr, Acta Crystallogr. Sect. B Struct. Sci., 2002, 58, 389; f. A.L. Spek, J. Appl. Crystallogr., 2003, 36, 7; g. Rangsiman Ketkaew, Yuthana Tantirungrotechai, Phimphaka Harding, Guillaume Chastanet, Philippe Guionneau, Mathieu Marchivie and David J. Harding, Dalton Trans., 2021, 50, 1086-1096.
- 3. T. Romero-Morcillo, F.J. Valverde-Muñoz, L. Piñeiro-López, M.C. Muñoz, T. Romero, P. Molina, J.A. Real, *Dalton Trans.* 2015, **44**, 43, 18911.
- 4. H.S. Scott, C. J. Gartshore, S.-X. Guo, B. Moubaraki, A.M. Bond, S.R. Batten, K.S. Murray, *Dalton Trans.*, 2014, 43, 15212
- 5. Z. Arcís-Castillo, L. Piñeiro-López, M. C. Muñoz R. Ballesteros, B. Abarca, J. A. Real, Cryst. Eng. Comm., 2013, 15, 3455
- 6. V. Niel, A. B. Gaspar, M. C. Muñoz, B. Abarca, R. Ballesteros, J. A. Real, Inorg. Chem., 2003, 42, 15, 4782.
- 7. C.-F. Sheu, K. Chen, S.-M. Chen, Y.-S. Wen, G.-H. Lee, J.-M. Chen, J.-F. Lee, B.-M. Cheng, H.-S. Sheu, N. Yasuda, Y. Ozawa, K. Toriumi, Y. Wang, *Chemistry A European Journal* 2009, **15**, 10, 2384.