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Materials: Toluene, hexane, ethyl acetate, methanol, dichloromethane, N, N-dimethylformamide, and
triethylamine were acquired from Mark and subjected to drying prior to use. 2-Picolylamine, 3,5-di-tert-
butylcatechol, 2-picolinic acid, quinoline-2-carboxylic acid hydrochloride, 1-amino-2-naphthol
hydrochloride, 3-amino-2-naphthol, Isoquinoline-1-carboxylic acid, 2,2,2-trifluoroethanol, 2,3-dihydro-
1,3-dimethyl-2-phenylbenzimidazole(BIH), and pentacarbonylchlororhenium(I) were purchased from
Sigma-Aldrich. Electrochemical-grade tetrabutylammonium hexafluorophosphate (["BusN]PFs) with a

minimum purity of 99.0% was also obtained from Sigma-Aldrich.

Instrumentation Details:

X-Ray crystallography:

The X-ray intensity data were recorded on Bruker AXS SMART APEX CCD diffractometer (Mo K, A =
0.71073 A) at 293 K. A total of 606 frames were collected with a scan width of 0.3 in different settings of
¢. The data were reduced in SAINTPLUS! and empirical absorption correction was applied using the
SADABS package. Metal atom was located by Patterson method and the rest of the non-hydrogen atoms
were emerged from successive Fourier synthesis. The structures were refined by full matrix least-square
procedure on F2. All non-hydrogen atoms were refined anisotropically. All the calculations were performed
using the SHELXTL V 6.14 program package”. Molecular structure plots were drawn using the Oak Ridge
thermal ellipsoid plot (Ortep)

Physical Measurements :

'"H NMR spectra were recorded on Bruker FT 300 MHz spectrometer, where tetramethylsilane (TMS) was
used as an internal reference and DMSO-dg was used as solvent. Micromass Q-Tof YA 263 mass
spectrometer and Bruker Maxis Q-Tof ESI-MS were used to record the Electro-spray ionization mass
spectrometry (ESI-MS) of the molecules. Elemental analyses (C, H, and N) of the synthesized molecules
were carried out using Perkin—Elmer 2400 series II analyser. IR spectra were measured by Perkin—Elmer
L-0100 spectrophotometer. The X-ray intensity data were collected on Bruker AXS SMART APEX CCD.
UV-Vis spectra were measured by using a Shimadzu UV-VIS Spectrophotometer: UV 19001.
Fluorescence spectroscopic studies were performed by using Horiba Fluoromax-4 spectrofluorometer.
Electrochemical measurements were accomplished with the help of CHI600E electrochemical analyser
using glassy carbon electrode under nitrogen atmosphere. Tetrabutylammoniumhexafluorophosphate was
used as a supporting electrolyte and potentials were referenced to the Standard Calomel Electrode without

junction correction. The impedance measurements were carried out using CHI760E workstation (CHI
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Instruments, USA) through a conventional three-electrode system. Quantum yield of the complexes was
determined in freeze-pump-thaw-degassed solutions of the complexes using quinine sulphate and
fluorescein in the same solvent as the standard [Dy4=0.54 at 298 K in 0.1 M H,SO, at A.,=350 nm] by usual
method. The quantum yields were calculated by using Eq. S1.

Asea I 7]3

q)Tz cDStd A

r Lstangry Eq.S1

where @, and @, are the quantum yields of unknown and standard samples, 4, and 44 refer
to the solution absorbances at the excitation wavelength (A), I, and [, are the integrated emission
intensities, 7, and 7, are the refractive indices of the solvent. Time-correlated-single-photon-counting
(TCSPC) measurements were performed for the luminescence decay of the complexes in acetonitrile and
dichloromethane. The fluorescence decay data were collected on a Hamamatsu MCP photomultiplier

(R3809) and were analysed by using IBH DAS6 software.

Gas Detection by Gas Chromatography (GC):

The gas evolved during BE was detected by using GC instrument of model no. 8860 (G2790A), serial no.
CN2211C039 fitted with TCD. 500 pul gases was syringed out by a gas tight syringe from the head space
of the working chamber of the H cell and was injected into the inlet of the GC.

Computational Study:

The geometrical structures of the singlet ground state and triplet excited state of the synthesized Re
complexes were optimized by the DFT method?® using B3LYP exchange correlation functional* approach.
The geometry of the Re complexes was fully optimized in solution phase (namely dichloromethane and
acetonitrile) without any symmetry constraints. There was a good agreement between the theoretically
modelled and experimental structures. Based on the optimized ground state geometry, both the absorption
and emission properties in acetonitrile and dichloromethane solvent was calculated by time-dependent
density functional theory (TDDFT)’ approaches related with the conductor-like polarizable continuum
model (CPCM).® We computed the lowest 50 singlet — singlet transition and the results obtained from the
TD calculations were qualitatively very similar. The TDDFT approach had been established to be reliable
for calculating spectral properties of many transition metal complexes.” Due to the presence of electronic
correlation in the TDDFT (B3LYP) method it can yield more accurate electronic excitation energies. Hence
TDDFT had been shown to provide a reasonable spectral feature for the complexes of our examination. In
the calculation, the quasi-relativistic pseudo potentials of Re atoms were predicted by using Hay and Wadt®
with 14 valence electrons [outer-core (5s25p®) electrons and the (5d°) valence electrons] were employed,

and a “double-£” quality basis set LANL2DZ was adopted as the basis set for Re atoms. For H 6-31(g)
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basis set was used and the 6-31+ G (d, p) basis set was used for C, N, O and Cl atoms for the optimization
of the ground state and excited state geometries. Gauss View 5.1 software was utilized to originate the
figures showing MOs and the difference density plots. All the calculations were performed with the

Gaussian 09W software package.’
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Fig. S20: 13C NMR Spectrum of Complex-2a in DMSO-d;

15|Page



Lo
(=]
)
(=]
Lo
w
ws'L— = L2
R=]
o
L0
o~
Lo
o
= Svior’
Fe
Lo
-r
el
-
Lo
w
£1202 09Z'L
092'L -2
ity
725l Lo
0€5°L ©
W'l i
68911 Lo
66911 sE
oL = § PICE0L
bLL/ — = 2502117
6eLL HE 2y
o b gy e FO6'ELLY|
9€8° L *=60°¢ ~ g
i T S1Z8LL|
ove'L~L vz ;
i pvry o £8E°0Z 1L
020°8~ %60 2 .
ozosf proa [{Ix74%
el
\ L0 CELEEL|
1208 RET w0 692'PZ1
8208 e A czL -k
ks A 9 662°GZ1 %
950'8 ] L Ay
by %0 o 189'921)
£60°'8 00" L)
Fyin =00k cizieL,
okl Lo 898°EEL
sy sseseLf
e K= 95T UL
shod e 660'FYL—
0598 w 660971~
796'8 re 9oL~ S—
266’8 o
“mm,m - 088'86L— o ° ——
=] C, O
= /o ]
& G g —0
= 08E'LLL— 4 ", —
w == W
o
- Wan'
|2 o)
[ 152061 — -+
& 120661 — o 1
P

DMSO-dg,
DMSO-d,

100
f1 (ppm)
in

in

TH NMR Spectrum of Complex-2b

160 150

170

13C NMR Spectrum of Complex-2b

180

190
Fig. S21
Fig. S22

200

16| Page



17|Page



IP-OSWAa 005 —

rree

1281
Svel
9681
8981
S8l
8561
L96°L
6961
L86°L
8zZL's
SV
9518
89181
58181
FLE8
6281
18£8
SR8
Z6E8

covs—p
9zve]
s
0£0%
ohoe"
BLEE
8££6”

0* W N{?‘# l \(IU

JL

L

15 10 05 00

30 25 20

70 65 60 55 50 45 40 35
1 (ppm)

5

7

'5 11.0 105 100 95 90 85 80

120 115

DMSO-dg,

m

TH NMR Spectrum of Complex-3a

Fig. 23

ELEELLY
6268k
20821
19
LE£0'8Z 1

ﬁ_g.mwrw
FoEBEZL-

ﬂmm.mm—w
SEaEL)
6S9EEL’Y
vIO0IEL]
avEaEL’)
ey
L0Z'9¥L

69°291-

L9Z°181L—

660261 —

90

100
f1 (ppm)

200 190 180 170 160 150 140 130 120 110
13C NMR Spectrum of Complex-3a

Fig. S24

210

DMSO-dg

m

18| Page



Complex-1a

@c1 CCDC No. 2355624
Qv
Qo Formula Cys5.75 Hyg Cl, Ny Og Re,
Ore Molecular weight  1225.18
Crystal system monoclinic
Space group P121/c1
a/ A 16.2390(11)
b/ A 11.9393(8)
c/ A 26.1931(17)
a/° 920
p/° 105.713(2)
y/° 920
v/ A3 4888.6(6)
Z 4
Dcaled /g cm™3 1.665
Bond length(A) Mu (mm-1) 5.110
Re-N1 2.2134) T/K 273.15
Re-N2 2.170(4) R1 =0.0316,
C6-01 1.349(5) wR2 =0.0800
01-C7 1.395(5) GOF on F2 1.056
C6-N2 1.308(6)
N2-C12 1.399(6)

Table S1: crystallographic data of the complex 1a
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Complex-1b
CCDC No. 2385160
oc Formula ~ Cj Hyg CIN; Oy Re
- o5 Molecular weight  551.94
gze Crystal system 'triclinic’
Space group P-1
a/ A 6.977(5)
b/ A 9.781(7)
¢/ A 13.71(1)
a/® 86.855(19)
p/° 75.528(18)
y/° 76.140(18)
V/ A3 879.5(11)
Z 2
Dcalced /g cm™3 2.084
Bond length(A) Mu (mm-1) 7.088
Re-N1 2.211(6) T/K 273
Re-N2 2.254(6) R1 =0.0488,
C6-01 1.349(8) wR2 =0.1139
01-C7 1.377(9) GOF on F2 1.074
C6-N2 1.315(8)
N2-C16 1.41109)

Table S2: crystallographic data of the complex 1b
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Complex-1c
CCDC No. 2385164
Qc Formula Ci9oH;p CIN, O4 Re,
021 1[CH,Cl,]
@
Qo Molecular weight  636.87
gge Crystal system 'triclinic’
Space group P-1
a/ A 9.4862(4)
b/ A 9.5540(4)
c/ A 13.1539(6)
a/° 96.340(1)
p/° 102.856(1)
v/° 110.709(1)
v/ A3 1063.54(8)
Z 2
Dcaled /g cm™ 1.989
Bond length(A) Mu/mm-! 6.119
Re-N1 2.205(3) T/K 273
Re-N2 2.179(3) R1 =0.0252,
C6-01 1.352(5) wR2 =0.0550
01-C7 1.390(5) GOF on F2 0.983
C6-N2 1.293(5)
N2-C16 1.417(5)

Table S3: crystallographic data of the complex 1¢
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Complex-2b

CCDC No. 2385178

Formula C23 H12 CI N2 O4 Re

Molecular weight  602.00
Crystal system 'monoclinic’
Space group P-1
a/ A 7.2623(6)
b/ A 9.6207(7)
¢/ A 14.8789(11)
a/° 99.464(2)
p/° 96.228(3)
y/° 100.601(2)
V/ A3 997.54(13)
V4 2
Dcalced /g cm™3 2.004

Bond length(A) Mu/mm! 6.259

Re-N1 2.279(6) T/K 273

Re-N2 2.209(6) R1 =0.0400,

C10-01 1.362(8) wR2 =0.1004

01-C11 1.376(12) GOF on F2 1.047

C10-N2 1.279(10)

N2-C20 1.396(10)

Table S4: crystallographic data of the complex-2b
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Complex-3a
CCDC No. 2385175
Q; Formula C19 H10 CI N2 04 Re
8;1 Molecular weight ~ 551.94
:ze . Crystal system 'monoclinic’
Space group 'P121/c 1’
a/ A 8.3981(5)
b/ A 16.0907(9)
c/ A 13.2068(8)
a/° 90
B/ 93.733(2)
v/° 90
v/ A3 1780.87(18)
Z 4
Dcaled /g cm™ 2.059
Bond length(A) Mu/mm’! 7.002
Re-N1 2.210(5) T/K 273
Re-N2 2.158(4) R1 = 0.0346,
C10-01 1.350(6) wR2 =0.0976
01-C11 1.391(6) GOF on F2 1.059
C10-N2 1.350(6)
N2-C16 1.401(7)

Table S5: crystallographic data of the complex-3a
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Vibrational Spectra

M 3a

B T W i e T
sza

1c
W”W\/ 1b
— e 1A
24I00 . 21I00 . 18I00 . 15I00 . 12I00 l 960 l G(IJO
Wavenumber(cm'1)
Fig. S25: FTIR Spectra of the complexes.

complex experimental v¢o (cm™)

Re(bpy)(CO);Cl 2021, 1917, 1897

Complex-1a 2021, 1915, 1888

Complex-1b 2020, 1906, 1880

Complex-1c 2020, 1908, 1883

Complex-2a 2016, 1915, 1879

Complex-2b 2021, 1912, 1876

Complex-3a 2018, 1931, 1896

Table S6: IR stretching frequencies of the complexes.
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Fig. S26: Normalized Emission plots of the complexes (1a, 1b, 1c, 2a, 2b, 3a) recorded in CH;CN at

room temperature.

Complex }"exc(nm) xemi(nm) (DEM Tl(IlS) TZ(HS) Tavg(ns) kr(s-l)>< 107 knr(s-l)>< 108
la 400 431,446 0.11 1.32 7.73 4.17 1.4 1.15
1b 400 405,424 0.51 2.11 - 2.11 24.1 2.32
1c 402 429 0.24 1.54 7.72 5.27 3.1 0.98
2a 400 431,455 0.13 1.87 7.48 7.06 1.7 1.26
2b 416 471,501 0.07 2.02 - 2.02 34 4.6
3c 430 474,504 0.05 2.04 8.17 5.28 0.6 1.16

Table S7: Photophysical parameters of the complexes. All the complexes were excited at the

maximum wavelength of absorption (Apay=Aexc)
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Fig. S27. Emission decay curves of complex-1a, 1b, 1¢, 2a, 2b and 3a in acrated CH;CN.
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Fig. S28: Cyclic voltammograms of 1 mM solution of complexes 1a, 1b, 1¢, 2a, 2b and 3a under Ar (black)
and CO, atmosphere. Potential values are reported versus Fc*/Fc.

Calculation of TOF,,,, for the Complexes:

Current(uA)

50 Ar - Ar
i CO~+01MTFR J ——CO02 + 0.1 M TFE
100
04
Ar
_ ———CO2+ 0.1M TFE
50 4 50
100 - 04 /
<
=
€
-150 4 g -50 +
5
(%]
-200 -100 -+
—r T T T T
-4 -3 2 -2 -1 0 1 2
1504 Potential(V) vs Fc
-200 T T T T T
-4 -3 -2 -1 0 1 2

Potential(V) vs Fc
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Fig. S29: Current vs. potential plot in different scan rate in Ar (a) and in presence of CO, (b). ip/icat vs.

1/scan rate'? plot Complex 1a. Cyclic voltammogram scan rate dependence of 1 mM complex-1a under an

atmosphere of argon (a) and under an atmosphere of CO, (b) in acetonitrile. (¢) iy/ica Vs. 1/scan rate!’? plot

of complex-1a. Electrochemical conditions were 0.1 M TBAH as supporting electrolyte, 3 mm diameter

glassy carbon working electrode, Pt wire counter electrode, and Ag/AgCl reference electrode.
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Fig. S30: Current vs. potential plot in different scan rate in Ar (a) and in presence of CO, (b). ip/icat vs.

1/scan rate? plot Complex la. Cyclic voltammogram scan rate dependence of 1 mM complex-1b under an

atmosphere of argon (a) and under an atmosphere of CO, (b) in acetonitrile. (¢) i/icy Vs. 1/scan rate!’? plot

of complex-1b. Electrochemical conditions were 0.1 M TBAH as supporting electrolyte, 3 mm diameter

glassy carbon working electrode, Pt wire counter electrode, and Ag/AgCl reference electrode.
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Fig. S31: Current vs. potential plot in different scan rate in Ar (a) and in presence of CO; (b). ip/icat vs.

1/scan rate'? plot Complex la. Cyclic voltammogram scan rate dependence of 1 mM complex-1c¢ under an

atmosphere of argon (a) and under an atmosphere of CO, (b) in acetonitrile. (¢) iy/ica vs. 1/scan rate'’? plot

of complex-1c¢. Electrochemical conditions were 0.1 M TBAH as supporting electrolyte, 3 mm diameter

glassy carbon working electrode, Pt wire counter electrode, and Ag/AgCl reference electrode.
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Fig. S32: Current vs. potential plot in different scan rate in Ar (a) and in presence of CO, (b). ip/icat vs.

1/scan rate'? plot Complex 1a. Cyclic voltammogram scan rate dependence of 1 mM complex-2a under an

atmosphere of argon (a) and under an atmosphere of CO, (b) in acetonitrile. (¢) iy/icy Vs. 1/scan rate!’? plot

of complex-2a. Electrochemical conditions were 0.1 M TBAH as supporting electrolyte, 3 mm diameter

glassy carbon working electrode, Pt wire counter electrode, and Ag/AgCl reference electrode.
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Fig. S33: Current vs. potential plot in different scan rate in Ar (a) and in presence of CO; (b). ip/icat vs.

1/scan rate'? plot Complex 1a. Cyclic voltammogram scan rate dependence of 1 mM complex-2b under an

atmosphere of argon (a) and under an atmosphere of CO, (b) in acetonitrile. (¢) iy/ics vs. 1/scan rate!'’? plot
p

of complex-2b. Electrochemical conditions were 0.1 M TBAH as supporting electrolyte, 3 mm diameter

glassy carbon working electrode, Pt wire counter electrode, and Ag/AgCl reference electrode.

20

Current{p.A)

-80

Current{nA)

50

50+

-100 o

—— 100 mV/sec
— 200 mV/sac
— 300 MV/sC
— 400 mVisec
o 800 mViSec
00 m¥fsec

-150

3 2 A
E(V} vs Fc

(b)

y=0.57x+1.49
R?=0.99

T
16

T T T T
2.0 24 28 32

1/scan rate(Vis)

(©)

Fig. S34: Current vs. potential plot in different scan rate in Ar (a) and in presence of CO, (b). 1/ica VS.

1/scan rate!2 plot Complex la. Cyclic voltammogram scan rate dependence of 1 mM complex-3a under an

atmosphere of argon (a) and under an atmosphere of CO, (b) in acetonitrile. (¢) iy/ics Vs. 1/scan rate!’? plot

of complex-3a. Electrochemical conditions were 0.1 M TBAH as supporting electrolyte, 3 mm diameter

glassy carbon working electrode, Pt wire counter electrode, and Ag/AgCl reference electrode.
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TOF,ax calculations from the cyclic voltammetry experiments:

The turnover frequency (TOF) is an inherent characteristic of catalysts, which represents the rate of
conversion reactants into products per mole of active catalyst per unit time. The TOF value was derived
using the following equation below from the catalytic cyclic voltammograms recorded CH3;CN solutions.

TOF = (Fvn,?/RT)(0.4463 /1) (ear/Tp)?
Where, i, is peak current, ic, is the catalytic current, F is Faraday’s constant (F = 96500 C), R is the
universal gas constant (R = 8.314 ] K’ mol?), T is temperature (T = 300 K) and v is the scan rate.
(where n, is 1, the number of electrons transferred in the noncatalytic reduction, and n, is 2 for CO,
reduction to CO, the number of electrons transferred in the catalytic reaction). The TOF was

calculated from the slope of ica/i,vs v-/2 plot.

Catalyst TOF pax
la 1.80 s!
1b 2.90 st
1c 2.28 5!
2a 1.19 s
2b 1.32 st
3a 0.62 s!

Table S8: TOF,,of the complexes in CH3CN.
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Fig. S35. Representative current versus time plots for controlled potential electrolyses of Complex-1b
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Compound Conc.(mM) Faradaic efficiency (%)
H, CO CH,4
Ib ! <1 33 6

Table S9. Faradaic efficiencies, in CH;CN and 0.1M TFE after CPE experiments with a carbon working

electrode for the complex 1b, for 2 hours at -2.5 V vs Ag/AgCl.

|

i b1t

i 8§ 1

LI T T T O

i

b8 8

Fig. S36. GC-TCD data after controlled potential electrolyses.

No. | Solvent(4ml) Electron | A (nm) Gas | Reduced products TONco
donor
(60 H, (umol)
(umol)
1 DMF/H,0(4:1) BIH 420 <A <750 | CO, 42 0.012 420
2 DMF/TEOA(4:1) BIH 420<A <750 | CO, 26 3.03 260
3 DMA/H,0(4:1) BIH 420<A <750 | CO, 33 0.01 330
4 DMF/TEA(4:1) BIH 420 <A <750 | CO, 5 2.88 50
5 CH3CN/H,0(4:1) BIH 420<A <750 | CO, 9 <0.01 90
6 CH;CN/TEOA(4:1) | BIH 420 <A <750 | CO, 37 0.01 370
7 CH;CN/TFE(4:1) BIH 420 <A <750 | CO, 22 <0.01 220
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8 | DMF/TFE(4:1) BIH 420<1<750 [CO, |27 1.32 270

9 | CH;CN/TEOA(4:1) | BIH Dark co, |0 0 0

10 | CH;CN/TEOA(4:1) | BIH 420<A<750 | N, 0 0 0

11 | CH,CN/TEOA(4:1) | BIH 420<1<750 | CO, |33 0.2 330
+0.1 ml TFE

Table S10. Photocatalytic CO, reduction at different condition. For all catalysts, the photochemical
conditions include 4 mL of solvent, 0.2 mM Ru(dmbpy)s** as the photosensitizer, 25 mM SED, and 20 uM

complex-1a. The quantities of the reduced products generated by the catalysts were measured after 2 hours.

Amount of CO(umole)

D ~ T o T " T - T ~ T
0 20 40 60 80 100

[BIH],, mM

Fig. S37. The amount of CO produced after 4 hours of photocatalytic CO: reduction by complex-1a as a

function of BIH concentration.
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Fig. S38. (a) Emission spectra of Complex-1a (20 uM) excited by monochromatic light at 400 nm CH;CN
containing BIH (0 — 5 mM) at 298 K. (b) A Stern-Volmer plots for the emission quenching by BIH (0 — 5
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Fig. S39. (a) Emission spectra of Complex-1b (20 pM) excited by monochromatic light at 400 nm CH3CN
containing BIH (0 — 5 mM) at 298 K. (b)A Stern-Volmer plots for the emission quenching by BIH (0 — 5
mM).
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Fig. S40. (a) Emission spectra of Complex-1¢ (20 pM) excited by monochromatic light at 402 nm CH;CN
containing BIH (0 — 5 mM) at 298 K. (b)A Stern-Volmer plots for the emission quenching by BIH (0 — 5
mM).
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Fig. S41. (a) Emission spectra of Complex-2a (20 uM) excited by monochromatic light at 400 nm CH;CN
containing BIH (0 — 5 mM) at 298 K. (b)A Stern-Volmer plots for the emission quenching by BIH (0 — 5
mM).
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Fig. S42. (a) Emission spectra of Complex-2b (20 uM) excited by monochromatic light at 416 nm CH;CN
containing BIH (0 — 5 mM) at 298 K. (b)A Stern-Volmer plots for the emission quenching by BIH (0 — 5
mM).
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Fig. S43. (a) Emission spectra of Complex-3a (20 pM) excited by monochromatic light at 430 nm CH;CN
containing BIH (0 — 5 mM) at 298 K. (b)A Stern-Volmer plots for the emission quenching by BIH (0 — 5
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mM).

Catalyst Kgv(L mol ) kq(10° L mol! s1)
la 29.0 6.9

1b 20.6 9.7

1c 96.0 18.2

2a 123 174

2b 64 31.6

3a 34 6.4

Table S11: Stern—Volmer Constants (Kgy), Reductive Quenching Rate Constants (kq) by BIH for the

catalysts.
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Fig. S45: Photocatalytic reduction of CO; in bare sunlight by Complex 1a, 2a and 3a.
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Fig. 46: Mass spectra obtained from GC-MS analysis using labelled *CO,,
Fig. S47: '"H NMR spectra of Complex-1b in CD3;CN/TEOA in the presence of BIH and PS under CO,

atmosphere and photo irradiation 4 > 400 nm , irradiation time 0 min. (a), 60 min (b) 120 min(c)
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Fig. 48: TD-DFT calculation of Complex-1b (a) and its one electron reduced state (b).
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Fig. 49: GC-TCD data for detection and amount calculation for CO.
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