Supporting Information

for

Catalysis Activity and Chemoselectivity Control with the *Trans* Ligand in Ru-H Pincer Complexes

Mita Halder,^a Diana Castillo Cardenas,^a Angela Chartouni,^a and Damien B. Culver^a*

*Email: culver@ameslab.gov

Address where work was performed: ^aAmes National Laboratory, Ames, IA, 50011, United States

Table of Contents

Purification of 1	S2
Catalysis data and NMR spectra	S3
Catalysis in the presence of excess ligand	S12
Complex speciation under catalysis conditions	S14
SCXRD structures and data	S21
NMR and FTIR spectra of 2a-d , 3 and 4	S27
2a	S27
2b	S33
2c	S39
2d	S45
3	S50
4	S55
Ligand exchange studies	S61

Purification of 1

In a nitrogen filled glovebox, a 25 mL round bottom flask was charged with 1 g of **1** and 20 mL of dichloromethane. After stirring for 30 minutes at room temperature, the suspension was filtered through a layer of celite. The filtrate was concentrated under reduced pressure resulting in a pale yellow colored solid. The solid was further washed with diethyl ether (3×10 mL) and finally dried under vacuum for 1 hour. Percent recovery of **1** was 46 %. Representative ³¹P NMR spectra for **1** before and after purification are shown in Figure S1.

Figure S1. ³¹P{¹H} NMR spectrum of **1** (A) before and (B) after purification; [*]: residual impurities.

Catalysis data and NMR spectra

$$\begin{array}{c} O \\ R_1 \\ R_2 \end{array} \xrightarrow{iPrOH, 80 °C, t h} OH \\ -Me_2CO \end{array} OH$$

	Table S1. Summary	of the catal	tic transfer h	vdrogenation o	of benzophenone	reactions. ^a
--	-------------------	--------------	----------------	----------------	-----------------	-------------------------

Entry	Catalyst	Catalyst	KO ^t Bu	Time (h)	Yield (%) ^b
		loading (%)	loading (%)		
1	2a	2	5	1	96.2 (±0.6)
2	2a	2	2.5	1	91.8 (±0.4)
3	2a	0.5	2.5	1	97.0 (±0.15)
4	2a	0.5	0.625	4	97.4 (±0.9)
5	2a	0.1	0.625	5.5	97.1 (±1)
6	1	0.1	0.625	5.5	96.6 (±1.46)
7	2a	0.1	NA	24	<1
8	none	NA	0.625	24	8

a. Reaction conditions: benzophenone (0.15 mmol), ⁱPrOH (0.4 mL), catalyst, and KO^tBu were combined in an NMR tube along with a benzene- d_6 capillary and heated at 80 °C. b. Yields were determined by ¹H NMR spectroscopy and performed in duplicate. The values reported are the average and the errors are reported in the parentheses. NA = not applicable.

Figure S2. Representative ¹H NMR spectra to monitor the progress of the reaction between benzophenone (0.15 mmol) and ⁱPrOH in presence of **1** (0.1 mol% of Ru), and KO^tBu (0.625 mol%). [A] after 0 minutes; [B] after 75 minutes; [C] after 2.5 h; [D] after 3.45 h; [E] 5.5 h. * = Benzophenone; # = diphenylmethanol. ~ = solvent signal cutoff.

Figure S3. Representative ¹H NMR spectra to monitor the progress of the reaction between benzophenone (0.15 mmol) and iPrOH in presence of **2a** (0.1 mol% of Ru), and KOtBu (0.625 mol%). [A] after 15 minutes; [B] after 45 minutes; [C] after 2 h; [D] after 2.45 h; [E] 4.15 h. * = Benzophenone; # = diphenylmethanol, § = acetone. ~ = solvent signal cutoff.

Figure S4. Representative ¹H NMR spectra to monitor the progress of the reaction between benzophenone (0.15 mmol) and iPrOH in presence of **2d** (0.1 mol% of Ru), and KOtBu (0.625 mol%). [A] after 0 h; [B] after 4 h; [C] after 8 h; [D] after 12 h; [E] 16 h; [F] after 20 h; [G] after 24 h. * = Benzophenone; # = diphenylmethanol. ~ = solvent signal cutoff.

Figure S5. Representative ¹H NMR spectra to monitor the progress of the reaction between benzophenone (0.15 mmol) and iPrOH in presence of **3** (0.1 mol% of Ru), and KOtBu (0.625 mol%). [A] after 0 h; [B] after 0.5 h; [C] after 1 h; [D] after 1.5 h. * = Benzophenone; # = diphenylmethanol. ~ = solvent signal cutoff.

Figure S6. Representative ¹H NMR spectra to monitor the progress of the reaction between benzophenone (0.15 mmol) and iPrOH in presence of **4** (0.1 mol% of Ru), and KOtBu (0.625 mol%). [A] after 0 h; [B] after 0.5 h; [C] after 1 h; [D] after 1.5 h. * = Benzophenone; # = diphenylmethanol. ~ = solvent signal cutoff.

8.4 8.2 8.0 7.8 7.6 7.4 7.2 7.0 6.8 6.6 6.4 6.2 6.0 5.8 5.6 5.4 5.2 5.0 4.8 4.6 4.4 4.2 4.0 3.8 3.6 3.4 ¹H NMR chemical shift (ppm)

Figure S7. Representative ¹H NMR spectra for the transfer hydrogenation of 4bromoacetophenone (0.15 mmol) with [A] **1** (0.1 mol%) after 2 h heating, [B] Catalyst **2a** (0.1 mol%) after 2 h heating, [C] Catalyst **3** (0.1 mol%) after 1 h heating, and [D] Catalyst **4** (0.1 mol%) after 1 h heating at 80 °C in presence of KO^tBu (0.625 mol%) and ⁱPrOH (0.4 mL). Δ = starting material; @ = product peaks; * = Internal standard; # = unknown byproducts. Conditions B and C are before the addition of internal standard. ~ = solvent signal cutoff.

Figure S8. Representative ¹H NMR spectra for the transfer hydrogenation of acetophenone (0.15 mmol) with [A] **1** (0.1 mol%) after 2 h heating, [B] Catalyst **2a** (0.1 mol%) after 2 h heating, [C] Catalyst **3** (0.1 mol%) after 1 h heating, and [D] Catalyst **4** (0.1 mol%) after 1 h heating at 80 °C in presence of KO^tBu (0.625 mol%) and ⁱPrOH (0.4 mL). @ = starting material; # = product peaks; * = Internal standard; + = unknown byproducts. ~ = solvent signal cutoff.

8.4 8.2 8.0 7.8 7.6 7.4 7.2 7.0 6.8 6.6 6.4 6.2 6.0 5.8 5.6 5.4 5.2 5.0 4.8 4.6 4.4 4.2 4.0 3.8 ¹H NMR chemical shift (ppm)

Figure S9. Representative ¹H NMR spectra for transfer hydrogenation of 4methoxyacetophenone (0.15 mmol) with [A] **1** (0.1 mol%) after 2 h heating, [B] Catalyst **2a** (0.1 mol%) after 2 h heating, [C] Catalyst **3** (0.1 mol%) after 3 h heating, and [D] Catalyst **4** (0.1 mol%) after 3 h heating at 80 °C in presence of KO^tBu (0.625 mol%) and PrOH (0.4 mL). @ = starting material; # = product peaks; * = Internal standard; Conditions B is before the addition of internal standard. ~ = solvent signal cutoff.

Catalysis in the presence of excess ligand

Figure S10. ¹H NMR spectra of **3** (3 µmol, 2 mol%), KO^tBu (7.5 µmol, 5 mol%), ⁱPrOH (0.4 mL), PMe₃ (3 µmol) and THF-*d*₈ (0.15 mL) [A] after 5 minutes sonication; [B] after 10 minutes heating at 80 °C; [C] after addition of benzophenone (0.15 mmol) followed by 0.5 h of heating at 80 °C. * = benzophenone; # = diphenylmethanol, ~ = solvent signal cutoff.

Figure S11. Expansion of the hydride region of the ¹H NMR spectra of **3** (3 µmol, 2 mol%), KO^tBu (7.5 µmol, 5 mol%), ⁱPrOH (0.4 mL), PMe₃ (3 µmol) and THF- d_8 (0.15 mL) [A] after 5 minutes sonication; [B] after 10 minutes heating at 80 °C; [C] after addition of benzophenone (0.15 mmol) followed by 0.5 h of heating at 80 °C.

Figure S12. ³¹P{¹H} NMR spectra of **3** (3 µmol, 2 mol%), KO^tBu (7.5 µmol, 5 mol%), ⁱPrOH (0.4 mL), PMe₃ (3 µmol) and THF- d_8 (0.15 mL) [A] after 5 minutes sonication; [B] after 10 minutes heating at 80 °C; [C] after addition of benzophenone (0.15 mmol) followed by 0.5 h of heating at 80 °C. * = Complex **3**'; # = PMe₃ ligand; + = unknown.

Complex speciation under catalysis conditions

Figure S13. ¹H NMR spectra of **1** (3 μ mol, 2 mol%), KO^tBu (7.5 μ mol, 5 mol%), ⁱPrOH (0.4 mL) and THF-*d*₈ (0.15 m L) before (A) and after heating at 80 °C for 30 minutes (B); and after addition of benzophenone (0.15 mmol) followed by 30 minutes of heating at 80 °C (C).

Figure S14. Expansion of the hydride region of the ¹H NMR spectra of **1** (3 µmol, 2 mol%), KO^tBu (7.5 µmol, 5 mol%), ⁱPrOH (0.4 mL) and THF-*d*₈ (0.15 mL) before (A) and after heating at 80 °C for 30 minutes (B); and after addition of benzophenone (0.15 mmol) followed by 30 minutes of heating at 80 °C (C).

Figure S15. ³¹P{¹H} NMR spectra of **1** (3 μ mol, 2 mol%), KO^tBu (7.5 μ mol, 5 mol%), ⁱPrOH (0.4 mL) and THF-*d*₈ (0.15 mL) before (A) and after heating at 80 °C for 30 minutes (B); and after addition of benzophenone (0.15 mmol) followed by 30 minutes of heating at 80 °C (C).

Figure S16. ¹H NMR spectra of **2b** (3 µmol, 2 mol%), KO^tBu (7.5 µmol, 5 mol%), ⁱPrOH (0.4 mL) and THF-*d*₈ (0.15 mL) before (A) and after heating at 80 °C for 30 minutes (B); and after addition of benzophenone (0.15 mmol) followed by 30 minutes of heating at 80 °C (C). ~ = signal cutoffs for isopropanol and THF-*d*₈.

Figure S17. Expansion of the hydride region of the ¹H NMR spectra of **2b** (3 µmol, 2 mol%), KO^tBu (7.5 µmol, 5 mol%), ⁱPrOH (0.4 mL) and THF-*d*₈ (0.15 mL) before (A) and after heating at 80 °C for 30 minutes (B); and after addition of benzophenone (0.15 mmol) followed by 30 minutes of heating at 80 °C (C).

Figure S18. ³¹P{¹H} NMR spectra of **2b** (3 µmol, 2 mol%), KO^tBu (7.5 µmol, 5 mol%), ⁱPrOH (0.4 mL) and THF- d_8 (0.15 mL) before (A) and after heating at 80 °C for 30 minutes (B); and after addition of benzophenone (0.15 mmol) followed by 30 minutes of heating at 80 °C (C). # denotes **2b**' and * is an unknown species.

Figure S19. ¹H NMR spectra of **3** (3 µmol, 2 mol%), KO^tBu (7.5 µmol, 5 mol%), ⁱPrOH (0.4 mL) and THF- d_8 (0.15 mL) before (A) and after heating at 80 °C for 30 minutes (B); and after addition of benzophenone (0.15 mmol) followed by 30 minutes of heating at 80 °C (C). ~ = signal cutoffs for isopropanol and THF- d_8 .

Figure S20. Expansion of hydride region in the ¹H NMR spectra of **3** (3 μ mol, 2 mol%), KO^tBu (7.5 μ mol, 5 mol%), ⁱPrOH (0.4 mL) and THF-*d*₈ (0.15 mL) before (A) and after heating at 80 °C for 30 minutes (B); and after addition of benzophenone (0.15 mmol) followed by 30 minutes of heating at 80 °C (C).

³¹P NMR chemical shift (ppm)

Figure S21. ³¹P {¹H} NMR spectra of **3** (3 µmol, 2 mol%), KO^tBu (7.5 µmol, 5 mol%), ⁱPrOH (0.4 mL) and THF- d_8 (0.15 mL) before (A) and after heating at 80 °C for 30 minutes (B); and after addition of benzophenone (0.15 mmol) followed by 30 minutes of heating at 80 °C (C).

SCXRD structures and data

Figure S22. SCXRD for **2b**, thermal ellipsoids are drawn at 50% probability, and most hydrogens are omitted for clarity.

Figure S23. SCXRD for **2d**, thermal ellipsoids are drawn at 50% probability, and most hydrogens are omitted for clarity.

Figure S24. SCXRD for **3**, thermal ellipsoids are drawn at 50 % probability, and most hydrogens are omitted for clarity.

Figure S25. SCXRD for **4**, thermal ellipsoids are drawn at 50 % probability, and most hydrogens are omitted for clarity.

Table S2. Summary of relevant bond lengths and angles for the SCXRD structures of **2b**, **2d**, **3** and **4**.^a

	Bond length (Å)			Bond angles				
Complex	Ru-C/P (ligand <i>trans</i> to hydride)	Ru-C (CO)	Ru-P (Ph P N [⊬] P)	Ru-N (PhP N ^H P)	P-Ru- P	X-Ru- H	N-Ru- CO	Ru-C-N (isonitrile)
2b	2.048(6)	1.841(6)	2.3258(14)/ 2.3199(14)	2.180(4)	164.11	175.09	169.93	173.60
2d	2.043(3)	1.856(3)	2.3145(7)/ 2.3237(7)	2.189(2)	165.7	173.5	170.45	172.23
3	2.4358(6)	1.847(2)	2.3160(5)/ 2.3248(5)	2.2027(17)	159.61	176.94	174.01	NA
4	2.168(4)	1.819(4)	2.2885(9)/ 2.3450(9)	2.224(3)	161.74	179.68	166.26	NA

a. Errors are indicated in the parantheses. NA = not applicable.

Parameter	2b	2d
Empirical formula	C ₅₈ H ₅₉ BN ₂ OP ₂ Ru	C ₆₁ H ₅₇ BN ₂ OP ₂ Ru
Formula weight	973.95	1006.89
Temperature/K	173(2) K	173(2) K
Crystal system	triclinic	monoclinic
Space group	P-1	P 1 21/c 1
a/Å	12.7846(8)	13.1411(5)
b/Å	13.8907(11)	12.9946(5)
c/Å	17.4106(13)	29.4189(11)
α/°	101.625(3)	90
β/°	105.684(2)	90.2580(10)
γ/°	94.257(3)	90
Volume/Å ³	2888.4(4)	5023.6(3)
Z	2	4
ρ _{calc} g/cm ³	1.286	1.331
µ/mm ⁻¹	0.375	0.420
F(000)	1176.0	2092.0
Crystal size/mm ³	0.25 × 0.24 × 0.1	0.42 × 0.38 × 0.12
Radiation	ΜοΚα (λ = 0.71073)	ΜοΚα (λ = 0.71073)
2O range for data collection/°	2.29 to 23.17	2.09 to 27.50
Index ranges	-14 ≤ h ≤ 14, -15 ≤ k ≤ 15, - 19 ≤ l ≤ 19	-16 ≤ h ≤ 16, -15 ≤ k ≤ 15, - 36 ≤ l ≤ 36

Table S3. Crystallographic data and refinement parameters for **2b** and **2d**.

Reflections collected	93094	226272
Independent reflections	8193 (Rint = 0.1290, Rsig = 0.0566)	11499
Data/restraints/parameters	8193 / 0 / 679	11499 / 0 / 617
Goodness-of-fit on F ²	1.023	1.038
Final R indexes [I>=2σ (I)]	R1 = 0.0562, wR2 = 0.1387	R1 = 0.0395, wR2 = 0.0896
Final R indexes [all data]	R1 = 0.0768, wR2 = 0.1531	R1 = 0.0515, wR2 = 0.0979
Largest diff. peak/hole /e Å ⁻	2.404/-0.771	0.753/ -0.585

Table S4. Crystallographic data and refinement parameters for **3** and **4**.

Parameter	3	4
Empirical formula	C56H59BNOP3Ru	C ₅₈ H ₅₈ BN ₃ OP ₂ Ru
Formula weight	966.90	986.95
Temperature/K	273 K	173 K
Crystal system	monoclinic	monoclinic
Space group	P 1 21/n 1	P 1 21/n 1
a/Å	9.9730(3)	11.4158(5)
b/Å	22.1902(7)	34.6443(15)
c/Å	22.4709(7)	12.7068(5)
α/°	90	90
β/°	97.363(10)	99.007(10)
γ/°	90	90

Volume/Å ³	4931.9(3)	4963.5(4)
Z	4	4
$\rho_{calc}g/cm^3$	1.302	1.321
µ/mm ⁻¹	0.455	0.424
F(000)	2016	2056.0
Crystal size/mm ³	0.29 × 0.14 × 0.11	0.34 × 0.30 × 0.08
Radiation	ΜοΚα (λ = 0.71073)	ΜοΚα (λ = 0.71073)
2O range for data collection/°	2.33 to 28.71	2.15 to 25.68
Index ranges	-12 ≤ h ≤ 13, -29 ≤ k ≤ 29, - 30 ≤ l ≤ 30	-13 ≤ h ≤ 13, -42 ≤ k ≤ 42, - 15 ≤ l ≤ 15
Reflections collected	126831	167482
Independent reflections	12745 (Rint = 0.0532, Rsig = 0.0263)	9416 ($R_{int} = 0.1034$, $R_{sig} = 0.0380$)
Data/restraints/parameters	12745 / 0 / 578	9416 / 0 / 604
Goodness-of-fit on F ²	1.040	1.044
Final R indexes [I>=2σ (I)]	R1 = 0.0367, wR2 = 0.0946	R1 = 0.0450, wR2 = 0.0951
Final R indexes [all data]	R1 = 0.0459, wR2 = 0.1023	R1 = 0.0698, wR2 = 0.1082
Largest diff. peak/hole /e Å ⁻	1.002/ -0.717	0.569/ -0.449

Figure S26. FTIR spectrum of 2a.

Figure S27. ¹H NMR spectrum of **2a** in THF-*d*₈.

Figure S28. ³¹P{¹H} NMR spectrum of **2a** in THF-*d*₈; [*]: residual impurities.

Figure S30. ¹H-¹H COSY NMR spectrum of **2a** in THF-*d*₈.

Figure S31. Expansions of the aromatic and aliphatic regions of the ¹H-¹H COSY NMR spectrum of **2a** in THF- d_8 .

Figure S32.¹H-¹³C HSQC NMR spectrum of **2a** in THF-*d*₈.

Figure S33.¹H-¹³C HMBC NMR spectrum of **2a** in THF-*d*₈.

Figure S34. Expansions of the aliphatic regions of the ${}^{1}H{}^{-13}C$ HMBC NMR spectrum of **2a** in THF-*d*₈.

Figure S35. ¹H-¹H NOSY NMR spectrum of **2a** in THF-*d*₈.

Figure S36. FTIR spectrum of **2b**.

Figure S37. ¹H NMR spectrum of **2b** in THF-*d*₈.

105 100 95 90 85 80 75 70 65 60 55 50 45 40 35 30 25 20 15 10 ³¹P NMR chemical shift (ppm)

Figure S38. ³¹P{¹H} NMR spectrum of **2b** in THF-*d*₈; [*]: residual impurities.

Figure S41. Expansions of the aromatic and aliphatic regions of the ¹H-¹H COSY NMR spectrum of **2b** in THF- d_8 .

Figure S42. ¹H-¹³C HSQC NMR spectrum of **2b** in THF-*d*₈.

Figure S43. ¹H-¹³C HMBC NMR spectrum of **2b** in THF-*d*₈.

Figure S44. Expansions of the aromatic regions of the ${}^{1}H{}^{-13}C$ HMBC NMR spectrum of **2b** in THF-*d*₈.

Figure S45. ¹H-¹H NOSY NMR spectrum of **2b** in THF-*d*₈.

Figure S46. FTIR spectrum of **2b**.

Figure S48. ³¹P{¹H} NMR spectrum of **2c** in THF-*d*₈; [*]: residual impurities.

Figure S49. ¹³C{¹H} NMR spectrum of **2c** in THF- d_8 . ~ = solvent signal cutoff.

Figure S50. ¹H-¹H COSY NMR spectrum of **2c** in THF-*d*₈.

Figure S51. ¹H-¹³C HSQC NMR spectrum of **2c** in THF-*d*₈.

Figure S52. Expansions of the aromatic and aliphatic regions of the ¹H-¹³C HSQC NMR spectrum of **2c** in THF- d_8 .

Figure S53. ¹H-¹³C HMBC NMR spectrum of **2c** in THF-*d*₈.

Figure S54. ¹H-¹H NOSY NMR spectrum of **2c** in THF-*d*₈.

Figure S55. FTIR spectrum of 2d.

Figure S56. ¹H NMR spectrum of **2d** in THF-*d*₈.

Figure S57. ³¹P{¹H} NMR spectrum of **2d** in THF-*d*₈.

Figure S58. ¹³C{¹H} NMR spectrum of **2d** in THF- d_8 . ~ = solvent signal cutoff.

Figure S59. ¹H-¹H COSY NMR spectrum of **2d** in THF-*d*₈.

Figure S60.¹H-¹³C HSQC NMR spectrum of **2d** in THF-*d*₈.

Figure S61. Expansion of the aliphatic regions of the ¹H-¹³C HSQC NMR spectrum of **2d** in THF- d_8 .

Figure S62. ¹H-¹³C HMBC NMR spectrum of **2d** in THF-*d*₈.

Figure S63. ¹H-¹H NOSY NMR spectrum of **2d** in THF-*d*₈.

Figure S64. FTIR spectrum of 3.

Figure S65. ¹H NMR spectrum of **3** in THF-*d*₈.

Figure S66. ³¹P{¹H} NMR spectrum of **3** in THF-*d*₈; [*]: residual impurities.

Figure S68. ¹H-¹H COSY NMR spectrum of **3** in THF-*d*₈.

Figure S69. ¹H-¹³C HSQC NMR spectrum of **3** in THF-*d*₈.

Figure S70. ¹H-¹³C HMBC NMR spectrum of **3** in THF-*d*₈.

Figure S71. ¹H-¹H NOSY NMR spectrum of **3** in THF- d_8 .

Figure S72. FTIR spectrum of 4.

Figure S73. ¹H NMR spectrum of **4** in THF-*d*₈.

Figure S74. ¹H NMR spectrum of **4** in THF- d_8 at 50 °C.

Figure S75. Variable temperature ¹H NMR spectrum of **4** in THF- d_8 . Blue lines highlight region containing the NHC backbone protons.

Figure S76. ³¹P{¹H} NMR spectrum of **4** in THF-*d*₈; [*]: residual impurities.

Figure S78. ¹H-¹H COSY NMR spectrum of **4** in THF-*d*₈.

Figure S79. ¹H-¹³C HSQC NMR spectrum of **4** in THF-*d*₈.

Figure S80. ¹H-¹³C HMBC NMR spectrum of **4** in THF-*d*₈.

Figure S81. Expansions of the aromatic (A) and aliphatic (B) regions of the ${}^{1}H{}^{-13}C$ HMBC NMR spectrum of **4** in THF-*d*₈.

Figure S82. ¹H-¹H NOSY NMR spectrum of **4** in THF-*d*₈.

Figure S83. ¹H NMR spectra to monitor the progress of the reaction between **2a** and PMe₃. [A] after 30 minutes heating; [B] after addition of KO^tBu followed by 30 minutes heating at 80 °C; \sim = signal cutoff.

¹H NMR chemical shift (ppm)

Figure S84. Expansion of the hydride region of the ¹H NMR spectra to monitor the progress of the reaction between **2a** and PMe₃. [A] after 30 minutes heating; [B] after addition of KO^tBu followed by 30 minutes heating at 80 °C.

Figure S85. ³¹P{¹H} NMR spectra to monitor the progress of the reaction between **2a** and PMe₃. [A] after 30 minutes heating; [B] after addition of KO^tBu followed by 30 minutes heating at 80 °C.

Figure S86. ¹H NMR spectra to monitor the progress of the reaction between **4** and PMe₃. [A] after 30 minutes heating; [B] after addition of KO^tBu followed by 30 minutes heating at 80 °C; \sim = signal cutoff.

Figure S87. Expansion of the hydride region of the ¹H NMR spectra to monitor the progress of the reaction between **4** and PMe₃. [A] after 30 minutes heating; [B] after addition of KO^tBu followed by 30 minutes heating at 80 °C.

Figure S88. ³¹P{¹H} NMR spectra to monitor the progress of the reaction between **4** and PMe₃. [A] after 30 minutes heating; [B] after addition of KO^tBu followed by 30 minutes heating at 80 °C. \sim = signal cutoff for PMe₃.