Supporting Information

Synthesis and characterization of heterotrimetallic Mg-Ni-Mg complexes

with amidinato ligands

Rongping Zhang, Yanping Cai, Xin Xu*

Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry,

Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P.

R. China. E-mail: xinxu@suda.edu.cn

Contents

1. Synthesis and NMR spectra of HL	
2. Synthesis and NMR spectra of compounds 1	S6
3. Synthesis and NMR spectra of complexes 2	
4. Synthesis and NMR spectra of complex 3	S11
5. Synthesis and NMR spectra of complex 4	S13
6. FT-IR spectrum of complex 4	S15
7. NMR reaction of complex 2b with CO	S13
8. Crystallographic information	S15

1. Synthesis and NMR spectra of HL

Synthesis and NMR spectra of HL^a

Fig. S4. ¹³C{¹H} NMR (101 MHz, C₆D₆, 298 K)

-50.1

Fig. S8. ³¹**P**{¹**H**} **NMR** (162 MHz, C₆D₆, 298 K)

2. Synthesis and NMR spectra of compounds 1

-57.9

3. Synthesis and NMR spectra of complexes 2

Scheme S5. Synthesis of complexes 2

7. 16 6. 99 6. 93 6. 93

4. Synthesis and NMR spectra of complex 3

Scheme S6. Synthesis of complex 3

--7. 16 --7. 01

-61.2

Fig. S24. ¹H NMR (400 MHz, C₆D₆, 298 K)

Fig. S26. ³¹P{¹H} NMR (162 MHz, C₆D₆, 298 K)

6. FT-IR spectrum of complex 4

Fig. S27. FT-IR spectrum of complex 4

7. NMR reaction of complex 2b with CO

In a glove box, complex **2b** (0.01 mmol, 14.9 mg) and ferrocene (0.008 mmol, 1.5 mg) were dissolved in 0.5 mL of C_6D_6 and transferred to a sealed J. Young NMR tube. After three freeze-pump-thaw cycles, the solution was subjected to 1 bar of CO at room temperature. The reaction was monitored by ¹H NMR spectrum after 2 h.

8. Crystallographic information

X-ray crystal structure analysis of compound 1b: formula C₄₈H₅₉MgN₂P·0.5C₆H₁₄, $M = 762.33 \text{ gmol}^{-1}$, colorless, 0.04 x 0.03 x 0.02 mm, Triclinic, space group *P*-1, *a* = 10.5976(7), *b* = 19.2049(13), *c* = 23.4676(17) Å, *a* = 76.930(3)°, *β* = 89.321(3)°, *γ* = 78.848(3)°, *V* = 4562.1(5) Å³, $\rho_{calc} = 1.110 \text{ gcm}^{-3}$, $\mu = 0.594 \text{ mm}^{-1}$, empirical absorption correction (0.5888 $\leq T \leq 0.7512$), *Z* = 4, $\lambda = 1.34138$ Å, T = 120.00 K, 63230 reflections collected (-13 \leq h \leq 11, -23 \leq k \leq 24, -29 \leq 1 \leq 29), 18697 independent ($R_{int} = 0.0871$) and 9965 observed reflections (I > 2 σ (I)), 1013 refined parameters, the final R_I was 0.0753 (I > 2 σ (I)) and wR_2 was 0.2347 (all data). max. (min.) residual electron density 0.52 (-0.42) e.Å⁻³, hydrogen atoms were placed in calculated positions and refined using a riding model.

Fig. S29. Molecular structure of compound 1b

X-ray crystal structure analysis of complex 2a: formula $C_{50}H_{88}Mg_2N_4NiP_2$, $M = 914.51 \text{ gmol}^{-1}$, colorless, $0.24 \times 0.22 \times 0.2 \text{ mm}$, Triclinic, space group *P*-1, a = 9.0128(4), b = 10.6971(4), c = 15.9172(6) Å, $\alpha = 107.9280(10)^{\circ}$, $\beta = 93.3990(10)^{\circ}$, $\gamma = 105.3290(10)^{\circ}$, V = 1391.49(10) Å³, $\rho_{calc} = 1.091 \text{ gcm}^{-3}$, $\mu = 0.462 \text{ mm}^{-1}$, empirical absorption correction ($0.5308 \leq T \leq 0.7456$), Z = 1, $\lambda = 0.71073$ Å, T = 120 K, 30580 reflections collected ($-11 \leq h \leq 11$, $-13 \leq k \leq 13$, $-20 \leq 1 \leq 20$), 6378 independent ($R_{int} = 0.0720$) and 4899 observed reflections ($I > 2\sigma(I)$), 295 refined parameters, the final R_I was 0.0433 ($I > 2\sigma(I)$) and wR_2 was 0.1228 (all data). max. (min.) residual electron density 0.34 (-0.33) e.Å⁻³, hydrogen atoms except for those in

 $Ni-C_2H_4$ moieties were placed in calculated positions and refined using a riding model, hydrogen atoms in $Ni-C_2H_4$ moieties were located in a Fourier difference map and was refined with isotropic displacement parameters.

Fig. S30. Molecular structure of complex 2a

X-ray crystal structure analysis of complex 2b: formula C₉₆H₁₁₆Mg₂N₄NiP₂·4C₆H₆, $M = 1807.62 \text{ gmol}^{-1}$, colorless, $0.2 \times 0.2 \times 0.15 \text{ mm}$, Monoclinic, space group *P2/c*, a = 18.2558(11), b = 15.2714(9), c = 18.9886(12) Å, $\beta = 104.001(2)^{\circ}$, V = 5136.6(5) Å³, $\rho_{calc} = 1.169 \text{ gcm}^{-3}$, $\mu = 1.543 \text{ mm}^{-1}$, empirical absorption correction ($0.5860 \leq T \leq 0.7518$, Z = 2, $\lambda = 1.34139$ Å, T = 150.00 K, 113318 reflections collected ($-22 \leq h \leq 22$, $-19 \leq k \leq 19$, $-23 \leq 1 \leq 23$), 10130 independent ($R_{int} = 0.1040$) and 8774 observed reflections (I > $2\sigma(I)$), 648 refined parameters, the final R_I was 0.0549 (I > $2\sigma(I)$) and wR_2 was 0.1551 (all data). max. (min.) residual electron density 0.84 (-0.48) e.Å⁻³, hydrogen atoms except for those in Ni-C₂H₄ moieties were placed in calculated positions and refined using a riding model, hydrogen atoms in Ni-C₂H₄ moieties were located in a Fourier difference map and was refined with isotropic displacement parameters.

Fig. S31. Molecular structure of complex 2b

X-ray crystal structure analysis of complex 3: formula C₅₈H₁₀₄Mg₂N₄NiO₂P₂, $M = 1058.72 \text{ gmol}^{-1}$, colorless, $0.3 \times 0.25 \times 0.2 \text{ mm}$, Monoclinic, space group *C2/c*, a = 19.0876(12), b = 11.5755(8), c = 28.1191(18) Å, $\beta = 95.476(2)^{\circ}$, V = 6184.5(7) Å³, $\rho_{calc} = 1.137 \text{ gcm}^{-3}$, $\mu = 0.427 \text{ mm}^{-1}$, empirical absorption correction (0.6646 $\leq T \leq 0.7456$, Z = 4, $\lambda = 0.71073$ Å, T = 296.15 K, 64867 reflections collected (-24 \leq h ≤ 24 , -15 \leq k ≤ 15 , -36 $\leq 1 \leq$ 36), 7154 independent ($R_{int} = 0.1517$) and 3961 observed reflections (I > 2 σ (I)), 340 refined parameters, the final R_I was 0.0585 (I > 2 σ (I)) and wR_2 was 0.1375 (all data). max. (min.) residual electron density 0.89 (-0.43) e.Å⁻³, hydrogen atoms except for those in Ni-C₂H₄ moieties were placed in calculated positions and refined using a riding model, hydrogen atoms in Ni-C₂H₄ moieties were located in a Fourier difference map and was refined with isotropic displacement parameters.

Fig. S32. Molecular structure of complex 3

X-ray crystal structure analysis of complex 4: formula C₉₆H₁₁₂Mg₂N₄NiO₂P₂, $M = 1523.16 \text{ gmol}^{-1}$, colorless, $0.2 \times 0.2 \times 0.2 \text{ mm}$, Triclinic, space group *P*-1, a = 15.0759(14), b = 18.5965(17), c = 20.2198(16) Å, $a = 110.227(3)^{\circ}$, $\beta = 101.922(4)^{\circ}$, $\gamma = 108.780(4)^{\circ}$, V = 4702.6(7) Å³, $\rho_{calc} = 1.076 \text{ gcm}^{-3}$, $\mu = 1.643 \text{ mm}^{-1}$, empirical absorption correction (0.6199 $\leq T \leq 0.7512$), Z = 2, $\lambda = 1.34138$ Å, T = 120.00 K, 108711 reflections collected (-18 $\leq h \leq 18$, -23 $\leq k \leq 23$, -25 $\leq 1 \leq 24$), 19250 independent ($R_{int} = 0.0741$) and 13971 observed reflections (I > 2 σ (I)), 998 refined parameters, the final R_I was 0.0573 (I > 2 σ (I)) and wR_2 was 0.1692 (all data). max. (min.) residual electron density 1.02 (-0.45) e.Å⁻³, hydrogen atoms except for those in Ni-C₂H₄ moieties were placed in calculated positions and refined using a riding model, hydrogen atoms in Ni-C₂H₄ moieties were located in a Fourier difference map and was refined with isotropic displacement parameters.

Fig. S33. Molecular structure of complex 4