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Experimental Section
General Considerations

All manipulations were carried out in dry N»-filled gloveboxes (Vacuum Atmospheres Co.,
Hawthorne, CA) or under N> atmosphere using standard Schlenk techniques unless otherwise
noted. All solvents were of commercial grade and dried over activated alumina using a PPT Glass
Contour (Nashua, NH) solvent purification system prior to use, and were stored over molecular
sieves. All chemicals were from major commercial suppliers and used as received or after
extensive drying. Deuterated NMR solvents were purchased from Cambridge Isotope Laboratories
(Tewksbury, MA, USA). 'H and '"F NMR spectra were collected on a 400 MHz Bruker
spectrometer (Bruker, Billerica, MA, USA) and referenced to the residual protio-solvent signal' in
the case of 'H. IF NMR spectra were referenced and reported relative to CCIsF as external
standards following the recommended scale based on ratios of absolute frequencies (Z).23
Chemical shifts (8) are reported in units of ppm and coupling constants (J) are reported in Hz. All
experiments were conducted at room temperature (298 K).

Regarding special safety precautions needed for this work, depleted uranium is a weak alpha-
particle emitter; all manipulations of U-containing materials should be carried out in a laboratory
equipped with appropriate radiation safety protocols.

Electrochemical Methods

Electrochemical experiments were carried out in a N»-filled glovebox in dry, degassed CH3CN.
0.10 M tetra(n-butylammonium) hexafluorophosphate (["BusN]"[PFs]"); Sigma-Aldrich,
electrochemical grade) served as the solvent and supporting electrolyte. Measurements were
carried out with a Gamry Reference 600+ Potentiostat/Galvanostat (Gamry Instruments,
Warminster, PA, USA), using a standard three-electrode configuration. The working electrode was
the basal plane of highly oriented pyrolytic graphite (HOPG) (GraphiteStore.com, Buffalo Grove,
I1L.; surface area: 0.09 cm?), the counter electrode was a platinum wire (Kurt J. Lesker, Jefferson
Hills, PA; 99.99%, 0.5 mm diameter), and a silver wire immersed in electrolyte served as a pseudo
reference electrode (CH Instruments). The reference was separated from the working solution by
a Vycor frit (Bioanalytical Systems, Inc., West Lafayette, IN, USA). Ferrocene (Sigma Aldrich, St.
Louis, MO, USA; twice-sublimed) was added to the electrolyte solution prior to the beginning of
each experiment; the midpoint potential of the ferrocenium/ferrocene couple (denoted as Fc™'?)
served as an external standard for comparison of the recorded potentials. Concentrations of
analytes for cyclic voltammetry were typically 1 mM unless otherwise noted. Experiments were
conducted by first scanning cathodically, then anodically on the return sweep.
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Vibrational Analysis

Raman spectra of single crystals were collected on a Renishaw inVia Raman microscope with a
Raman microscope enclosure, equipped with a 785 nm laser and a 1200 mm grating. The
maximum operating power is 200 mW (laser power at 100%). WiRE 3.4 served as the operating
software utilized to collect all raw data and spectra. Each sample was placed under a confocal
microscope, and the surface was focused on at 50x magnification. Incremental scans were used to
evaluate the optimal laser power and integration time for each sample, where signal to noise was
considered and the integrity of the material. Each spectrum was collected with an accumulation of
three scans and a pinhole aperture resulting in a laser width of three micrometers. Infrared (IR)
spectra of single crystals were collected on a Bruker VERTEX 70v instrument using a platinum
ATR microscope objective and the OPUS 8.5 software package. The resolution was 0.4 cm™ in
the mid-IR region (4000 — 400 cm™') and 1 cm™! in the FIR region (400 — 100 cm™). Background
scans were collected ahead of measurements on each sample and IR data were collected using half
the number of scans used for background scanning.

Spectral analysis (baseline, peak fitting, and determination of the full-width half-max) for Raman
and IR data for spectral windows of 1100 — 550 cm™! (Raman), 1000 — 700 cm™! (mid-IR), and 350
— 150 cm™! (far-IR) were done in OriginPro version 2021b (9.8.5.204). Peak fittings were done
using Lorentzian or Gaussian functions and refined until a convergence of 1x107® was reached.
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Synthesis and Characterization

Complexes BaHexa and LSUQO; were prepared according to literature procedures, while
complexes BaPenta and L5UQ; were prepared following literature procedures used for the
preparation of BaHexa and L6UQz, respectively.* Spectroscopic characterizations of BaPenta and
LU0, by NMR (Figures S1-S3) confirmed preparation of the desired compounds. Crystals
suitable for X-ray diffraction were obtained by vapor diffusion of diethyl ether into a CH3CN
solution of L3UQ; and by vapor diffusion of diethyl ether into a CH30H solution of BaPenta.
Crystals for L3UQO> could also be grown using by vapor diffusion of diethyl ether into a CH>Cl,
solution of the complex; this solvent system was used for bulk recrystallization in order to prepare
a sample for elemental analysis. BaPenta, when dissolved in CD;CN, contains complex peaks in
the 'H NMR suggesting different conformers of the complex in CD3CN. This is also evident from
the sandwiching nature of the BaPenta (vide infra) in solid-state.

BaPenta. 'H NMR (400 MHz, CDsCN) § 13.59 (bs, 3H), 8.28 (d, J = 13.3 Hz, 2H), 8.16 (d, J =
12.9 Hz, 1H), 6.97 — 6.73 (m, 6H), 6.44 (t, J = 7.9 Hz, 2H), 6.36 (t, J = 7.9 Hz, 1H), 4.22 (t, J =
4.7 Hz, 6H), 4.12 — 3.90 (m, 7H), 3.88 — 3.72 (m, 7H), 3.63 (dd, J = 6.4, 5.3 Hz, 2H), 2.79 — 2.66
(m, 6H), 2.47 (d, J = 11.7 Hz, 2H), 2.32 (s, 3H), 2.15 (s, 1H). F{'H} NMR (376 MHz, CDsCN):
5 -80.10.

L3UO;. '"H NMR (500 MHz, CDsCN) 6 9.50 (dd, “Jun = 2.1 Hz, “Juu = 1.1 Hz, 2H), 7.19 (dd,
3Jun = 7.8 Hz, *Jun = 1.6 Hz, 2H), 7.15 (dd, *Jun = 7.9 Hz, “Jun = 1.6 Hz, 2H), 6.66 (t, *Jun =
7.8 Hz, 2H), 5.13 — 5.01 (m, 2H), 4.59 — 4.51 (m, 2H), 4.22 — 4.17 (m, 4H), 4.09 — 4.04 (m, 4H),
3.90 (td, *Juu = 13.2, “Jun = 4.6 Hz, 2H), 3.62 — 3.56 (m, 2H), 3.23 (s, 3H). Anal. Calcd for
Ca23H27N307U (L3UQOy): C 39.72, H 3.91, N 6.04; Found: C 38.31, H 3.47, N 5.57. Calcd for
C23H27N307U + 0.5 CH2CL: C 38.25, H 3.82, N 5.69. This analysis is consistent with the
observation of CH>Cl, in the 'TH NMR spectrum (Figure S3) for LSUQ;, which was incorporated
during crystallization of the compound. Cyclic Voltammetry (0.1 M ["BusN]*[PFs]” in CH3CN):
E1p=-1.57V vs. FC+/O.

We also confirmed the formulation of the previously reported L®UQO> by elemental analysis (EA)
to provide additional evidence for the purity and composition of the synthesized complexes.

Anal. Calcd for C2sH31N3O0sU (LSUQz): C 40.60, H 4.23, N 5.68; Found: C 40.63, H 3.96, N 5.38.

In situ NMR scale preparation of LSUO>M complexes. In a J-young NMR tube under an inert
atmosphere, a solution of L3UQ; in CD3CN was added to 1 equiv. of corresponding metal salt
solution in CD3CN. The contents in the tube were mixed by vigorously shaking the tube, and the
solution was left to equilibrate for 5 min before recording the 'H and F{'H} NMR (Figures S4-
S18). Crystals suitable for X-ray diffraction were obtained by vapor diffusion of diethyl ether into
a CH3CN solution of the LSUO;M (M = K, Na, Li) complexes.

L5UO:Cs. '"HNMR (500 MHz, CD3CN): 6 9.52 (dd, *Juu = 2.1 Hz, *Jun = 1.0 Hz, 2H), 7.23 (dd,
3Jun = 7.9 Hz, *Jun = 1.6 Hz, 2H), 7.20 (dd, *Juu =7.9 Hz, “Jun = 1.6 Hz, 2H), 6.72 (t, *Jun =
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7.9 Hz, 2H), 5.14 — 5.03 (m, 2H), 4.62 — 4.52 (m, 2H), 4.23 — 4.15 (m, 4H), 4.04 — 3.96 (m, 4H),
3.89 (td, *Juu = 13.2 Hz, “Juu = 4.5 Hz, 2H), 3.68 — 3.60 (m, 2H), 3.26 (s, 3H). YF{'H} NMR
(471 MHz, CD3CN): ¢ —80.22. Cyclic Voltammetry (0.1 M ["BusN]*[PF¢]” in CH3CN): Ei = —
1.40 V vs. Fc™.

L3UO;Rb. '"H NMR (500 MHz, CD3CN): 8 9.52 (dd, *Juu = 2.1 Hz, “Juu = 1.1 Hz, 2H), 7.28 (dd,
3Jun =79 Hz, *Jun = 1.5 Hz, 2H), 7.22 (dd, 3Jun = 7.9 Hz, “Jun = 1.6 Hz, 2H), 6.74 (t, 3Jun =
7.9 Hz, 2H), 5.16 — 5.05 (m, 2H), 4.62 — 4.53 (m, 2H), 4.31 — 4.19 (m, 4H), 4.08 — 4.01 (m, 4H),
3.90 (td, *Juu = 13.2 Hz, “Juu = 4.5 Hz, 2H), 3.70 — 3.61 (m, 2H), 3.27 (s, 3H). YF{'H} NMR
(471 MHz, CD3CN): ¢ —80.22. Cyclic Voltammetry (0.1 M ["BusN]*[PF¢]” in CH3CN): Eip =
~1.40 V vs. Fc™,

L3UO:K. 'H NMR (500 MHz, CD3CN) 6 9.52 (dd, *Juu = 2.1 Hz, *Juu = 1.1 Hz, 2H), 7.31 (dd,
3Jan=7.9, “Uun = 1.6 Hz, 2H), 7.23 (dd, *Jun = 7.9, *Juu = 1.6 Hz, 2H), 6.76 (t, *Juu = 7.9 Hz,
2H), 5.17 — 5.05 (m, 2H), 4.64 — 4.54 (m, 2H), 4.36 — 4.24 (m, 4H), 4.12 — 4.02 (m, 4H), 3.91 (td,
3Jun = 13.2 Hz, *Junu = 4.6 Hz, 2H), 3.70 — 3.62 (m, 2H), 3.28 (s, 3H). ’F{'H} NMR (471 MHz,
CDs3CN): 6 —80.22. Cyclic Voltammetry (0.1 M ["BusN]*[PFs]” in CH3CN): Eip = —1.37 V vs.
Fcl0.

L5UO;Na. '"H NMR (500 MHz, CD3CN) 6 9.52 (dd, “Juu = 2.1 Hz, “Juu = 1.1 Hz, 2H), 7.36 (dd,
3Jun =79 Hz, *Jun = 1.6 Hz, 2H), 7.28 (dd, 3Jun = 7.9 Hz, “Jun = 1.5 Hz, 2H), 6.82 (t, 3Jun =
7.9 Hz, 2H), 5.21 — 5.10 (m, 2H), 4.66 — 4.57 (m, 2H), 4.39 — 4.34 (m, 4H), 4.15 — 4.10 (m, 4H),
3.96 (td, *Juu = 13.3 Hz, “Juu = 4.5 Hz, 2H), 3.75 — 3.69 (m, 2H), 3.34 (s, 3H). YF{'H} NMR
(471 MHz, CD3CN): ¢ —80.21. Cyclic Voltammetry (0.1 M ["BusN]*[PF¢]” in CH3CN): Eip =
~1.27 V vs. Fc™,

LSUO:Li. "H NMR (500 MHz, CD3CN) 6 9.50 (dd, “Jun = 2.0 Hz, “Jun = 1.0 Hz, 2H), 7.34 (dd,
3Jun =79 Hz, *Jun = 1.6 Hz, 2H), 7.27 (dd, 3Jun = 8.0 Hz, “Jun = 1.5 Hz, 2H), 6.82 (t, 3Jun =
7.9 Hz, 2H), 5.21 — 5.10 (m, 2H), 4.66 — 4.58 (m, 2H), 4.40 — 4.31 (m, 4H), 4.17 — 4.05 (m, 4H),
3.96 (td, *Juu = 13.2 Hz, “Juu = 4.5 Hz, 2H), 3.77 — 3.69 (m, 2H), 3.35 (s, 3H). YF{'H} NMR
(471 MHz, CD3CN): ¢ —80.19. Cyclic Voltammetry (0.1 M ["BusN]*[PF¢]” in CH3CN): Ei = —
1.25V vs. Fc™.

L5U0:Ca. 'H NMR (500 MHz, CD;CN) 6 9.56 (s, 2H), 7.52 (d. Jiun = 8.0 Hz, 2H), 7.42 (d. *Jiun
=7.9 Hz, 2H), 6.97 (t, *Jun = 8.0 Hz, 2H), 5.23 — 5.13 (m, 2H), 4.77 — 4.68 (m, 2H), 4.61 — 4.49
(m, 4H), 430 — 4.18 (m, 4H), 4.01 (td, YJirs = 13.2 Hz, 41 = 4.7 Hz, 2H), 3.78 (dd, 3iwn = 12.8
Hz, *Jun = 4.0 Hz, 2H), 3.38 (s, 3H). YF{'H} NMR (471 MHz, CDs;CN): § —-80.18. Cyclic
Voltammetry (0.1 M ["BusN]*[PFs]” in CH3CN): E12 = —0.83 V vs. Fc*°.

In situ NMR scale preparation of LUO>M complexes. In a J-young NMR tube under an inert
atmosphere, a solution of LSUQ; in CD3CN was added to 1 equiv. of corresponding metal salt
solution in CD3CN. The contents in the tube were mixed by vigorously shaking the tube, and the
solution was left to equilibrate for 5 min before recording the 'H and F{'H} NMR (Figures S20-
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S29, S32-S33, and S36-S38). All the LSUO2M complexes, when dissolved in CD3CN, contain two
conformers in a 3:1 ratio, as determined by the integration of peaks in the 'H NMR. L®UQ:Sr and
L%UO;La for spectroscopic studies were synthesized using the respective triflate salts, using
previously reported procedures (Figures S30-S31 and S34-S35).4

L®UO;Cs. 'H NMR (500 MHz, CD3CN) 6 9.56 (t, J = 1.5 Hz, 2H), 9.42 - 9.32 (s, 0.7H), 7.33
(dd, J=8.0, 1.6 Hz, 2H), 7.24 (dd, J= 7.9, 1.6 Hz, 2H), 7.18 (dt, J= 7.9, 1.8 Hz, 0.7H), 6.97
(d, J=17.6 Hz, 0.5H), 6.76 (t, J = 7.9 Hz, 2H), 6.64 (td, J = 7.8, 4.1 Hz, 0.7H), 5.08 — 4.88
(m, 3H), 4.64 — 4.30 (m, 7H), 4.07 — 3.46 (m, 18H), 3.21 (s, 3H), 3.16 (s, 1H). ’F{!H} NMR
(471 MHz, CD3CN): 6 —80.21. Cyclic Voltammetry (0.1 M ["BusN]'[PFs]” in CH3CN): E1» =
~1.38 V vs. Fc™°.

L°UO2Rb. 'H NMR (500 MHz, CD3CN) J 9.56 (t, J = 1.5 Hz, 2H), 9.42 — 9.32 (m, 0.66H),
7.33 (dd, J=8.0, 1.6 Hz, 2H), 7.27 — 7.15 (m, 3.5H), 6.96 (d, J= 7.6 Hz, 1H), 6.76 (t, J= 7.9
Hz, 2H), 6.64 (td, J= 7.8, 4.1 Hz, 1H), 5.09 — 4.87 (m, 3H), 4.64 — 4.53 (m, 2H), 4.51 — 4.30
(m, 5H), 4.07 — 3.46 (m, 18H), 3.21 (s, 4H). YF{'H} NMR (471 MHz, CD3CN): ¢ —-80.21.
Cyclic Voltammetry (0.1 M ["BusN]*[PFs]” in CH3CN): E12 = —1.37 V vs. Fc*°,

LSUO:K. 'H NMR (500 MHz, CD3CN) 6 9.56 (t,J = 1.5 Hz, 2H), 9.47 — 9.43 (m, 0.7H), 7.35
(dd, J = 8.0, 1.6 Hz, 2H), 7.28 - 7.15 (m, 3.5H), 6.78 (t, J = 7.9 Hz, 2H), 6.62 (t, J = 7.8 Hz,
0.7H), 5.07 —4.93 (m, 3H), 4.65 — 4.48 (m, 3H), 4.46 — 4.29 (m, 6H), 4.03 — 3.54 (m, 18H),
3.02 (s, 3H), 3.19 — 3.12 (m, 1H). F{'H} NMR (471 MHz, CDsCN): § —80.21. Cyclic
Voltammetry (0.1 M ["BusN]*[PFs]” in CH3CN): E12 = -1.36 V vs. Fc',

LSUO:Na. 'H NMR (500 MHz, CDsCN) 6 9.53 (t, J = 1.5 Hz, 2H), 9.50 (s, 0.7H), 7.40 (dd,
J=17.9, 1.6 Hz, 2H), 7.32 — 7.20 (m, 3.5H), 6.80 (t, J = 7.9 Hz, 2H), 6.72 (t, J = 7.9 Hz, 0.7H),
5.12-4.98 (m, 3H), 4.67 —4.52 (m, 3H), 4.48 — 4.34 (m, 6H), 3.99 — 3.59 (m, 18H), 3.27 (s,
3H), 3.24 — 3.21 (m, 1H). YF{'H} NMR (471 MHz, CD3CN): § —80.20. Cyclic Voltammetry
(0.1 M ["BusN]*[PFe]" in CHsCN): E12 = —1.35 V vs. Fc*°,

LUO,Li. 'H NMR (500 MHz, CD:sCN) 6 9.51 (dd, J = 2.0, 1.0 Hz, 2H), 9.47 (s, 0.7H), 7.43
(dd, J=7.9, 1.6 Hz, 2H), 7.33 (dd, J = 7.9, 1.6 Hz, 3H), 7.26 (dd, J= 7.9, 1.6 Hz, 0.7H), 6.81
(t,J=7.9 Hz, 2H), 6.73 (t, J = 7.8 Hz, 0.7H), 5.21 — 5.02 (m, 3H), 4.67 — 4.45 (m, 8H), 4.02
—3.63 (m, 17H), 3.33 (s, 3H), 3.29 — 3.22 (m, 1H). "F{'H} NMR (471 MHz, CDsCN): 6 —
80.23. Cyclic Voltammetry (0.1 M ["BusN]"[PFs]” in CH3CN): E12 = —1.23 V vs. Fc*°,

LSUO,Sr. 'H NMR (500 MHz, CDsCN) & 9.59 (s, 2H), 7.47 (d, J = 8.0 Hz, 2H), 7.38 (d, J =
7.8 Hz, 2H), 6.94 (t, J = 7.9 Hz, 2H), 5.04 (ddd, J = 16.4, 13.7, 4.3 Hz, 2H), 4.68 (dd, J =
15.3, 5.0 Hz, 2H), 4.50 (t, J = 4.6 Hz, 4H), 4.15 (q, J = 3.7 Hz, 4H), 4.01 (s, 4H), 3.97 (dt, J
= 13.0, 6.4 Hz, 2H), 3.81 — 3.74 (m, 2H), 3.30 (s, 3H)."°F{'H} NMR (471 MHz, CDsCN): 6
~80.15.

LSUO,Ca. 'H NMR (500 MHz, CDsCN) 6 9.56 (s, 2H), 9.48 (s, 0.6H), 7.47 (dd, J = 8.0, 1.6
Hz, 2H), 7.39 (dd, J = 7.8, 1.5 Hz, 2H), 7.35 — 7.25 (m, 1H), 6.95 (t, J = 7.9 Hz, 2H), 6.79 (t,
J=17.9 Hz, 0.5H), 5.14 — 4.98 (m, 3H), 4.69 (dd, J = 15.5, 4.9 Hz, 2H), 4.63 — 4.46 (m, 6H),
4.20 — 3.95 (m, 13H), 3.89 — 3.76 (m, 3H), 3.66 (d, J = 12.9 Hz, 0.7H), 3.34 (s, 3H), 3.17 (s,
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1H). PF{'H} NMR (471 MHz, CD3CN): 6 -80.16. Cyclic Voltammetry (0.1 M ["BusN]*[PFs]
in CH3CN): E12 = —0.88 V vs. Fc''0.

LUO;La. 'H NMR (500 MHz, CDsCN) 6 9.64 (s, 2H), 7.54 (d, J = 8.2 Hz, 2H), 7.49 (d, J =
7.7 Hz, 2H), 7.09 (t, J = 8.0 Hz, 2H), 5.11 — 5.01 (m, 2H), 4.76 (dd, J = 15.3, 5.1 Hz, 2H),
471 (d, J=5.2 Hz, 4H), 4.41 (t, J = 4.9 Hz, 4H), 4.32 (s, 4H), 4.01 (dt, /= 12.9, 6.5 Hz, 2H),
3.92 — 3.86 (m, 2H), 3.35 (s, 3H). 1°F{'H} NMR (471 MHz, CDsCN): & —80.07.
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Figure S1. 'H NMR spectrum (400 MHz, CD3CN) of BaPenta.

-80.10

10 -10 30 -50 -70 -90 -110 ~-130 -150 -170 -190 -210
Chemical Shift (ppm)

Figure S2. "F{'H} NMR spectrum (376 MHz, CD3CN) of BaPenta.
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Figure S3. 'H NMR spectrum (500 MHz, CD3CN) of L5UQ». The blue dot indicates the peak
associated with the dichloromethane solvent.

’ 5 &5 sgo¥ =
== o~ T TN o~
52 48 44 40 36

93]

83

o~ -
74 72 7.0 68

1

6.6

I ,I Py JJJ.‘_l a N A
g 233 5 582038
- N - - aNTTaNN®
10.5 9.5 8.5 7.5 6.5 5.5 4.5 3.5 2.5 1.5 0.5

Chemical Shift (ppm

~

Figure S4. 'H NMR spectrum (500 MHz, CD3CN) of in situ generated LSUQ:Cs.
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Figure S5. "F{'H} NMR spectrum (471 MHz, CD3CN) of in situ generated L3UQ:Cs.
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Figure S6. 'H NMR spectrum (500 MHz, CD3CN) of in situ generated LSUO2Rb.
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Figure S7. "F{'H} NMR spectrum (471 MHz, CD3CN) of in situ generated L3UO2Rb.
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Figure S8. 'H NMR spectrum (500 MHz, CD3CN) of in situ generated LSUO2K.
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Figure S9. °F{'H} NMR spectrum (471 MHz, CD3CN) of in situ generated L3UO:2K.
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Figure S10. 'H NMR spectrum (500 MHz, CD3CN) of in situ generated L3UQO;Na.
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Figure S11. PF{'H} NMR spectrum (471 MHz, CD3CN) of in situ generated L3UQO:Na.
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Figure S12. 'H NMR spectrum (500 MHz, CD3CN) of in situ generated L3UQ;Li.
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Figure S13. PF{'H} NMR spectrum (471 MHz, CD3CN) of in situ generated LSUO;Li.
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Figure S14. 'H NMR spectrum (500 MHz, CD3CN) of in situ generated L3UO:Ca.
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Figure S15. PF{'H} NMR spectrum (471 MHz, CD3CN) of in situ generated L3UO:Ca.
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Figure S16. Stacked '"H NMR spectra showing the aromatic and imine region of the L3UO;
and L3UO:M complexes.
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Figure S17. Stacked 'H NMR spectra showing the aliphatic region of the L5UO,U and
L5UO:2M complexes.
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Figure S18. Stacked '°F{'H} NMR spectra for the LSUO2U and L5UO>M complexes.
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Figure S19. 'H NMR spectrum (500 MHz, CD3CN) of LSUOs;.
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Figure S20. 'H NMR spectrum (500 MHz, CD3CN) of in situ generated LSUQ:Cs.
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Figure S21. PF{'H} NMR spectrum (471 MHz, CD3CN) of in situ generated LSUO:Cs.
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Figure S22. 'H NMR spectrum (500 MHz, CD3CN) of in situ generated LSUO2Rb.
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Figure S23. ’F{'H} NMR spectrum (471 MHz, CD3CN) of in situ generated LSUO:Rb.
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Figure S24. 'H NMR spectrum (500 MHz, CD3CN) of in situ generated LSUO:K.
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Figure S25. PF{'H} NMR spectrum (471 MHz, CD3CN) of in situ generated LUO:K.
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Figure S26. 'H NMR spectrum (500 MHz, CD3CN) of in situ generated LSUO;Na.
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Figure S27. PF{'H} NMR spectrum (471 MHz, CD3CN) of in situ generated LSUO:Na.
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Figure S28. 'H NMR spectrum (500 MHz, CD3CN) of in situ generated LSUQ;Li.
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Figure S29. °F {'H} NMR spectrum (471 MHz, CD3CN) of in situ generated LUO,Li

LMHML%—L

) Mmoo TN

o IS oS - 4.2

A Chemlcal Shlft(ppm)
— ALl . NNOONO
98 94 76 7.2 638 64

Chemical Shift (ppm)

N
110 100 90 80 70 60

20 1.
Chemical Shift (pp

S ol 2
el
N
o

Figure S30. 'H NMR spectrum (500 MHz, CD3CN) of synthesized and isolated LSUQ,Sr

S29



—-80.15

0 20 -40 -60 -80 -100 -120 -140 -160 -180 -200 -2
Chemical Shift (ppm)
Figure S31. PF{!H} NMR spectrum (471 MHz, CD3CN) of synthesized and isolated

LUQO;Sr.
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Figure S32. 'H NMR spectrum (500 MHz, CD3CN) of in situ generated LSUO,Ca.
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Figure S33. PF{'H} NMR spectrum (471 MHz, CD3CN) of in situ generated LSUO:Ca.
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Figure S34. 'H NMR spectrum (500 MHz, CD3CN) of synthesized and isolated LéUQ;La.
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Figure S35. PF{!H} NMR spectrum (471 MHz, CD3CN) of synthesized and isolated
LSUO:La.
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Figure S36. Stacked '"H NMR spectra showing the aromatic and imine region of the LSUO,
and LSUO:M complexes.
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Figure S37. Stacked 'H NMR spectra showing the aliphatic region of the L®UQ, and
L°UO:2M complexes.
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Figure S38. Stacked '°F{'H} NMR spectra for the L*UO2U and L*UO>M complexes.
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Vibrational Analysis

Solid-state Raman Spectroscopy

Table S1. Solid-state Raman assignments for LSUO:M series. All values mentioned are in

-1

cm

LSUO; LSUO;Rb LSUO;K LS5UO;Na LSUO:Li LSUO,Sr Assignment

584.3 576.7 575.72 581.2 575.9 Metal-Oligand/N vibration
619.1 602.1 591.7 CH in-plane bends

630.9 632.5 632.8 630.6 CH in-plane bends

741.0 739.1 740.1 735.6 741.6 740.9 CH bend; phenyl

755.1 756.6 757.8 756.7 761.3 762.9 CH bend; phenyl

172 8 1744 175.0 7719 1744 7753 Phenyl/crown positional band (crown bridges

up, phenyl rings down) (CH bend)

811.7 813.3 816.7 815.7 817.4 818.7 Uranyl v,
825.4 826.9 Symmetric ring breathing

840.3 839.0 842.2 841.9 835.4 Symmetric ring breathing
864.2 863.4 862.0 864.5 859.8 Symmetric ring breathing

940.7 CH bending, phenyl

953.4 CH bending, phenyl

1029.5 1032.6 1033.4 1034.0 1031.3 1037.0 CH bend; —(CHa)>—

1079.8 1050.6 1043.1 1056.9 CH bend; —(CHa»)-
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Table S2. Solid-state Raman assignments for LSUO2M series. All values mentioned are in

cm .

Free
Ligand
(L9

LU0,

LSUO;Rb

LUO;K LfUO;Na

LSUO;Li

LGUOZSI'

LbUOzCa

LGUOZLK

Tentative
Assignments

725

748

836

1014

1077

738

755

771

812.5

838

853

942

736

745

756, 773,
783

807

858

736

758

777

811.5

858

732

754

770

811.5

856

1030

726

733

751

767

811

859

896.5

1027

738

759

777

822

840

861

734

759

771,783

824

840

862

914

739

761

779

828

841

857

910

1034

CH in-plane
bends
CH bend;
phenyl
CH bend;
phenyl

Phenyl/crown
positional band
(crown bridges
up, phenyl rings

down) (CH
bend)

Uranyl v;
Symm. ring
breathing
Symm. ring
breathing
Uranyl v;
CH bending,
phenyl
CH bend;
—(CHay)»—
CH bend;
—(CHy)>—
CH bend;
—(CHay)»—
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Normalized Intensity (counts s™' mw-")

Chi*2=3.87990E- 04
Adj. R-Square=9.96128E- 01

04
' ' T Y Y ! T
1100 900 700 600
Wavenumber (cm™)
Fitting Results
Peak Index Peak Type Area Intg FWHM Max Height Center Grvty Area IntgP

1 Lorentz 6.95867 30.30297 0.16113 584.37109 6.61372
2 Lorentz 229452 16.6496 0.09057 630.89246 2.18078
3 Lorentz 552179 20.80117 0.17329 741.03579 5.24806
4 Lorentz 251919 14.34778 0.11368 755.10841 2.39431
5 Lorentz 6.62255 13.71541 0.31228 7728327 6.29426
6 Lorentz 48.92494 16.67177 1.90371 811.7228 46.49965
7 Lorentz 22.86276 19.58812 0.75985 840.33572 21.72942
8 Lorentz 0.59855 949764 0.04066 940.76682 0.56888
9 Lorentz 2.24252 28.60611 0.05211 953.41905 213136
10 Lorentz 461334 22.85524 0.1368 102947879 4.38465
11 Lorentz 2.05688 17.57342 0.08825 1079.77343 1.95492

Figure S39. Solid-state Raman spectrum for LSUQ:.
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Chi*2=4.55257E- 03
Adj. R-Square=9.90563E- 01

Normalized Intensity (counts s mw™")

Wavenumber (cm™')
Fitting Results

Peak Index | Peak Type Area Intg FWHM Max Height Center Grwvty Area IntgP
1 Lorentz 7.23064 | 17.18639 0.28513 576.70201 3.48869
2 Lorentz 1.94071 7.32298 0.17132 619.12532 0.93637
3 Lorentz 13.1581 13.10541 0.65516 632.51669 6.3486
4 Lorentz 11.31057 | 16.21955 0.45273 739.15348 5.45719
5 Lorentz 13.13526| 13.27159 0.63996 756.61436 6.33758
6 Lorentz 5.26321 8.84265 0.38278 774.39955 2.53943
7 Lorentz 79.00939| 15.88591 3.22353 813.28318 38.12094
8 Lorentz 44,0484 | 16.25974 1.75664 825.3464 21.25275
9 Lorentz 20.55951 10.42253 1.27074 839.03797 9.91968
10 Lorentz 1.29697 3.70837 0.22361 864.22417 0.62577
1 Lorentz 10.30706 8.66659 0.77585 1032.60586 4.97301

Figure S40. Solid-state Raman spectrum for LSUO:Rb.
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Normalized Intensity (counts s mwW™")

N
1

-
|

Chif2=3.20712E- 03
Adj. R-Square=9.75139E- 01

0 - Anonsshil
T T T
1100 900 800 700 600
Wavenumber (cm™)
Fitting Results
Peak Index Peak Type Area Intg FWHM Max Height Center Grvty Area IntgP

1 Lorentz 5.16661 15.84414 0.22014 575.72008 4.86852
2 Lorentz 3.05184 7.46164 0.26404 632.7632 2.87577
3 Lorentz 4.99719 18.44388 0.17637 740.11068 4.70887
4 Lorentz 5.40702 9.41366 0.3697 757.84158 5.09506
5 Lorentz 2.05089 6.51546 0.20189 775.04842 1.93257
6 Lorentz 66.51289 20.44791 2.11926 816.69579 62.67544
7 Lorentz 9.39661 8.22636 0.73401 842.20987 8.85448
8 Lorentz 0.47976 3.07364 0.09972 863.39543 0.45208
9 Lorentz 7.4303 8.61708 0.56259 1033.38628 7.00161
10 Lorentz 1.62962 295148 0.35542 1050.57449 1.5356
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Figure S41: Solid-state Raman spectrum for L3UO:K.




14

Normalized Intensity (counts s mwW-")

12 4

10

Fitting Results

Chir2=7.59085E- 02
{ Adj. R-Square=9.81216E- 01

Wavenumber (cm™)

Peak Inde | Peak Typ | Area Intg | FWHM |Max Heigh| Center Grvt | Area Intg
1 Lorentz 18.73414 | 15.8871| 0.76537| 735.56757 | 3.95743
2 Lorentz | 34.10075|9.39302| 2.33673| 756.6748| 7.2035
3 Lorentz |35.21475|11.7948 | 1.92663| 771.95845| 7.43882
4 Lorentz | 336.3089|15.6821| 13.8963| 815.67574 |71.04245
5 Lorentz 4.12479| 6.1654| 0.42896| 862.03252| 0.87133
6 Lorentz |44.90819|11.6318| 2.54172| 1034.0139 | 9.48648
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Figure S42. Solid-state Raman spectrum for LUO;Na.




Normalized Intensity (counts s mw™")

1 4

Chi*2=9.41649E- 03

Adj. R-Square=9.92903E- 01

04 T T T B T
1100 1000 900 800 700 600
Wavenumber (cm™')
Fitting Results
Peak Index Peak Type Area Intg FWHM Max Height Center Grvty Area IntgP

1 Lorentz 19.24506 25.74036 0.51916 581.24707 4.77811
2 Lorentz 6.94464 14.9537 0.30692 602.14353 1.72419
3 Lorentz 25.01562 19.13641 0.86335 630.61352 6.21081
4 Lorentz 18.18326 19.48318 0.60827 741.60605 4.51449
5 Lorentz 28.56833 13.01591 1.41864 761.2827 7.09286
6 Lorentz 11.75536 9.88082 0.76602 774.38598 2.91859
7 Lorentz 226.22971 21.69171 6.80459 817.3703 56.16765
8 Lorentz 24.02792 9.43829 1.63818 841.87741 5.96558
9 Lorentz 4.70304 7.26208 0.41578 864.53325 1.16766
10 Lorentz 33.01228 22.59936 1.00296 1043.07386 8.19619
11 Lorentz 5.09061 6.26805 0.52607 1031.33272 1.26388
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Figure S43. Solid-state Raman spectrum for L3UO;Li.




5 ] Chi*2=1.93381E- 03
Adj. R-Square=9.90519E- 01

Normalized Intensity (counts s mw™")

04 Aprs s / : AADA
T I T T T T 1
1100 1000 900 800 700 600
Wavenumber (cm™')
Fitting Results
Peak Index Peak Type Area Intg FWHM Max Height Center Grvty Area IntgP
1 Lorentz 7.37654 15.5824 0.31918 575.99029 6.24426
2 Lorentz 2.93262 9.44475 0.20305 591.68191 248247
3 Lorentz 10.43062 19.12421 0.35533 740.94801 8.82954
4 Lorentz 11.55784 8.57947 0.86619 762.85748 9.78374
5 Lorentz 4.64773 8.08865 0.3692 775.30919 3.93432
6 Lorentz 44.4001 7.99894 3.56563 818.67416 37.58478
7 Lorentz 2.595 4.22277 0.39309 835.42507 2.19667
8 Lorentz 3.45493 3.90229 0.56618 859.83829 2.9246
9 Lorentz 14.36403 9.85192 0.95611 1037.0486 12.15918
10 Lorentz 3.05947 2.9562 0.66729 1056.87928 2.58985
11 Lorentz 13.31432 8.52358 1.00403 826.89753 11.2706

Figure S44. Solid-state Raman spectrum for L3UQ;Sr.
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Chi*2=2 37086E+06
Adj. R-Square=9.54086E-01

Intensity (counts s"'Mw™
B
1
1

== e b S
1100 1050 1000 950 900 850 800 750 700 650 600 550

Wavenumber (cm'')

Fitting Results

PeakIndex | PeakType | Area Intg | FWHJ | MaxHeight | Center Gvty | ArealIntgP
1 Lorentz 665624.09248 6.06641 70493.0474 £64.97318 35.85697
2 Lorentz 96657.80464  14.70763 4260.70595 724 76444 5.20693
3 Lorentz 528346.34415  14.62059  23406.37212 74837417 28.46186
4 Lorentz 302654.00923  13.84841 14132.89104 835.9322 16.30338
5 Lorentz 193986.6377  18.10048 7959.96729 1077.3249 10.45
6 Lorentz £9062.01225  11.69751 3859.53015 1013.72614 3.72035

Figure S45. Solid-state Raman spectrum for L Ligand.
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BaseLine:Spline
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Fitting Results

Peak Index | Peak Type | Area Intg | FWHM [ MaxHeight | Center Grvty | Area InigP
1 Lorentz 55869.13038 23.56133 1601.15572 737.69725 5.0528
2 Lorentz 28890.886 11.70977 1611.73912 755.00936 2.61289
3 Lorentz 29338.31882 8.46734 2244.13596 770.97907 2.65336
4 Lorentz 747646.48723 16.49646 29749.31385 812.5479 67.61709
5 Lorentz 195451.00376 16.9 7596.85153 838.08368 17.67657
6 Lorentz 5658.66774 3.33806 1085.94879 853.3957 0.51177
7 Lorentz 42851.89037 16.2575 1770.23336 941.72617 3.87552

Figure S46. Solid-state Raman spectrum for LUQ:.

S43




Normalized Intensity (counts s mw™)

5| Chi"2=4.70356E+05
Adj. R-Square=9.87364E-01

5 .

4 - A

3 4 -

2 - -

. j W _

N I N 7L
0 T ' T T T
1000 200 800 700 600
Wavenumber {cm™')
Fitting Results
Peak Index Peak Type  AreaIntg FWHM Max Height | Center Grvty | Area IntgP

1 Gaussian 6.91378 7.82686 0.82984 735.875486 8.58661
2 Gaussian 4.22067| 10.06473 0.39396 746.10778 4.02094
3 Gaussian 7.29362 5.65787 1.21104 756.32171 6.94847
4 Gaussian 6.31884 8.1884 0.72495 771.90132 6.01982
5 Gaussian 8.55742 10.49449 0.76604 783.51677 8.15247
6 Gaussian 59.81264 7.2112 7.79208 807.21704 56.98221
7 Gaussian 3.563199 7.82596 0.42398 858.42519 3.36485
8 Gaussian 46172 8.52755 0.50865 573.55226 4.39871
9 Gaussian 3.70107 14.4885 0.23998 591.53804 3.52593

Figure S47. Solid-state Raman spectrum for L*UO:Rb.
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IS
1

Normalized Intensity (counts s'Mw™")

Chi*2=0.35767E-03
Adj. R-Square=9.91720E-01

PN

0
I | I 1 1 1 1
1000 950 200 850 800 750 700 650 600
. Wavenumber (cm™)
Fitting Results
Peak Index Peak Type Area Intg FWHM Max Height Center Grvty Area IntgP
1 Gaussian 2.96165 9.90764 0.28082 574.88639 1.71396
2 Gaussian 2.19172 11.70539 0.1759 587.20487 1.26839
3 Gaussian 6.52515 19.05336 0.32173 738.62579 3.77623
4 Gaussian 13.31859 10.85834 1.15229 757.08998 7.70772
5 Gaussian 15.10428 17.15366 0.8272 774.94016 8.74114
6 Gaussian 115.17334 15.99861 6.76297 811.67812 66.653
7 Gaussian 8.85457 14.35486 0.57948 858.19201 5.12431
8 Gaussian 2.22222 11.39334 0.18323 894.06169 1.28604
9 Gaussian 1.63857 6.90449 0.22295 902.73086 0.94827
10 Gaussian 4.80535 10.45852 0.4316 790.52387 2.78095
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Figure S48. Solid-state Raman spectrum for L*UO:K.




Data Set:[Book1]Sheet2!B
BaseLine:BSpline
Chi"2=9.70161E+05
SS=3.78363E+08

Date:8/27/2021

Adj. R-Square=9.87943E-01
Degrees of Freedom=390

# of Data Points=409

60000

—

40000 ~

Intensity (counts

1100 1000 900 800 700
Wavenumber (cm'1)
Fitting Results
Peak Index | Peak Type | Area Intg | FWHM | MaxHeight [ Center Grvty [ Area InigP

1 Lorentz 69081.27908 15.43429 3111.1934 732.05117 3.90255
2 Lorentz 134169.05831 8.96215 9834.69106 754.06933 7.57949
3 Lorentz 98513.20632 9.21695 6981.60563 770.94817 5.56522
4 Lorentz 1253667.37354 14.78033 55632.91461 811.56155 70.82232
5 Lorentz 61761.25186 7.20916 5520.6904 856.28411 3.48902
6 Lorentz 152966.32925 7.95651 12513.65174 1030.32035 8.64139

Figure S49. Solid-state Raman spectrum for L®UO;Na.
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Data Set:[Book1]Sheet2!B"L6 UO2 Li" Date:9/2/2021
BaseLine:Spline

Chi*2=3.63500E+05 Adj. R-Square=9.92558E-01 # of Data Points=603
SS=2.06831E+08 Degrees of Freedom=569
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£ ] ]
20000 A —
0 T —T T T T T T T T T T
1100 1000 900 800 700 600
Wavenumber (cm™)
Fitting Results
Peak Index | Peak Type | Area Intg | FWHM | MaxHeight | Center Grvty | Area IntgP
1 Lorentz 75595.36034 6.25448 7815.75124 1027.19439 7.06193
2 Lorentz 31616.30727 10.05987 2024.87703 896.63329 2.95352
3 Lorentz 30536.99702 5.70016 3432.10812 859.31961 2.85269
4 Lorentz 796681.79717 6.78748 75266.23423 811.29151 74.42406
5 Lorentz 26181.08862 4.4049 3801.82555 766.8422 2.44577
6 Lorentz 26510.86052 3.99779 4240.14844 751.31014 2.47658
7 Lorentz 23872.96708 7.8928 1942.68663 733.05586 2.23015
8 Lorentz 12470.48701 4.03073 1978.62514 726.0151 1.16496
9 Lorentz 8033.98109 4.09543 1259.6662 589.58452 0.75051
10 Lorentz 19837.28774 6.22879 2060.38608 570.68275 1.85315
11 Lorentz 19125.55645 6.3509 1959.68634 551.2272 1.78666

Figure S50. Solid-state Raman spectrum for LUO;Li.
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Fitting Results
Peak Index | Peak Type \ Area Intg | FWHM Max Height \ Center Grvty \ Area IntgP
1 Gaussian 109956.49551 6.98808 10168.06187 758.86576 11.47147
2 Gaussian 101640.10276 24.79319 2743.35948 777.03593 10.60385
3 Gaussian 36522.55006 10.15735 2346.88508 737.69461 3.8103
4 Gaussian 580640.31612 11.84074 31904.73892 822.16966 60.57668
5 Gaussian 60173.26389 11.90184 3290.25052 840.08982 6.27772]
6 Gaussian 69588.44347 5.91124 7579.40545 861.36761 7.25998

Figure S51. Solid-state Raman spectrum for LUQ,Sr.
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Fitting Results
Peak Index Peak Type \ Area Intg FWHM \ Max Height Center Grvty Area IntgP

1 Gaussian 10.288 13.80274 2948.95606 733.57992 9.60013
2 Gaussian 12.40937 6.16407 7791.63156 759.18787 11.57966
3 Gaussian 4.29176 5.83771 2794.24663 771.09809 4.00481
4 Gaussian 2.55571 10.27339 969.42908 783.43949 2.38483
5 Gaussian 64.35165 7.39243 33703.66513 823.93717 60.04902
6 Gaussian 0.98671 1.94367 1946.01715 840.33808 0.92074
7 Gaussian 6.46704 5.06155 4927.81937 862.5622 6.03464
8 Gaussian 5.81497 13.33768 1721.26394 914.01493 5.42617

Figure S52. Solid-state Raman spectrum for L*UO;Ca.
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Fitting Results
Pesk Index Peak Type Area Intg FWHM Max Height Center Grvty Area IntgP

1 Gaussian 39.41976 18.02711 205428 578.71896 €.10102
2 Gaussian 1404167 12.22147 107847 74050554 217324
3 Gaussian 10851013 14.28246 8.95705 76123095 16.48484
4 Gaussian 2199995 12.29779 1680592 78227545 2.40495
5 Gaussian 19222824 21.88072 825265 825823119 2975282
[5 Gaussian 5946622 9.86877 566077 84135259 220262
7 Gsussian 87.95581 10.79735 581257 857.40729 10.51753
8 Gsussian 144 48597 12.20037 10.2827 102462128 2228218

Figure S53. Solid-state Raman spectrum for LUO;La.
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Figure S54. Dependence of the U=O symmetric stretching frequency from Raman
spectroscopy of the LSUO2M complexes including LSUO;La on the Lewis acidity (pKa) of
the corresponding metal aqua complexes.
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Solution Raman Spectroscopy

Table S3. Solution-state Raman assignments for LSUQ>M series. All values mentioned are

incm™!.

Complex Vsym
LU0, 814.4
LSUO:2Rb 816.0
LSUO:K 815.9
L%UO;Na 819.3
LSUO:Li 821.3
LSUO:Sr 825.0
L%UO;Ca 824.5
L%UO;La 826.8
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Figure S55. Fitted solution Raman spectrum for LSUQ2 in MeCN.

S53




— 35 _
oo
% 30 .
E -
5 25 i
8 i
220 _
S 4
% 15 7 Adj. R-Square=9.93962E-0T]
N i Chi*2=3.19718E-01
£ 10+ -
S
z
5 -
0 N A 1 I I
850 800 750 700 650
Wavenumber (cm™)
Fitting Results
Peak Index | Peak Type | Arealntg | FWHM | Max Height | Center Grvty | Area IntgP
1 Gaussian 573.99663| 23.41638 23.02806 749.62451| 55.11077
2 Gaussian 57.61688| 13.05055 4.14752 775.55776 5.53193
3 Gaussian 380.6398| 10.00911 35.72618 816.00756| 36.54613
4 Gaussian 29.27919| 11.18794 2.45854 856.69081 2.81116
Figure S56. Fitted solution Raman spectrum for LUO2Rb in MeCN.
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Figure S57. Fitted solution Raman spectrum for LSUQO2K in MeCN.
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Figure S58. Fitted solution Raman spectrum for LSUQ2Na in MeCN.
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Figure S59. Fitted solution Raman spectrum for LSUQ:Li in MeCN.
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Figure S60. Fitted solution Raman spectrum for LSUQ:Sr in MeCN.
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Figure S61. Fitted solution Raman spectrum for LéUQ2Ca in MeCN.
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Figure S62. Fitted solution Raman spectrum for L°UQ;La in MeCN.
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Figure S63. Dependence of the U=0 symmetric stretching frequency from solution Raman
spectroscopy of the LSUO;M complexes on the Lewis acidity (pKa) of the corresponding

metal aqua complexes.
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Figure S64. Filtered solution Raman spectrum of L®UQ,,Li at varied concentrations. All
intensities are normalized to the MeCN signal denoted by asterisk (*).
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Figure S65. Filtered solution Raman spectra of LéUQ»,Li at 20, 15, and 10 mM. All spectra
were fitted to Gaussian curves, with the Raman shifts corresponding to the peaks of each fit
listed. All intensities are normalized to the MeCN signal, denoted by an asterisk (*) in Figure

S64.

Table S4. Concentrations of L®UQO»,Li, R? values of the fits, Raman shifts at the maxima of the
fits, and full width at half maximum (FWHM) values for each panel in Figure S65.

Panel Conc R? Xc FWHM
(mM) (ecm™) (em™)
a 20 0.995 821 18.2
b 15 0.987 819 21.5
10 0.974 819 17.7

S63



Solid-state Infrared Spectroscopy
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Figure S66. Mid-IR spectrum for LUOQ: fit to Lorentzian functions.
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Figure S67. Mid-IR spectrum for LSUO2Rb fit to Lorentzian functions.
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Figure S68. Mid-IR spectrum for LéUQzNa fit to Lorentzian functions.
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Figure S69. Mid-IR spectrum for LéUQ:Li fit to Lorentzian functions.
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Figure S70. Mid-IR spectrum for LéUQ,Ca fit to Lorentzian functions.
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Figure S71. Mid-IR spectrum for LéUQ:Sr fit to Lorentzian functions.
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Figure S72. Mid-IR spectrum for LéUQ:La fit to Lorentzian functions.
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Solid-state Far Infrared Spectroscopy
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Figure S73. Far-IR spectrum for L8UO; fit to Gaussian functions.
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Figure S74. Far-IR spectrum for LUQ;Sr fit to Gaussian functions.
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Figure S75. Far-IR spectrum for LSUO;Rb fit to Gaussian functions.

S73



-0.1 1

Transmission (%)

Chir2=6.48354E-06
Adj. R-Square=9.97232E-01

Fitting Results

T T T T T T T T T T T T T
340 320 300 280 260 240 220

Wavenumbers (cm™)

T T T T T
200 180 160

Peak Index | Peak Type

Area Intg FWHM Max Height [ Center Grvty Area IntgP
1 Gaussian -4.00711 25.87605 -0.145438 253.12104 -73.81702
2 Gaussian -0.96469 13.90771 -0.06516 265.28425 -17.771
3 Gaussian -0.13798 9.75645 -0.01329 295.83677 -2.54183
4 Gaussian -0.15883 10.70376 -0.01394 308.86784 -2.92596
5 Gaussian -0.15982 9.57798 -0.01568 167.06347 -2.94418

Figure S76. Far-IR spectrum for LUO:K fit to Gaussian functions.
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Figure S77. Far-IR spectrum for LUO;Na fit to Gaussian functions.
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Figure S78. Far-IR spectrum for L®UO;Li fit to Gaussian functions.
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Figure S79. Far-IR spectrum for LUO;Ca fit to Gaussian functions.
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Figure S80. Left panel: scan rate dependence data for L3UOQ; complex. Right panel: plot of
peak current density vs. (scan rate)!’?, demonstrating the diffusional nature of the oxidized
species involved in L3UQ;. Diffusion coefficient of the oxidized species (calculated from the
slope of the line represented by blue data points), Dox = 10.6 x 10°% ¢m?/s. Diffusion
coefficient of the reduced species (calculated from the slope of the line represented by red
data points), Dred = 9.43 x 107% cm?/s
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Figure S81. Left panel: scan rate dependence data for L3UQ,Cs complex. Right panel: plot
of peak current density vs. (scan rate)?, demonstrating the diffusional nature of the oxidized
species involved in L3UO;Cs. Diffusion coefficient of the oxidized species (calculated from
the slope of the line represented by blue data points), Dox = 5.55 x 107°% cm?/s. Diffusion
coefficient of the reduced species (calculated from the slope of the line represented by red
data points), Drea = 5.70 x 107% cm?/s
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Figure S82. Left panel: scan rate dependence data for L3UO2Rb complex. Right panel: plot
of peak current density vs. (scan rate)'?, demonstrating the diffusional nature of the oxidized
species involved in LSUOQ2Rb. Diffusion coefficient of the oxidized species (calculated from
the slope of the line represented by blue data points), Dox = 5.92 x 10°% cm?/s. Diffusion
coefficient of the reduced species (calculated from the slope of the line represented by red
data points), Dred = 5.65 x 107% cm?/s
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Figure S83. Left panel: scan rate dependence data for L3UO:K complex. Right panel: plot of
peak current density vs. (scan rate)!’?, demonstrating the diffusional nature of the oxidized
species involved in L3UO;K. Diffusion coefficient of the oxidized species (calculated from
the slope of the line represented by blue data points), Dox = 6.49 x 10°% cm?/s. Diffusion
coefficient of the reduced species (calculated from the slope of the line represented by red
data points), Drea = 6.71 x 107% cm?/s
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Figure S84. Left panel: scan rate dependence data for LSUO;Na complex. Right panel: plot
of peak current density vs. (scan rate)?, demonstrating the diffusional nature of the oxidized
species involved in L5UO;Na. Diffusion coefficient of the oxidized species (calculated from
the slope of the line represented by blue data points), Dox = 8.15 x 10°% cm?/s. Diffusion
coefficient of the reduced species (calculated from the slope of the line represented by red
data points), Dred = 7.94 x 107% cm?/s
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Figure S85. Left panel: scan rate dependence data for L5UO;Li complex. Right panel: plot
of peak current density vs. (scan rate)?, demonstrating the diffusional nature of the oxidized
species involved in LSUQ;Li. Diffusion coefficient of the oxidized species (calculated from
the slope of the line represented by blue data points), Dox = 5.07 x 10°% cm?/s. Diffusion
coefficient of the reduced species (calculated from the slope of the line represented by red
data points), Dred = 3.76 x 107% cm?/s
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Figure S86. Left panel: scan rate dependence data for LSUO;Ca complex. Right panel: plot
of peak current density vs. (scan rate)?, demonstrating the diffusional nature of the oxidized
species involved in L3UQ,Ca. Diffusion coefficient of the oxidized species (calculated from
the slope of the line represented by blue data points), Dox = 3.12 x 10°% cm?/s. Diffusion
coefficient of the reduced species (calculated from the slope of the line represented by red
data points), Dred = 1.56 x 1076 cm?/s.
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Figure S87. Left panel: scan rate dependence data for LSUOQ; complex. Right panel: plot of
peak current density vs. (scan rate)!’?, demonstrating the diffusional nature of the oxidized
species involved in LSUQ;. Diffusion coefficient of the oxidized species (calculated from the
slope of the line represented by blue data points), Dox = 7.86 x 107% ¢cm?/s. Diffusion
coefficient of the reduced species (calculated from the slope of the line represented by red
data points), Drea = 7.01 x 1076 cm?/s.
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Figure S88. Left panel: scan rate dependence data for L8UQ,Cs complex. Right panel: plot
of peak current density vs. (scan rate)?, demonstrating the diffusional nature of the oxidized
species involved in LSUO;Cs. Diffusion coefficient of the oxidized species (calculated from
the slope of the line represented by blue data points), Dox = 6.18 x 10°% cm?/s. Diffusion
coefficient of the reduced species (calculated from the slope of the line represented by red
data points), Dred = 8.09 x 1076 cm?/s.
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Figure S89. Left panel: scan rate dependence data for LSUO2Rb complex. Right panel: plot
of peak current density vs. (scan rate)'?, demonstrating the diffusional nature of the oxidized
species involved in L®UO2Rb. Diffusion coefficient of the oxidized species (calculated from
the slope of the line represented by blue data points), Dox = 5.96 x 10°% cm?/s. Diffusion
coefficient of the reduced species (calculated from the slope of the line represented by red
data points), Dred = 7.14 x 1076 cm?/s.
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Figure S90. Left panel: scan rate dependence data for LSUO:K complex. Right panel: plot of
peak current density vs. (scan rate)!’?, demonstrating the diffusional nature of the oxidized
species involved in LSUO;K. Diffusion coefficient of the oxidized species (calculated from
the slope of the line represented by blue data points), Dox = 10.3 x 10°% cm?/s. Diffusion
coefficient of the reduced species (calculated from the slope of the line represented by red
data points), Dred = 12.5 x 107% cm?/s.
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Figure S91. Left panel: scan rate dependence data for LSUO;Na complex. Right panel: plot
of peak current density vs. (scan rate)?, demonstrating the diffusional nature of the oxidized
species involved in LéUO;Na. Diffusion coefficient of the oxidized species (calculated from
the slope of the line represented by blue data points), Dox = 7.67 x 107°% cm?/s. Diffusion
coefficient of the reduced species (calculated from the slope of the line represented by red
data points), Dred = 6.86 x 1076 cm?/s.
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Figure S92. Left panel: scan rate dependence data for LUO;Li complex. Right panel: plot
of peak current density vs. (scan rate)?, demonstrating the diffusional nature of the oxidized
species involved in LUQ;Li. Diffusion coefficient of the oxidized species (calculated from
the slope of the line represented by blue data points), Dox = 3.92 x 10°% cm?/s. Diffusion
coefficient of the reduced species (calculated from the slope of the line represented by red
data points), Dred = 2.53 x 1076 cm?/s.
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Figure S93. Left panel: scan rate dependence data for LSUO;Ca complex. Right panel: plot
of peak current density vs. (scan rate)?, demonstrating the diffusional nature of the oxidized
species involved in LéUQ,Ca. Diffusion coefficient of the oxidized species (calculated from
the slope of the line represented by blue data points), Dox = 3.36 x 10°% cm?/s. Diffusion
coefficient of the reduced species (calculated from the slope of the line represented by red
data points), Dred = 2.03 x 1076 cm?/s.
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Figure S94. Plot of E12(UY"Y) vs. pK, of [M(H20)m]™" for L5UO2M complexes (a, top) and
L®UO:2M complexes (b, bottom), including L3UQ,Ca and L®UQO2Ca. Noted uncertainties on
the correlations/slopes were determined to be + 29 mV/pK, for each unique data set; the
identical uncertainly in each case represents a coincidental identical value for each data set.
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Figure S95. Plot of Ep o(UV"V) vs. pK, of [M(H20)m]™" for LSUO:M complexes (a, top) and
L®UO:2M complexes (b, bottom), including L5UOQ>Ca and LSUQO:Ca.
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Figure S96. Plot of E, o(UV"V) vs. pK, of [M(H20)m]"™" for LSUO:M complexes (a, top) and
L°UO:2M complexes (b, bottom).
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Electrochemical Titrations
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Figure S97. Left panel: electrochemical titration of LUQ; with increasing equivalents of
KOTf up to 1 equiv. Right panel: Further additions of KOTf up to 10 equiv. demonstrating
the redox behavior of the U(VI)/U(V) couple in the presence of excess [K']. Three
consecutive cyclic voltammograms were collected for each addition of [K*], first cycles
plotted above. Conditions: 0.5 mM LSUO; in 0.1 M tetrabutylammonium
hexafluorophosphate in acetonitrile; stock solution of KOTf prepared in acetonitrile
electrolyte; 100 mV/s scan rate.
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Table S5. Selected metrics for the electrochemical titration of LoUQ; with KOTT.

Concentration of [K*]* (LU OZE/KZGU 0r)" AEp© (LU OzKE/;fiU 0:K)" AEy¢
(M) Vvs. Ferny  @Y) (V vs. Fct'0) (mV)
0 —-1.53 80

120 -1.53 100 —-1.38 90

240 -1.54 110 -1.37 110

360 —-1.37 130

480 -1.37 130

950 -1.36 120

2200 -1.35 130

4100 -1.34 140

“Concentration of [K*] corrected for dilution during the course of the experiment.

Phalf-wave potentials were determined for isolated redox events with clean corresponding
anodic and cathodic peak potentials.

“Peak anodic and cathodic potential difference
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Figure S98. Left panel: 3 consecutive cyclic voltammograms of L®UQ; in the presence of 1
equiv. of KOTf. Right panel: 10 equiv. of KOTf. Conditions: 0.5 mM LSUO; in
tetrabutylammonium hexafluorophosphate in acetonitrile; 100 mV/s scan rate.
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Figure S99. Red trace: cyclic voltammogram of 0.5 mM L%UQz in the presence of 10 equiv.
of KOTf. Dashed trace: cyclic voltammogram of blank tetrabutylammonium
hexafluorophosphate in acetonitrile with 10 equiv. of KOTf added with respect to the
concentration of LéUQ2. 100 mV/s scan rate.
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Figure S100. Left panel: electrochemical titration of L®UQ; with increasing equivalents of
NaOTf up to 1 equiv. Right panel: Further additions of NaOTf up to 10 equiv. demonstrating
the redox behavior of the U(VI)/U(V) couple in the presence of excess [Na']. Three
consecutive cyclic voltammograms were collected for each addition of [Na*], first cycles
plotted above. Conditions: 0.5 mM LSUO; in 0.1 M tetrabutylammonium
hexafluorophosphate in acetonitrile; stock solution of NaOTf prepared in acetonitrile
electrolyte; 100 mV/s scan rate.
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Table S6. Selected metrics for the electrochemical titration of LUQ; with NaOTT.

Concentration of Ein Ein

[Na*]“ (LSUO2/LSUO,)? Ay (LSUO2Na/LSUO;Na")? ALy
(M) (V vs. Fe*') (mV) (V vs. Fe*) (mV)
0 ~1.53 100
120 ~1.53 130 -1.38 100
240 ~1.54 110 -1.37 130
360 -1.36 130
480 ~1.34 140
950 -1.33 140
2200 -1.32 150
4100 -1.31 150

“Concentration of [Na*] corrected for dilution during the course of the experiment.

Phalf-wave potentials were determined for isolated redox events with clean corresponding
anodic and cathodic peak potentials.

“Peak anodic and cathodic potential difference
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Figure S101. Left panel: 3 consecutive cyclic voltammograms of L®UQ; in the presence of 1
equiv. of NaOTf. Right panel: 10 equiv. of NaOTf. Conditions: 0.5 mM L®UO; in
tetrabutylammonium hexafluorophosphate in acetonitrile; 100 mV/s scan rate.
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Figure S102. Magenta trace: cyclic voltammogram of 0.5 mM L®UQ: in the presence of 10
equiv. of NaOTf. Dashed trace: cyclic voltammogram of blank tetrabutylammonium
hexafluorophosphate in acetonitrile with 10 equiv. of NaOTf added with respect to the
concentration of L®UQ;. 100 mV/s scan rate.
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Figure S103. Left panel: electrochemical titration of L®UQ; with increasing equivalents of
LiOTf up to 1 equiv. Right panel: Further additions of LiOTf up to 10 equiv. demonstrating
the redox behavior of the U(VI)/U(V) couple in the presence of excess [Li"]. A single cyclic
voltammogram was collected for each addition of [Li*]. Conditions: 0.5 mM LUQ; in 0.1 M
tetrabutylammonium hexafluorophosphate in acetonitrile; stock solution of LiOTf prepared
in acetonitrile electrolyte; 100 mV/s scan rate.
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Table S7. Selected metrics for the electrochemical titration of L®UQ; with LiOTf (single
cycles).

Concentration of Ein AE.€ Ein AE.C
[Li*]® (L°UO2/L*UO,)? b (LSUO,Li/LSUO,Li")® P
(uM) (V vs. Fc*'") (mV) (V vs. Fc*'?) (mV)

0 ~1.53 80
120 ~1.52 100 ~1.34 140
240 ~1.31 180
360 ~1.29 180
480 “1.27 220
950 _1.24 220
2200 “1.21 240
4100 ~1.20 260

“Concentration of [Li*] corrected for dilution during the course of the experiment.

Phalf-wave potentials were determined for isolated redox events with clean corresponding
anodic and cathodic peak potentials.

“Peak anodic and cathodic potential difference
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Figure S104. Left panel: electrochemical titration of L®UQ; with increasing equivalents of
LiOTf up to 1 equiv. Right panel: Further additions of LiOTf up to 10 equiv. demonstrating
the redox behavior of the U(VI)/U(V) couple in the presence of excess [Li"]. Three
consecutive cyclic voltammograms were collected for each addition of [Li"] followed by
wiping the working electrode to remove putative absorbed species, second cycles plotted
above. There appears to be little influence of [Li*] on the reduction-induced formation of
heterogenous material based on the similarity of these data to those shown in Figure S103 for
[Li*] titration without wiping the electrode. Conditions: 0.5 mM LfUQO; in 0.1 M
tetrabutylammonium hexafluorophosphate in acetonitrile; stock solution of LiOTf prepared
in acetonitrile electrolyte; 100 mV/s scan rate.
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Table S8. Selected metrics for the electrochemical titration of L®UQO; with LiOTf (working
electrode wiped).

Concentration of Eip AE.© Ei AE.€
[Li*] (LSUO2/LSUO,)? P (LSUO,Li/LSUO;Li)? P
(M) (V vs. Fc*'?) (mV) (V vs. Fc*'0) (mV)

0 -1.52 80
120 ~1.52 180 ~1.35 160
240 ~1.32 270
360 ~1.28 260
480 -1.27 260
950 ~1.23 220
2200 -1.20 260
4100 ~1.19 260

“Concentration of [Li*] corrected for dilution during the course of the experiment.

Phalf-wave potentials were determined for isolated redox events with clean corresponding
anodic and cathodic peak potentials.

“Peak anodic and cathodic potential difference
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Figure S105. Left panel: 3 consecutive cyclic voltammograms of LYUQ: in the presence of 1
equiv. of LiOTf. Right panel: 10 equiv. of LiOTf. The working electrode was wiped in
between additions of LiOTf. Conditions: 0.5 mM L®UO; in tetrabutylammonium
hexafluorophosphate in acetonitrile; 100 mV/s scan rate.
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Figure S106. Orange trace: cyclic voltammogram of 0.5 mM L®UQO; in the presence of 10
equiv. of LiOTf. Dashed trace: cyclic voltammogram of blank tetrabutylammonium
hexafluorophosphate in acetonitrile with 10 equiv. of LiOTf added with respect to the
concentration of L®UQ;. 100 mV/s scan rate.
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Figure S107. Left panel: electrochemical titration of L®UQ; with increasing equivalents of
Ca(OTf)2 up to 1 equiv. Right panel: Further additions of Ca(OTf), up to 10 equiv.
demonstrating the redox behavior of the U(VI)/U(V) couple in the presence of excess [Ca®].
A single cyclic voltammogram was collected for each addition of [Ca?*"]. Conditions: 0.5 mM
L®UO; in 0.1 M tetrabutylammonium hexafluorophosphate in acetonitrile; stock solution of
Ca(OTf), prepared in acetonitrile electrolyte; 100 mV/s scan rate.
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Table S9. Selected metrics for the electrochemical titration of LUQ; with Ca(OTf), (single
cycles).

Concentration of Eyp AE.€ Ei AE.c
[Ca?*] (LSUO2/LSUO,)? P (LSUO2Ca/LSUO,Ca")? P
(M) (V vs. Fc'') (mV) (V vs. Fe'') (mV)
0 ~1.53 80
120 ~1.53 120 —0.93 460
240 —1.44 290 ~0.90 430
360 ~1.57 60 ~0.90 410
480 ~1.56 100 —0.88 450
950 —0.88 490
2200 —0.89 530
4100 —0.84 580

“Concentration of [Ca?"] corrected for dilution during the course of the experiment.

Phalf-wave potentials were determined for isolated redox events with clean corresponding
anodic and cathodic peak potentials.

“Peak anodic and cathodic potential difference
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Figure S108. Left panel: electrochemical titration of L®UQ; with increasing equivalents of
Ca(OTf)2 up to 1 equiv. Right panel: Further additions of Ca(OTf), up to 10 equiv.
demonstrating the redox behavior of the U(VI)/U(V) couple in the presence of excess [Ca®].
Three consecutive cyclic voltammograms were collected for each addition of [Ca?*] followed
by wiping the working electrode to remove putative absorbed species, second cycles plotted
above. There appears to be little influence of [Ca®"] on the reduction-induced formation of
heterogenous material based on the similarity of these data to those shown in figure S107 for
[Ca?"] titration without wiping the electrode. Conditions: 0.5 mM L®UO; in 0.1 M
tetrabutylammonium hexafluorophosphate in acetonitrile; stock solution of Ca(OTf),
prepared in acetonitrile electrolyte; 100 mV/s scan rate.
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Table S10. Selected metrics for the electrochemical titration of L®UQ2 with Ca(OTf),
(working electrode wiped).

Concentration of Evn AE.€ Eqp AE.c
[Ca?*] (LSUO2/LSUO,)? P (LSUO2Ca/LSUO,Ca")? P
(M) (V vs. Fe*') (mV) (V vs. Fe*'0) (mV)
0 ~1.53 90
120 ~1.45 280
240 ~1.41 310 —0.87 530
360 —0.87 470
480 -0.85 470
950 —0.84 510
2200 —0.84 440
4100 —0.82 500

“Concentration of [Ca?"] corrected for dilution during the course of the experiment.

Phalf-wave potentials were determined for isolated redox events with clean corresponding
anodic and cathodic peak potentials.

“Peak anodic and cathodic potential difference
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Figure S109. Left panel: 3 consecutive cyclic voltammograms of LSUQ: in the presence of 1
equiv. of Ca(OTf)2. Right panel: 10 equiv. of Ca(OTf),. The working electrode was wiped in
between additions of Ca(OTf),. Conditions: 0.5 mM LUO; in tetrabutylammonium
hexafluorophosphate in acetonitrile; 100 mV/s scan rate.
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hexafluorophosphate in acetonitrile with 10 equiv. of Ca(OTf), added with respect to the
concentration of LéUQ2. 100 mV/s scan rate.
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Figure S111. Dependence of the redox potential difference between LSUQO> and the in-situ
generated L°UO2M (AEi2) on the concentration of titrated M(OTf).. The dashed line
represents the addition of 1 equiv. of M(OTf), with respect to the concentration of LSUQ,.
After 1 equiv. of M(OTY), is added, there is essentially no change in the AE1/; as revealed by
plateauing behavior beyond 1000 pM of M(OTf)x.
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Figure S112. Cyclic voltammograms of L6UQ; titrated with 10 equiv. of respective M(OTT)
to highlight the redox event that occurs at ca. 0.4 V vs. F¢™°, Second cycles plotted from each
respective titration from figures S97, S100, and S103.
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Figure S113. Cyclic voltammograms of LSUQz titrated with 10 equiv. of respective M(OTf),
to compare the appearance of the redox event near ca. 0.4 V vs. Fc'? in the titrations with
monovalent cations to the Ca(OTY); titration which appears to lack a feature in the same
potential range. Second cycles plotted from each respective titration from figures S97, S100,
S103, and S107.
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NMR Titrations

0 equiv. A_IJ 9} A 14
0.1 equiv. oL i 13
0.2 equiv. 'l | i 12
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1.0 equiv. J L LUL\ N i 7
1.5 equiv. u___‘_l_M‘_L i 6
2.0 equiv. L*_,_J_u*gu N
1 TN A B
4.0 equiv. l I al “A_L.L_m—4-7 3
6.0 equiv. | 1 . LU._LL i 2
8.0 equiv. | I ‘ ol s [
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Figure S114. NMR titration experiments of L3UQ; with CsOTf showing the full spectra.
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Chemical Shift (ppm)

Figure S115. NMR titration experiments of L3UQ; with CsOTf showing the imine and
aromatic region.
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Figure S116. NMR titration experiments of LSUQz with CsOTf showing the aliphatic region.
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Figure S117. NMR titration experiments of L3UQ:; with CsOTf showing the peak
corresponding to the -N-CH3 group used to make binding curves.
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Figure S118. NMR titration experiments of L3UQO; with RbOTf showing the full spectra.
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Figure S119. NMR titration experiments of L3UQ; with RbOTf showing the imine and
aromatic region.
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Figure S120. NMR titration experiments of L3UQ; with RbOTf showing the aliphatic region.
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Figure S121. NMR titration experiments of LSUQ2 with RbOTf showing the peak
corresponding to the -N-CH3 group used to make binding curves.

S117



0 equiv. l L e l 14
0.1 equiv. | L w | 13
0.2 equiv. | -l L l 12
0.3 equiv. ) L L J 11
0.4 equiv. 1 d " I 10
0.6 equiv. ‘ L L l 9
0.8 equiv. 1 o | 8
1.0 equiv. | w | 7
1.5 equiv. - w o 6
2.0 equiv. ) Ly ] 5
3.0 equiv. . Ll | 4
4.0 equiv. . L | 3
6.0 equiv. . ..I 0 2
8.0 equiv. . Ly | 1

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

~~~~~~~~~~

Chemical Shift (ppm)

Figure S122. NMR titration experiments of L3UQO; with KOTf showing the full spectra.
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Figure S123. NMR titration experiments of L3UQ; with KOTf showing the imine and
aromatic region.
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Figure S124. NMR titration experiments of L3UQ; with KOTf showing the aliphatic region.
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Figure S125. NMR titration experiments of L3UQ; with KOTf showing the peak
corresponding to the -N-CH3 group used to make binding curves.
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Figure S126. NMR titration experiments of L3UQO; with NaOTf showing the full spectra.
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Figure S127. NMR titration experiments of L3UQ; with NaOTf showing the imine and
aromatic region.
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Figure S128. NMR titration experiments of L3UQ; with NaOTf showing the aliphatic region.
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Figure S129. NMR titration experiments of LSUQ2 with NaOTf showing the peak
corresponding to the -N-CH3 group used to make binding curves.
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Figure S130. NMR titration experiments of L3UQ; with LiOTf showing the full region.
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Figure S131. NMR titration experiments of L3UQz with LiOTf showing the imine and
aromatic region.
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Figure S132. NMR titration experiments of L3UQ; with LiOTf showing the aliphatic region.
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Figure S133. NMR titration experiments of L3UQ; with LiOTf showing the peak
corresponding to the -N-CH3 group used to make binding curves.
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Figure S134. NMR titration experiments of L3UQ; with Ca(OTf), showing the full region.
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Figure S135. NMR titration experiments of L3UQ; with Ca(OTf), showing the imine and
aromatic region.
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Figure S136. NMR titration experiments of L5UQ; with Ca(OTf), showing the aliphatic
region.
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Figure S137. NMR titration experiments of L3UQ; with Ca(OTf), showing the peak
corresponding to the -N-CH3 group used to make binding curves.

S125



0 equiv. Lll,l‘b ‘ 14
0.1 equiv. i) L y 13
0.2 equiv. l . - 12
0.3 equiv. . l . b ) 11
0.4 equiv. . l . N UL N 10
0.6 equiv. . |l ol | . 9
0.8 equiv. . I‘. L___.. B 8
1.0 equiv. . Il 7
1.5 equiv. ‘ Il L . 6
2.0 equiv. | ) 1Ll Ly ‘ 5
3.0 equiv. | IR b 4
4.0 equiv. l Ll ML.LLLL 3
6.0 equiv. | B L . 2
8.0 equiv. I M I - . 1

6 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 -1 -2 -3
Chemical Shift (ppm)

Figure S138. NMR titration experiments of LUOQ; with CsOTf showing the full spectra.
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Figure S139. NMR titration experiments of LSUQ; with CsOTf showing the imine and
aromatic region.
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Figure S140. NMR titration experiments of L*UQz with CsOTf showing the aliphatic region.

0 equiv. 14

0.1 equliv. 13

0.2 equiv. 1 2

0.3 equiv. 11

0.4 equiv. 10

0.6 equiv.

0.8 equiv.

1.0 equiv.

1.5 equiv.

2.0 equiv.

3.0 equiv.

4.0 equiv.

6.0 equiv.

= N W A N W

8.0 equlv.

325 324 323 322 321 320 319 318 3.47 3.6 3.15
Chemical Shift (ppm)

Figure S141. NMR titration experiments of L®UQ; with CsOTf showing the peak
corresponding to the -N-CH3 group used to make binding curves.
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Figure S142. NMR titration experiments with L®UQ; with RbOTf showing the full spectra.
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Figure S143. NMR titration experiments with LUO; with RbOTf showing the imine and
aromatic region.
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Figure S144. NMR titration experiments with LéUQ; with RbOTf showing the aliphatic
region.
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Figure S145. NMR titration experiments with LSUQ; with RbOTf showing the peak
corresponding to the -N-CH3 group used to make binding curves.
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Figure S146. NMR titration experiments of LUO; with KOTf showing the full region.
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Figure S147. NMR titration experiments of L6UQ; with KOTf showing the imine and
aromatic region.
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Figure S148. NMR titration experiments of LéUQ; with KOTf showing the aliphatic region.
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Figure S149. NMR titration experiments of L®UQO; with KOTf showing the peak
corresponding to the -N-CH3 group used to make binding curves.
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Figure S150. NMR titration experiments of L®UQ; with NaOTf showing the full region.
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Figure S151. NMR titration experiments of L®UQ; with NaOTf showing the imine and
aromatic region.
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Figure S152. NMR titration experiments of LSUQ; with NaOTf showing the aliphatic region.
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Figure S153. NMR titration experiments of L®UQ; with NaOTf showing the peak
corresponding to the -N-CH3 group used to make binding curves.

S133



0 equiv. | J 14
0.1 equiv. l i 113
0.2 equiv. l | L12
0.3 equiv. |. f \ L 11
0.4 equiv. | 0 ‘_M_LL L10
0.6 equiv. | I Il J Lo
0.8 equiv. | 0L ik '
1.0 equiv. | L t L7
ol o
2.0 equiv. \ M L ok 5
3.0 equiv. | n L ok L4
4.0 equiv. | w L L3
6.0 equiv. ) ol M_AJ L2
8.0 equiv. ) ol ol L1

16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 -1 -2 -3
Chemical Shift (ppm)

Figure S154. NMR titration experiments of LUQ; with LiOTf showing the full spectra.
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Figure S155. NMR titration experiments of LSUQ; with LiOTf showing the imine and
aromatic region.
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Figure S156. NMR titration experiments of LUQ; with LiOTf showing the aliphatic region.
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Figure S157. NMR titration experiments of L®UQ; with LiOTf showing the peak
corresponding to the -N-CH3 group used to make binding curves.
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Figure S158. NMR titration experiments of LéUQ; with Ca(OTf), showing the full region.
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Figure S159. NMR titration experiments of LSUQ; with Ca(OTf), showing the imine and
aromatic region.
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Figure S160. NMR titration experiments of L®UQ; with Ca(OTf), showing the aliphatic
region.
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Figure S161. NMR titration experiments of LSUQ; with Ca(OTf), showing the peak
corresponding to the -N-CH3 group used to make binding curves.
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Figure S162. Titration studies showing 1:1 binding of monovalent metal ions with L3UO,
(top) and L6UO; (bottom). Solvent: d3-MeCN. The initial concentrations of the monometallic
uranium complexes used for these experiments were 7.2 mM for L3UO; and 6.9 mM for

LUO;.
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Figure S163. '"H NMR spectra (500 MHz, CD3CN) for a single sample of LUQO> recorded
over five hours. Spectra are referenced relative to solvent residual signal of CD3;CN.

Table S11. '"H NMR chemical shifts (8) of the peak corresponding to the -N-CH3 protons from
replicate measurements of a single sample of LéUOQ; recorded over five hours.

Measured Time 5('H) of -N-CH; Linewidth Linewidth
Spectrum Index (h) (ppm) (Hz) “ (ppm)°
a 0 3.183 1.56 0.00312
b 1 3.183 1.55 0.00310
c 2 3.183 1.66 0.00332
d 3 3.183 1.66 0.00332
e 4 3.183 1.55 0.00310
f 5 3.183 1.55 0.00310
Averages 3.183 ¢ +0.003 ¢

@ Raw linewidth values (in Hz) were measured in each of the replicate '"H NMR spectra of L°UO; (see
Figure S163 for spectral data).

b Conversion of the linewidths to chemical shift in ppm was accomplished by dividing the values in
Hz by the spectrometer frequency (in this case, 500 MHz).

¢ Uncertainty in 8('"H) in ppm is given as +1c and was calculated as the arithmetic mean of the
individual measured linewidth values.

4 Possible sources of error on determination of §('H) include spectral variations induced by electronic
factors, quality of sample shimming, magnetic field inhomogeneity, and sample concentration
uncertainty.
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Evaluation of the heterogeneous electron transfer rate, k°

We have used the Randles-Sevéik equation to determine the diffusion coefficient D, of the
oxidized species at different scan rates.>

anD)

i, = 0.4463 * nFAC ( 2T

where i, is the maximum peak current in amps, n is the number of electrons transferred, F is
Faraday constant in C mol™!, A is electrode area in cm?, C is concentration in mol/cm?, v is
scan rate in V/s, R is gas constant in ] K~! mol™!, and T is temperature (298K).

For determining the charge transfer coefficient a, the following equation was used.”
E E, = 1857 RT
Pl Pp = 2GR

Where E, and E,2 are peak potential and half-peak potential respectively.

The heterogeneous electron transfer rate, £° can be calculated from the equation developed by
Nicholson® and elaborated by Bard & Faulkner.’

(%)“/2 0

4 \JDomv(nF /RT)
Here, vy is the dimensionless parameter that can be calculated from known values of the peak-
to-peak separations, AE, calculated from the CV data, where o is the charge transfer
coefficient, Dox and Dreq are the diffusion coefficients of the oxidized and the reduced forms
in cm?/s, n is the number of electrons transferred, F is the Faraday constant in C mol™!, R is
the gas constant in J K~! mol™!, and T is temperature (298 K).
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X-Ray Crystallographic Information
Refinement Details

Crystals for all ten compounds were mounted on a goniometer head using Paratone oil with
MiTeGen MicroMounts and placed in a cold nitrogen stream. Complete sets of low-
temperature diffraction data frames were collected for crystals of all ten compounds using
either 0.5° or 1.0°-wide ®- and/or ¢-scans.

X-rays for six (BaPenta, L5UQ2, L’UO:Na, L3UO;Na’, L’UO;Na-DCE, L3UO;Na-MeCN)
of the ten total datasets were provided by a Bruker MicroStar microfocus rotating anode
generator running at 45 mA and 60 kV (Cu K, = 1.54178 A). Data for BaPenta (q55j), LSUO;
(q70k), L5UO:Na (q50k), L3UO;Na-DCE (q49k), L5UO2Na-MeCN (q56k) were collected
with a Bruker APEX II CCD detector positioned at 50.0 mm and equipped with Helios
multilayer mirror optics; data for L3UQ:Na’ (v16f) were collected with a Bruker Platinum
135 CCD detector positioned at 80.0 mm and equipped with Helios high-brilliance multilayer
mirror optics.

X-rays for L3UO;Li, L3UO,Ca and L3UQO,Ca’ were provided by a fine-focus sealed tube
(Mo K4 = 0.71073 A). X-rays for LoUO;Li were provided by Incoatec micro-focus sealed
tube (Cu Ko = 1.54178 A). Data for L5UO,Li (ak2133c) were collected with a Bruker APEX-
II detector equipped with Bruker TRIUMPH curved-graphite optics; data for L3UO;Ca
(ak2153g) and L5UO,Ca’ (ak2153n-No33) were collected with a Bruker PHOTON-II detector
equipped with Bruker TRIUMPH curved-graphite optics; data for LSUO:Li (ak2133c¢) were
collected with a Bruker PHOTON-II detector equipped with MONTEL multilayer optics.

All diffractometer manipulations, including data collection, integration and scaling were
carried out using the Bruker APEX2 or APEX3 software packages.!®!! The data for BaPenta
was corrected empirically for variable absorption effects with SADABS!'>!? using equivalent
reflections. A numerical face-indexed absorption correction was used for datasets of all the
other eight structures. Probable space groups were determined on the basis of systematic
absences and intensity statistics and the structures were solved by direct methods using
SIR2004!'* or XS' (incorporated into SHELXTL) and refined to convergence by weighted
full-matrix least-squares on Fo? using the with SHELXL!:!16 in SHELXIe!” and/or in the Olex2
software package.!®

Unless otherwise stated in the special refinement section for each structure, the final structural
model for each compound incorporated anisotropic thermal parameters for all non-hydrogen
atoms and isotropic thermal parameters for all included hydrogen atoms. Non-methyl
hydrogen atoms bonded to carbon in each complex were fixed at idealized riding model sp-
or sp3-hybridized positions with C—H bond lengths of 0.95 - 0.99 A. Methyl groups were
incorporated into the structural models either as sp*-hybridized riding model groups with
idealized “staggered” geometry and a C-H bond length of 0.98 A or as idealized riding model
rigid rotors (with a C—H bond length of 0.98 A) that were allowed to rotate freely about their
C—C bonds in least-squares refinement cycles. The isotropic thermal parameters of idealized
hydrogen atoms in all nine structures were fixed at values 1.2 (non-methyl) or 1.5 (methyl or
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hydroxyl) times the equivalent isotropic thermal parameter of the carbon or oxygen atom to
which they are covalently bonded.

The relevant crystallographic and structure refinement data for all ten compounds are given
in Tables S18, S19, S20, S21, and S22.

CCDC entries 2344717-2344726 contain the supplementary crystallographic data for this
paper. These data can be obtained free of charge from the Cambridge Crystallographic Data
Centre.
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Special Refinement Details for BaPenta (q55j)

Two outer-sphere diethyl ether solvent molecules were found. One (associated with
02S/02S") is 51/49(1) disordered with two orientations of all atoms. The other (associated
with O1S) is 69/31(2) disordered with two orientations of just one terminal methyl group.
Near idealized geometries were imposed for all the orientations of the disordered diethylether
molecules by restraining the bond lengths and interatomic separations defining bond angles
to be appropriate multiples of the C(sp?)-C(sp?) bond length that was included as a free
variable that refined to a final value of 1.434(3) A. This is quite reasonable when compared
to the expected value of 1.513 A"

Hydrogen atoms bonded to N1A, N2A, N1B and N2B that are involved in intramolecular N—
Hee+O hydrogen-bonds were located from a difference Fourier and included as independent
isotropic atoms whose parameters were allowed to vary in least-squares refinement cycles.
The freely refined hydrogen atoms behaved well, giving reasonable bond lengths and angles
in the final model that are consistent with the anticipated H-bonding pattern. The observation
that these protons could be freely refined is an indication of high-quality diffraction data; the
data can also be concluded to be of high quality based on the values of Rix (3.95%) and Ry
(4.38%; for reflections with [>25(I)). The ratio of restraints to parameters is also quite
reasonable for the final model (53/834), underscoring the quality of the structural data.

Figure S164. Solid-state structure from XRD of the first dimeric unit (A) of BaPenta with
two nearby triflate (S1A and S1B) counteranions. H-atoms, except those covalently bonded
to N1A, N2A, NIAA, N2AA and involved in intramolecular N-He*+O hydrogen-bonds, and
co-crystallized solvent molecules of diethyl ether are omitted for clarity. Displacement
ellipsoids are shown at the 20% probability level. H-bonding interactions are shown with
hollow dashed lines.
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Figure S165. Solid-state structure from XRD of the second dimeric unit (B) of BaPenta. H-
atoms, except those covalently bonded to NIB, N2B, N1BA, N2BA and involved in
intramolecular N-He++O hydrogen-bonds, triflate counteranions, and co-crystallized solvent
molecules of diethyl ether are omitted for clarity. Displacement ellipsoids are shown at the
20% probability level. H-bonding interactions are shown with hollow dashed lines.
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Full Solid-state Asymmetric Unit of BaPenta (q55j)

Figure S166. Full solid-state asymmetric unit for BaPenta showing 69/31(2) disorder of one
equivalent of outer-sphere diethyl ether (associated with O1S) with two orientations of just
one terminal methyl group and 51/49(1) disorder for the second equivalent of outer sphere
diethyl ether (associated with O2S/02S’). H-atoms, except those covalently bonded to N1A,
N2A, N1B, N2B and involved in intramolecular N-Hee*O hydrogen-bonds, are omitted for
clarity. Displacement ellipsoids are shown at the 50% probability level.
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Figure S167. Solid-state structure from XRD of BaHexa.* H atoms, except those that are
hydrogen-bonded to O1 and O2, are omitted for clarity. Displacement ellipsoids are shown at
the 50% probability level.
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Figure S168. The structures of BaPenta (upper structure; dimeric unit A from q55j) and
BaHexa (lower structure; from reference 4). The Ba?* ion is significantly displaced above the
plane of the crown ether site in the case of BaPenta, while it nestles comfortably into the site
in the case of BaHexa.
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Table S12. Comparison of coordination numbers and selected bond lengths, interatomic distances,
root mean square deviations (w), and displacement of Ba atoms from a plane (y).

Compound BaPenta BaHexa?
Molecule A Molecule B
C.N. of Ba 10 10 10

O1e02 (A) 3.425(4) 3.230(4) 3.641(3)
Ba—O1phenoxide (A) 2.698(2) 2.732(3) 2.696(2)
Ba—02phenoxide (A) 2.741(2) 2.691(3) 2.693(3)
Ba—Ophenoxide (aVg) (A) 2.720(2) 2.711(3) 2.695(3)

Ocrown ” 0.262 0.246 0.233

Wsalben © 0.180 0.388 0.607

wea (A) 4 1.563 1.577 0.048

(a) Structural data taken from references 4 and 20 (CCDC 1960625). (b) Defined for
BaPenta as the root mean square deviation (r.m.s.d.) of O1, 02, O3, 04, and OS5 from the
mean plane of their positions. O6 was also included in the calculation for BaHexa. (c)
r.m.s.d. of O1, O2, N1, N2, and N3. (d) Defined for BaPenta as the distance between Ba
atom and the centroid of the plane defined by O1, 02, O3, O4, and O5. O6 was also included
in the plane for BaHexa. Atom labels are consistent with those given in the raw
crystallographic data (see Supporting Information).
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Special Refinement Details for L5UO: (q75k).

The structure of q75k appears to reveal 78/22(1) disorder of the atoms to bonded to N3. In
actuality, this represents two distinct isomers of the complex that have co-crystallized in the
same volume of the unit cell. Simple rotation about any of the N3 bonds would not invert N3;
a bond would have to be broken to interconvert the isomers. The bond lengths and angles for
atoms modeling the two co-crystallized isomers were restrained to have nearly idealized
geometry by requiring them to be appropriate multiples of the C(sp*)-C(sp?) bond length.
This length was included in the refinement as a free variable that refined to a final value of
1.519(4) A. This is quite reasonable when compared to the expected C(sp*)-C(sp’) bond
length of 1.513 A.'® All minor orientation atoms were incorporated into the molecular model
with isotropic thermal parameters that were allowed to vary in refinement cycles.

The structure also contains one molecule of co-crystallized acetonitrile that is located near
the crown-ether-like site. Initial solution and refinement enabled the three atoms of this
solvent molecule to be located from a difference Fourier and to be successfully refined as
independent anisotropic atoms (see Figure S171, part a) with the expected bond lengths and
C—C-N angle. The anisotropic displacement parameters (ADPs) indicated that the CH;CN
probably had slightly different orientations/positions in various asymmetric units but that the
methyl was engaged in intrinsically weak C—He++O hydrogen bonds to phenoxy and/or ether
oxygens of the two disordered and co-crystallized metal complex isomers. This initial
structure with a single full-occupancy CH3CN refined to Ri = 3.64% with no restraints on the
CH;CN.

In the course of peer review, one reviewer deemed this structure, and by extension the entire
study presented here, unpublishable due to the unconventionally (but quite understandably)
large ADPs for the CH3CN atoms and insisted that, in order to move this structure and the
broader study toward publication, that the CH3CN positional disorder should be “resolved”
or the CH3CN be removed from the model with a solvent mask (e.g., SQUEEZE). This
positional disorder effort was therefore taken up and significant time invested in preparing a
new model that ultimately refined to R = 3.62% but with 59 more parameters (variables) and
128 more restraints for the CH3CN. These details are described here as they pertain to a case,
often encountered in crystallography, in which alternative models differ significantly in their
implementation.

In the final structure preferred by the noted peer reviewer, the co-crystallized CH3;CN
molecule was found to be disordered across three orientations in the ratio 41:27:32(3). These
three orientations represent three unique but very closely separated CH3CN molecules in
which the individual carbon atoms are associated with 2.46, 1.62 and 1.92 electrons,
respectively. We note that these atomic positions are being modeled in the presence of a fully
ordered uranium atom with 92 electrons. The individual atoms for the CH3CN moieties could
not be refined independently, a sensible finding as they are not only extremely close to one
another (see Figure S172) but they also represent a low (relative) electron count. For example,
the C2SA«++C2SB distance is 0.398 A, C2SA«++C2SC is 0.383 A, and C2SBe++C2SC is 0.524
A; the C1SA+++C1SB distance is 0.589 A, C1SA++«C1SC is 0.908 A, and C1SB+*+C1SC is
0.364 A; the N1SAe«*NI1SB distance is 0.934 A, NI1SAeNISC is 1.850 A, and
N1SBesN1SC is 0.923 A. These metrics underscore that there are especially short pairings
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between the modeled atoms of the “central” CH3CN moiety and the “outer” ones, as one
would expect in a situation of this type.

Therefore, in order to achieve a satisfactory refinement, the parameters for the CH3CN
moieties had to be heavily restrained. The bond lengths for each of the independent
orientations were restrained to have nearly idealized geometry by requiring them to be
appropriate multiples of the N(sp)—C(sp) bond length. This length was included in the
refinement as a free variable that refined to a final value of 1.142(6) A. This is quite
reasonable when compared to the expected N(sp)-C(sp) bond length of 1.136 A.'° The atoms
associated with the three independent orientations of the co-crystallized molecule of CH;CN
were also restrained in the final model with mild isotropic and similarity restraints. As a result,
nearly every structural feature for the three independent CH3CN solvent moieties had to be
imposed (rather than independently found and refined) for a satisfactory refinement.

If details for these refined CH3CN moieties are taken as acceptable, the observation of three
independent orientations of the co-crystallized acetonitrile molecule is possibly attributable
to unique patterns of intrinsically weak C—He++O hydrogen bonds in each case. In Orientation
A [41(3)% occupancy], C2SA appears to be engaged in two weak electrostatic H-bonds, as it
is located 3.27(3) A from O1 and 3.39(3) A from O2. In Orientation B [27(3)% occupancy],
C2SB appears to be engaged in two (different) weak electrostatic H-bonds, as it is located
3.32(4) A from O5 and 3.35(3) A from O2. And, in Orientation C [32(3)% occupancy), C2SC
appears to be engaged in single but more moderate electrostatic H-bond, as it is located
3.14(3) A from 02.%!

Although we find these observations regarding weak H-bonding superficially satisfying, we
caution that the standard uncertainties for the pairs of CeesO separations render them
essentially equivalent. Considering this, it may be that the original model with large ADPs
for the co-crystallized CH3CN represents a more believable (realistic) structure in which the
individual atomic positions for the CH3CN atoms were refined based on the available data
instead of being restrained. It may also not be unreasonable to consider the CH3CN disorder
as associated with the co-crystallization of two isomers of the desired L3UOQO; complex with
essentially the same (although actually different but unresolved) positions for O1, O2 and O5
in the various asymmetric units. From this perspective, the methyl group of the CH3CN methyl
could/would engage in weak H-bonds to these O-atoms with unique patterns in each
asymmetric unit, but essentially in an unresolved manner that is in accord with the unresolved
positions of O1, 02, and OS5 for the co-crystallized isomers of the metal complex. These H-
bonds would, however, effectively tie down C2S and allow slightly different positions (and
larger ADPs) for C1S and N1S. Considering this, our initial refined structure with a single
CH3CN certainly represents an average structure and the reviewer-preferred model with three
CH;CN positions represents a “snapshot” of three possible structures, albeit associated with
the inevitable uncertainty that results from the use of significant restraints.
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Figure S169. Solid-state structure from XRD of L5UQ; showing the major co-crystallized
isomer. All H-atoms, the outer sphere acetonitrile molecule, and atoms associated with minor
components of apparent disorder are omitted for clarity. Displacement ellipsoids are shown
at the 50% probability level.
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Figure S170. Solid-state structure from XRD of the two co-crystallized isomers of L3UQO;.
The presence of the two co-crystallized isomers of the macrocyclic uranium complex is
represented in the final refinement model as 78/22(1) disorder for the atoms bonded to the
amine nitrogen. Solid bonds are used for the major (78%) isomer and hollow bonds for the
minor isomer. Atoms C20, C21, and C23 are not common to the individual isomers. All H-
atoms and a co-crystallized acetonitrile molecule are omitted for clarity. Displacement
ellipsoids are shown at the 50% probability level.
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Figure S171. Views of the solid-state structure from XRD of L5UQ> comparing the initial
and final (reviewer preferred) refinement models for the co-crystallized acetonitrile molecule.
View (a) shows the structure from the initial refinement model that features a single refined
CH3CN molecule (associated with N1S, CIS, and C2S). Views (b)—(d) highlight the three
apparent (restrained) orientations ofthe CH3CN. All H-atoms, except those covalently bonded
to the carbon atoms of the outer sphere acetonitrile molecule, and disordered atoms associated
with the main uranium-containing macrocyclic species are omitted for clarity in all images.
Displacement ellipsoids are shown at the 20% probability level. Values for the CeeeO
distances corresponding to the apparent C—He++O hydrogen bonds are given on p. S150.
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Full Solid-state Asymmetric Unit of L3UO; (q75k)
N1SC

Figure S172. Full solid-state asymmetric unit for LSUQ; showing the apparent 78/22(1)
disorder for the atoms bonded to amine nitrogen N3 in the two co-crystallized isomers of the
macrocyclic uranium complex and the three individual CH3CN moieties associated with the
co-crystallized acetonitrile molecule (associated with N1SA, NI1SB, and NISC; modeled
occupancies 41:27:32(3)) as described in the Special Refinement Details on pp. 149-150.
Solid bonds are used for the major (78%) orientation about the U-N3 bond and hollow bonds
for the minor (22%) orientation. All H-atoms are omitted for clarity. Displacement ellipsoids
are shown at the 50% probability level.
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Table S13. Comparison of selected bond lengths, interatomic distances, root mean square
deviations (), and displacements of the uranium center from the plane (w) of L3UQ; with the
previously published structure.

Compound L5U0; L5UO: from literature ?

0102 (A) 3.138(5) 3.154(14)
U-070x0 (A) 1.771(4) 1.782(11)
U-08ox0 (A) 1.781(4) 1.788(12)
U—Ooxo (avg) (A) P 1.776(4) 1.785(12)
U-O1phenoxide (A) 2.249(4) 2.251(11)
U—O2phenoxide (A) 2.231(4) 2.258(10)
U—Ophenoxide (avg) (A) 2.240(4) 2.255(11)
U—NTimine (A) 2.559(5) 2.597(13)
U—N2imine () 2.594(5) 2.557(14)
U—Nimine (avg) () 2.577(5) 2.577(14)

Ocrown © 0.055 0.033

®salben 0.077 0.089

yu 0.043 0.007

(a) Structural data taken from reference 22. (b) Average of the U-O7 and U-O8 bond
distances. (c) Defined as the root mean square deviation (r.m.s.d.) of the following atoms
from the mean plane of their positions: O1, 02, O3, O4, and OS5. (d) Defined as the r.m.s.d.
of O1, O2, NI, N2, and N3. Atom labels are consistent with those given in the raw
crystallographic data. (e¢) Absolute value of the distance between U and the mean plane of
O1, 02, N1, N2, and N3.
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Figure S173. Images of the major crystallized isomer of L5UQO> (upper structure) and LSUO,
(middle structure), demonstrating the significantly greater co-planarity of the polyether
oxygen atoms in L3UQ; compared to LSUQ». The lower image shows a superimposed view
of the solid-state structures of the major isomer of L3UQO; (solid bonds) and L®UQO> (dashed
bonds). Atom positions for U, O1, 02, O7, O8, N1, N2, and N3 were fitted to prepare this
image. The superposition deviation of the two U positions is 0.019 A, of the two O1 positions
is 0.043 A, of the two O2 positions is 0.095 A. The overall superposition deviation of the
given atom list is 0.063 A, demonstrating rather close uniformity of the first coordination
spheres about the uranyl dications in these complexes.
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Table S14. Comparison of selected bond lengths, interatomic distances, root mean square
deviations (), and displacement of select metal atoms from the plane () in monometallic UO»>*

complexes.

Compound LU0, LU0, ?
Olee02 (A) 3.138(5) 3.137(10)
U-070x0 (A) 1.771(4) 1.783(8)
U-08ox0 (A) 1.781(4) 1.792(7)
U—Ooxo (avg) (A)P 1.776(4) 1.788(8)
U—O1phenoxide (A) 2.249(4) 2.250(7)
U—O2phenoxide (A) 2.231(4) 2.207(8)
U—Ophenoxide (avg) (A) 2.240(4) 2.229(8)
U—NTimine (A) 2.559(5) 2.595(9)
U—N2imine () 2.594(5) 2.559(9)
U—Nimine (avg) (A) 2.577(5) 2.577(9)

@Derown © 0.055 0.358

Osatben 4 0.077 0.049

yu 0.043 0.005

(a) Structural data taken from references 4 and 23 (CCDC 1960626). (b) Average of the U-
07 and U-O8 bond distances. (c) Defined as the root mean square deviation (r.m.s.d.) of
atoms O1, 02, 03, 04, and O5 from the mean plane of their positions for LSUQ2. O6 was
included in the calculation for L®UOQ,. (d) Defined as the r.m.s.d. of O1, 02, N1, N2, and
N3. Atom labels are consistent with those given in the raw crystallographic data. (e)
Absolute value of the distance between U and the mean plane of O1, O2, N1, N2, and N3.
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Special Refinement Details for LSUO2Na (q50k).

The structure of q50k appears to reveal 60/40(1) disorder of the atoms to bonded to N3. In
actuality, this represents two distinct isomers of the complex that have co-crystallized in the
same volume of the unit cell. Simple rotation about any of the N3 bonds would not invert N3;
a bond would have to be broken to interconvert the isomers.

Notably, structures q50k (L5UQ>Na) and v16f (L3UQO:Na') are nearly isomorphous (see Table
S19). The structures are only nearly isomorphous, as they differ in terms of the ratio of the
isomeric orientations about N3 (60/40 for q50k vs. 67/33 for v16f). Additionally, the triflate
in structure v16f was found to be disordered across two orientations, whereas the triflate in
q50k appears fully ordered.

Figure S174. Solid-state structure from XRD of the major co-crystallized isomer of
L5UO:Na. All H-atoms and the atoms associated with the minor co-crystallized isomer are
omitted for clarity. Displacement ellipsoids are shown at the 50% probability level.
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Full Solid-state Asymmetric Unit of L3UQO;Na (q50k)

Figure S175. Full solid-state asymmetric unit for LSUQ2Na showing 60/40 apparent disorder
for the atoms bonded to amine nitrogen N3. Solid bonds are used for the major (60%)
orientation about the U-N3 bond and dashed bonds for the minor (40%) orientation. All H-
atoms are omitted for clarity. Displacement ellipsoids are shown at the 20% probability level.
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Special Refinement Details for L5UO;Na’ (v16f).

The structure of v16f appears to reveal 67/33(2) disorder of the atoms to bonded to N3. In
actuality, this represents two distinct isomers of the complex that have co-crystallized in the
same volume of the unit cell. Simple rotation about any of the N3 bonds would not invert N3;
a bond would have to be broken to interconvert the isomers. Additionally, the inner-sphere
triflate counteranion was found to be 87/13(1) disordered with two orientations. All minor
orientation atoms were incorporated into the model with isotropic thermal parameters that
were allowed to vary in refinement cycles.

Figure S176. Solid-state structure from XRD of the major co-crystallized isomer of
LSUO;Na’. All H-atoms and atoms unique to the minor co-crystallized isomer omitted for
clarity. Displacement ellipsoids are shown at the 50% probability level.

S159



C23'

Figure S177. Solid-state structure from XRD of LSUQ:Na’. The presence of the two co-
crystallized isomers could be represented as 67/33 disorder for the atoms bonded to the amine
nitrogen. Solid bonds are used for the major (67%) isomer and dashed bonds for the minor
isomer. Atoms C20, C21, and C23 are not common to the individual isomers. All H-atoms
and disorder associated with the inner-sphere triflate counteranion are omitted for clarity.
Displacement ellipsoids are shown at the 20% probability level.
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Full Solid-state Asymmetric Unit of L3UO;Na’ (v16f)

Figure S178. Full solid-state asymmetric unit for LSUQ>;Na’ showing the 67/33 apparent
disorder for the atoms bonded to amine nitrogen N3 and 87/13 disorder for the inner-sphere
triflate counteranion. Solid bonds are shown for the major orientations and dashed hollow
bonds for the minor orientations. All H-atoms are omitted for clarity. Displacement ellipsoids
are shown at the 20% probability level.
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Special Refinement Details for L5UO;Na-DCE (q49k).

One molecule of co-crystallized dichloroethane (DCE) solvent was found in a fully occupied
site in the outer coordination sphere.

The structure of q49k appears to reveal 62/38(1) disorder of the atoms to bonded to N3. In
actuality, this represents two distinct isomers of the complex that have co-crystallized in the
same volume of the unit cell. Simple rotation about any of the N3 bonds would not invert N3;
a bond would have to be broken to interconvert the isomers. The bond lengths for the
apparently disordered region corresponding to the two co-crystallized isomers were restrained
to have nearly idealized geometry by requiring them to be appropriate multiples of the C(sp?)—
C(sp?) bond length. This length was included in the refinement as a free variable that refined
to a final value of 1.513(5) A. This is quite reasonable when compared to the expected C(sp>)—
C(sp®) bond length of 1.513 A.1?

Mild isotropic restraints were applied to the anisotropic displacement parameters (ADPs) for
C19, C20, C21, and C22; these atoms are associated with the major co-crystallized isomer of
the heterobimetallic complex. Mild isotropic restraints were also applied to the ADPs for
C20’, C21', and C23’; these atoms are associated with the minor co-crystallized isomer of the
heterobimetallic complex.

Figure S179. Solid-state structure from XRD of the major co-crystallized isomer of
L5UO;Na-DCE. All H-atoms, a co-crystallized dichloroethane molecule, and the atoms
associated with the minor co-crystallized isomer are omitted for clarity. Displacement
ellipsoids are shown at the 50% probability level.
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Figure S180. Solid-state structure from XRD of L3UQ;Na-DCE showing the 62/38 apparent
disorder for the atoms bonded to amine nitrogen N3. Solid bonds are used for the major (62%)
isomer and dashed bonds for the minor (38%) isomer. All H-atoms and atoms associated with
a co-crystallized dichloroethane molecule are omitted for clarity. Displacement ellipsoids are
shown at the 20% probability level.
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Full Solid-state Asymmetric Unit of L3UO;Na-DCE (q49k).

CI2S

Figure S181. Full solid-state asymmetric unit for L5UQ;Na-DCE showing 62/38 apparent
disorder for the atoms bonded to amine nitrogen N3 and a co-crystallized C:HsClz
(dichloroethane) molecule. Solid bonds are shown for the major (62%) co-crystallized isomer
and dashed bonds for the minor (38%) co-crystallized isomer. All H-atoms are omitted for
clarity. Displacement ellipsoids are shown at the 20% probability level. Atoms unique to the
minor (38%) isomer are shown with a lighter shade.
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Special Refinement Details for L5UO;Na-MeCN (q56k).

The structure of q56k appears to reveal 67/33(1) disorder of the atoms to bonded to N3. In
actuality, this represents two distinct isomers of the complex that have co-crystallized in the
same volume of the unit cell. Simple rotation about any of the N3 bonds would not invert N3;
a bond would have to be broken to interconvert the isomers. The bond lengths for the
apparently disordered region corresponding to the two co-crystallized isomers were restrained
to have nearly idealized geometry by requiring them to be appropriate multiples of the C(sp?)—
C(sp?) bond length. This length was included in the refinement as a free variable that refined
to a final value of 1.513(5) A. This is quite reasonable when compared to the expected C(sp>)—
C(sp®) bond length of 1.513 A.1?

The triflate counteranion is bound to the sodium cation and is 91/9(1) disordered with two
different orientations in the same volume of the unit cell. The bond lengths and angles for the
disordered triflate anion were restrained to have nearly idealized geometry by requiring them
to be appropriate multiples of the S—O bond length. This length was included in the refinement
as a free variable that refined to final value of 1.432(2) A. This is quite reasonable when
compared to the expected S—O bond length of 1.472 A.'° In order to model the triflate
disorder, stringent similarity restraints were applied to the displacement parameters of C24A
and C24B, corresponding to the carbon atoms of the disordered triflate orientations. Stringent
similarity restraints were also applied to F11B, F12B, and F13B.

The structures of L3UO2Na-MeCN (q56k) L3UO:Li (ak2133c¢) are nearly isomorphous (see
p. S169 for details, as well as Tables S20 and S21).

Figure S182. Solid-state structure from XRD of the major co-crystallized isomer of
L5UO;Na-MeCN. All H-atoms, a co-crystallized acetonitrile molecule, and all atoms
associated with minor components of apparent disorder are omitted for clarity. Displacement
ellipsoids are shown at the 50% probability level.
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Full Solid-state Asymmetric Unit of L3UO;Na-MeCN (q56k)

Figure S183. Full solid-state asymmetric unit for L3UQ;Na-MeCN showing 67/33(1)
apparent disorder for the atoms bonded to amine nitrogen N3, 91/9(1) disorder for the triflate
bound to Na, and a co-crystallized acetonitrile molecule. Solid bonds are shown for the major
orientations and dashed bonds for the minor orientations in the disordered regions. All H-
atoms are omitted for clarity. Displacement ellipsoids are shown at the 20% probability level.
Hollow lines are shown for bonds in the minor components of (apparent) disorder. The
distance from S1A to S1B is 0.887 A.
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Figure S184. Superimposed view of the solid-state structures of the major co-crystallized
isomers of L3UO:Na (solid bonds) and of LUO:Na-DCE (dashed bonds). Atom positions
for the U, Na, O1, 02, 03, 04, 05, 07, 08, N1, N2, and N3 cores were superimposed to
prepare this image. The superposition deviation of the two U atoms is 0.035 A and of the two
Na atoms is 0.050 A, with the overall superposition deviation being 0.270 A for the
aforementioned list of superimposed atoms. The greater deviation between L5UQO2Na and
L5UO:;Na-DCE versus that for L’U0O2Na and LSUO;Na-MeCN on p. S167 is attributable to
the deviations of atoms O3 (0.331 A), 04, (0.610 A), and O5 (0.562 A). These atoms are
associated with the flexible polyether linkage, and thus they can be concluded to adopt
preferred positions based on the solid-state (packing) environment. This environment appears
to be influenced by the identity of the co-crystallized outer-sphere dichloroethane molecule
in this case, which was derived from the conditions used for crystallization.
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Figure S185. Superimposed view of the solid-state structures of the major co-crystallized
isomers of L3UQ:Na (solid bonds) and of LSUOQ2Na-MeCN (dashed bonds). Atom positions
for the U, Na, O1, 02, 03, 04, 05, 07, 08, N1, N2, and N3 cores were superimposed to
prepare this image. The superposition deviation of the two U atoms is 0.032 A and of the two
Na atoms is 0.049 A, with the overall superposition deviation being 0.0855 A for the
aforementioned list of superimposed atoms.
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Table S15. Comparison of R; values and selected bond lengths, interatomic distances, root
mean square deviations (o), and displacements of U and Na atoms from defined planes (y) in
the structures of the [UO,,Na] complex of L3.

Compound L5UO:Na L5UO:Na’ L5U0O:Na-DCE L5U0:Na-MeCN
Structure Code q50k vi6f q49k q56k
R1 (%) 3.92% 3.35% 3.83% 2.27%
UseeM (R) 3.605(2) 3.602(2) 3.584(3) 3.574(1)
01402 (&) 2.945(6) 2.931(6) 2.992(6) 2.943(3)
U-0700 (A) 1.761(5) 1.789(5) 1.779(5) 1.779(3)
U-0800 (A) 1.770(4) 1.791(4) 1.780(5) 1.783(3)
U-Ouso (avg) (A) 1.766(5) 1.790(5) 1.780(5) 1.781(3)
U-O1phenoside (A) 2.258(5) 2.263(4) 2.281(4) 2.258(2)
U—O2pnenoxide (A) 2.272(4) 2.252(5) 2.276(5) 2.268(2)
U—Opnenoxide (avg) (A) * 2.265(5) 2.258(5) 2.279(5) 2.263(2)
U—NTLimine (&) 2.543(6) 2.541(6) 2.542(6) 2.588(3)
U—-NZimine (A) 2.544(6) 2.536(6) 2.545(5) 2.542(3)
U—Nimine (avg) (&) * 2.544(6) 2.539(6) 2.544(6) 2.565(3)
Na—O1phenoxide (A) 2.403(5) 2.440(5) 2.411(5) 2.384(3)
Na—O2phenoxide (A) 2.444(4) 2.399(5) 2.411(5) 2.426(3)
Na—Ophenoxide (avg) (&) * 2.424(5) 2.420(5) 2.411(5) 2.405(3)
Ocrown (A) P 0.366 0.339 0.025 0.327
Wsatben (A) © 0.112 0.106 0.100 0.106
wu(A) ¢ 0.032 0.035 0.023 0.008
wm (R) © 0.838 0.834 0.791 0.799

(a) Defined as the average interatomic distance between the noted metal and the relevant oxygen/nitrogen
atoms. Stated estimated standard deviations (e.s.d.’s) on distances were taken as the largest of the individual
values in the refined data for the independent bond distance. (b) Defined as the root mean square deviation
(RMSD) of the positions of crown atoms O1, 02, O3, O4, and OS5 from the mean plane of their positions. (c)
Defined as the root mean square deviation (RMSD) of O1, O2, N1, N2, and N3 from the mean plane of their
positions. (d) Absolute value of the distance between U and the mean plane of O1, 02, N1, N2, and N3. (e)
Absolute value of the distance between M and the mean plane of O1, 02, O3, O4, and O5. Atom labels are
consistent with those given in the raw crystallographic data.
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Special Refinement Details for LSUO:Li (ak2133c¢)

The structure of ak2133c appears to reveal 56/44(1) disorder of the atoms to bonded to N3.
In actuality, this represents two distinct isomers of the complex that have co-crystallized in
the same volume of the unit cell. Simple rotation about any of the N3 bonds would not invert
N3; a bond would have to be broken to interconvert the isomers. The bond lengths for the two
co-crystallized isomers were restrained to have nearly idealized geometry by requiring them
to be appropriate multiples of the C(sp?)—-C(sp?) bond length. This length was included in the
refinement as a free variable that refined to a final value of 1.535(2) A. This is quite
reasonable when compared to the expected C(sp*)—C(sp’) bond length of 1.513 A.1°

The inner-sphere triflate counteranion is 82/18(1) is also disordered with two orientations
about the Li-O11 bond. The bond lengths and angles for the disordered triflate were restrained
to have nearly idealized geometry by requiring them to be appropriate multiples of the S-O
bond length. This length was included in the refinement as a free variable that refined to final
value of 1.433(2) A. This is quite reasonable when compared to the expected S—O bond length
of 1.472 A.'° In order to successfully model the triflate disorder, stringent isotropic restraints
were applied to the displacement parameters of O11B, O12B, O13B, F11B, F12B, and F13B,
as well as F12A, FI3A, and C24A. Stringent similarity restraints were also applied to O13A
and O13B.

One molecule of co-crystallized acetonitrile was found in a fully occupied site in the outer
coordination sphere.

The structures of L3UQO:Li (ak2133¢) and L3UO:Na-MeCN (q56k) are nearly isomorphous
(see Tables S20 and S21). The structures are only nearly isomorphous, as they differ in terms
of both the ratio of isomeric orientations about N3 (56/44 for ak2133c vs. 67/33 for q56k) and
the ratio of disordered atoms for the triflate counteranion in each structure (82/18 for ak2133¢
vs. 91/9 for q56k).
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Figure S186. Solid-state structure from XRD of the major co-crystallized isomer of L3UQ,Li.
All H-atoms, atoms associated with the minor co-crystallized isomer, and a co-crystallized
acetonitrile molecule are omitted for clarity. Displacement ellipsoids are shown at the 50%
probability level.
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Figure S187. Solid-state structure from XRD of L3UO:Li. The presence of the two co-
crystallized isomers could be represented as 56/44 disorder for the atoms bonded to the amine
nitrogen. Solid bonds are used for the major (56%) isomer and dashed bonds for the minor
1somer. Atoms C20, C21, and C23 are not common to the individual isomers. All H-atoms, a
co-crystallized acetonitrile molecule, and disordered atoms associated with the triflate anion
are omitted for clarity. Displacement ellipsoids are shown at the 20% probability level.
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Full Solid-state Asymmetric Unit of L5UQ,Li (ak2133c)

Figure S188. Full solid-state asymmetric unit for LUQ:Li showing the 56/44 apparent
disorder for the atoms bonded to amine nitrogen N3, the 82/18 disorder for the inner-sphere
triflate counteranion, and the co-crystallized outer-sphere acetonitrile molecule. Solid bonds
are shown for the major isomer of the main molecule as well as the major orientation of the
triflate. Dashed bonds are shown for the minor isomer of the main molecule and the minor
orientation of the triflate. All H-atoms are omitted for clarity. Displacement ellipsoids are
shown at the 20% probability level. The distance from S1 to S1’is 0.876 A.
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Special Refinement Details for L°UO:Li (ak2152c¢)

The solid-state structure of ak2152¢ appears to display 74/26(1) disorder for the atoms bonded
to N3. In reality, however, the structure reveals the presence of a dimerized structure about a
crystallographic inversion center composed of two individual heterobimetallic species. The
aforementioned disorder ratio could represent two isomers of the dimeric (tetrametallic)
species; one has both methyl groups (C24) oriented toward O7 and the other has both methyl
groups oriented toward O8. Because of the ratio, if the only disorder is derived from packing
effects rather than disorder about the inversion center, one might infer that these are only two
possible dimers that can exist. This is notable because the isomers would presumably exist in
solution and would be unique compounds. A third possible isomer would have the methyl
groups pointed in the same direction, one towards O7 and one towards O8; we note however
that this third species could pack like the other two isomers, and if this were the case, then
the detected disorder pattern would be representative of all three isomers present in the solid
state. However, the structure would no longer have rigorous inversion symmetry if that were
the case.

The bond lengths for the apparently disordered atoms about N3 were restrained to have nearly
idealized geometry by requiring them to be appropriate multiples of the C(sp*)-C(sp?) bond
length. This length was included in the refinement as a free variable that refined to a final
value of 1.511(5) A. This is quite reasonable when compared to the expected C(sp?)—C(sp?)
bond length of 1.513 A.' The carbon atoms bonded to N3 in the minor co-crystallized isomer
were incorporated into the model with isotropic displacement parameters that were allowed
to vary in refinement cycles.

Figure S189. Solid-state structure from XRD of the major co-crystallized isomer of LéUQ,Li.
All H-atoms and atoms associated with the minor co-crystallized isomer are omitted for
clarity. Displacement ellipsoids are shown at the 50% probability level.
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Figure S190. Solid-state structure from XRD of the major co-crystallized isomer of LéUQ,Li.
All H-atoms and atoms associated with the minor co-crystallized isomer are omitted for
clarity. Displacement ellipsoids are shown at the 20% probability level.
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Figure S191. Image of the solid-state structure from XRD of the L®UO;Li dimer generated
by a rigorous crystallographic inversion center as well as two nearby outer-sphere triflate
counteranions. All H-atoms and atoms associated with the minor isomer(s) are omitted for
clarity. Displacement ellipsoids are shown at the 20% probability level.
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Full Solid-state Asymmetric Unit of L*UQ,Li (ak2152¢)

Figure S192. Full solid-state asymmetric unit for L8UO;Li showing 74/26 apparent disorder
for the atoms bonded to amine nitrogen N3. Solid bonds are used for the atoms in the major
co-crystallized isomer (74%) and dashed bonds are shown for atoms associated with only the
minor co-crystallized isomer (26%). All H-atoms are omitted for clarity. Displacement
ellipsoids are shown at the 20% probability level. Atoms associated with the minor isomer
are shown with a lighter shade.
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Special Refinement Details for L3UO,Ca (ak2153g)

The structure of ak2153g appears to reveal 71/29(1) disorder of the atoms to bonded to N3.
In actuality, this represents two distinct isomers of the complex that have co-crystallized in
the same volume of the unit cell. Simple rotation about any of the N3 bonds would not invert
N3; a bond would have to be broken to interconvert the isomers. Carbon atoms bonded to N3
in the minor co-crystallized isomer were incorporated into the model with isotropic thermal
parameters that were allowed to vary in refinement cycles. Additionally, select atoms in the
crown ether linkage were found to be 50/50(1) disordered with two alternate orientations for
atoms O3, 04, and C8 through C17. The bond lengths in the apparently disordered region of
N3 and also in the disordered region of the crown ether linkage were restrained to have nearly
idealized geometry by requiring them to be appropriate multiples of the C(sp*)-C(sp?) bond
length. This length was included in the refinement as a free variable that refined to a final
value of 1.523(1) A. This is quite reasonable when compared to the expected C(sp?)—C(sp?)
bond length of 1.513 A."°

Figure S193. Solid-state structure from XRD of the major co-crystallized isomer of
L5UO:Ca. All H-atoms and atoms associated with the minor isomer/orientation are omitted
for clarity. Displacement ellipsoids are shown at the 50% probability level.
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Full Solid-state Asymmetric Unit of L°UO,Ca (ak2153g)

Figure S194. Full solid-state asymmetric unit for LSUQ2Ca showing 71/29 apparent disorder
for the atoms bonded to amine nitrogen N3 and 50/50 disorder for select atoms in the crown-
ether-like site and one phenyl ring of the Schiff-base site. The different disorder ratios would
seem to indicate that different packing considerations exist for the amine and polyether ends
of the molecule and both isomers would presumably have a 50/50 preference for the placement
of the polyether chain and one phenyl ring. Interestingly, this is the only complex in the series
described in this report that displays the additional disorder in the polyether portion of the
molecule. All H-atoms are omitted for clarity. Displacement ellipsoids are shown at the 20%
probability level. Atoms shown with a lighter shade on the amine end are associated strictly
with the minor isomer; other light shaded atoms are presumably associated with both isomers
with respect to the 50/50 disorder in the polyether/phenyl moiety.
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Special Refinement Details for L5UO>Ca’ (ak2153n-No33).

The complex crystallizes as orange block-like crystals. There are four molecules of the mixed-
metal uranium-calcium complex in the unit cell of the crystal, which can be assigned to the
primitive, non-centrosymmetric, orthorhombic space group Pna2;. The data crystal was found
to be a racemic twin through a BASF refinement that converged to a final value of ca. 0.52(1).

The pseudo-Cs-symmetric LSUO;Ca’ orients itself in the unit cell with eight atoms positioned
near a potentially rigorous crystallographic mirror plane at (x, 0.25, z). This caused an initial
structure solution to be performed in the centrosymmetric space group Pnma/Pnam. This
structure refined to a quite acceptable final R; value of 5.42%. The resulting structure
appeared to have significant disorder across a mirror plane, suggesting that the noted
crystallographic mirror plane may not have been rigorous. Structure solution was then
performed in space group Pna2; (No. 33); this resulted in a nearly fully ordered structure that
refined to a better Ry value of 3.18% with the commonly observed apparent disorder only
about the N3 amine nitrogen in the ligand backbone.

Similar to the other structures in this report, in actuality the apparent 61/39(1) disorder about
N3 represents two distinct isomers of the complex that have co-crystallized in the same
volume of the unit cell. Simple rotation about any of the N3 bonds would not invert N3; a
bond would have to be broken to interconvert the isomers. In the case of ak2153n-No33, the
occupancy factors of atoms in the individual isomers were found to be 61/39. The bond
lengths in the apparently disordered region of N3 were restrained to have nearly idealized
geometry by requiring them to be appropriate multiples of the C(sp*)-C(sp?) bond length.
This length was included in the refinement as a free variable that refined to a final value of
1.520(6) A. This is quite reasonable when compared to the expected C(sp*)-C(sp’) bond
length of 1.513 A."°

It is noteworthy that the atoms U1, Cal, N3, C23, C23’, 04, 06, and O7 have z-coordinates
that are very near to 0.25; these atoms would essentially be located on the crystallographic
mirror plane if the correct space group were the centrosymmetric Pnma/Pnam. However, as a
result of this obvious pseudo-symmetry, high correlations exist between the parameters
associated with atoms related by the pseudo-mirror. Despite this inherent feature of the
structure, anisotropic displacement parameters were successfully included for all non-
hydrogen atoms in the structure with moderate isotropic restraints needed for the displacement
parameters of C1-C7 and C12—C18 that are related by the crystallographic pseudo-mirror
plane. Moderate isotropic restraint was also applied to one oxygen atom (023) associated
with a triflate and atoms C20, C20’, C21, C21’, C22, C22', C23, and C23’ in the apparently
disordered region about N3.

The fact that this Ca?"-adduct structure does not exhibit the 50/50 disorder of the polyether
end of the molecule as was found for ak2153g is an indication that crystal packing due to
different crystallization solvent conditions is the factor causing the 50/50 disorder in that case.
The present structure of the Ca?*-adduct (ak2153n-No33) thus can be concluded to not show
the noted disorder pattern as a consequence of unique packing effects in the individual and
unique structure.
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Figure S195. Solid-state structure from XRD of the major isomer of L5UQ,Ca’. All H-atoms
and atoms associated with the minor co-crystallized isomer are omitted for clarity.
Displacement ellipsoids are shown at the 50% probability level.
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Figure S196. Full solid-state asymmetric unit of LSUQ2Ca’. Solid bonds are shown for the
major isomer and hollow bonds are shown for the atoms associated with the minor isomer.
All H-atoms are omitted for clarity. Displacement ellipsoids are shown at the 50% probability
level.
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Figure S197. Ball-and-stick representation of LUQ;Ca’. All H-atoms and atoms associated
with the minor co-crystallized isomer are omitted for clarity.
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Figure S198. Solid-state structure from XRD of the major isomer of L3UQ,Ca’ showing an
end-to-end view to highlight the pseudo-mirror-symmetric nature of the molecule. All H-
atoms and atoms associated with the minor co-crystallized isomer are omitted for clarity. The
following atoms have z-coordinates that are very near to 0.25, which would be the
crystallographic mirror plane in the corresponding centrosymmetric space group: Ul, Cal,
N3, C23, C23’, 04, 06, and O7.
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Figure S199. Superimposed views of the solid-state structures of the major isomers of
L5U0:Ca’ (ak2153n-No33; solid bonds) and L3UOQ;Ca (ak2153g; dashed bonds). Atom
positions for the U, Ca, O1, 02, O3, 04, 05, 07, 08, N1, N2, and N3 coordination cores were
superimposed to prepare these images. In image (a), the first orientation of the 50/50
disordered polyether moiety from ak2153g was used to prepare the figure; the deviation of
the superimposed positions of the two U atoms is 0.029 A and of the superimposed positions
of the two Ca atoms is 0.088 A, with an overall deviation of 0.111 A for the noted list of
atoms. In image (b), the second orientation of the 50/50 disordered polyether moiety from
ak2153g was used to prepare the figure; the deviation of the superimposed positions of the
two U atoms is 0.009 A and of the superimposed positions of the two Ca atoms is 0.140 A,
with an overall deviation of 0.1050 A for the noted list of atoms.

The fact that ak2153n-No33 and the second orientation of ak315g (image b) have virtually
identical overlays would seem to indicate that this might be the preferred structure and that
otherwise minor variations in the crystallization conditions induce the 50/50 disorder for the
polyether portion of the macrocycle for both isomers of ak2153g. This 50/50 disorder is
independent of packing forces which favor xx/yy crystallization of both isomers.
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Table S16. Comparison of R; values and selected bond lengths, interatomic distances, root
mean square deviations (), and displacements of U and Ca atoms from planes () in the
structures of the [UO,,Ca] complexes of LS.

Compound L3UO;Ca L5U0:Ca’
Structure Code ak2153g ak2153n-No33
R1 (%) 4.81% 3.18%
UeeeM (A) 3.690(1) 3.723(1)
0102 (A) 2.818(7) 2.810(7)
U-070x0 (A) 1.772(5) 1.767(4)
U-08,x (A) 1.776(5) 1.768(4)
U—Ooxo (avg) (A) 2 1.774(5) 1.768(4)
U-O1phenoxide (A) 2.303(4) 2.301(7)
U—O2phenoxide (A) 2.289(4) 2.293(7)
U—Ophenoxide (avg) (A) 2 2.297(4) 2.297(7)
U—NTimine (A) 2.520(6) 2.495(11)
U-N2imine () 2.514(6) 2.550(9)
U—Nimine (avg) (A) 2 2.517(6) 2.523(10)
Ca—O1phenoxide (A) 2.398(5) 2.471(7)
Ca—02phenoxide (A) 2.419(4) 2.377(7)
Ca—Ophenoxide (avg) (A) 2 2.409(5) 2.424(7)
Ocrown (A) 0.332 0.349
Osatben (A) © 0.116 0.114
wu(A) 9 0.017 0.032
wm (A) © 1.123 1.047

(a) Defined as the average interatomic distance between the noted metal and the relevant
oxygen/nitrogen atoms. Stated estimated standard deviations (e.s.d.’s) on distances were
taken as the largest of the individual values in the refined data for the independent bond
distance. (b) Defined as the root mean square deviation (RMSD) of the positions of crown
atoms O1, 02, O3, O4, and OS5 from the mean plane of their positions. (¢) Defined as the
root mean square deviation (RMSD) of O1, O2, N1, N2, and N3 from the mean plane of
their positions. (d) Absolute value of the distance between U and the mean plane of O1, O2,
N1, N2, and N3. (e) Absolute value of the distance between M and the mean plane of Ol,
02, 03, 04, and OS5. Atom labels are consistent with those given in the raw crystallographic
data for L3UO;Ca.
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Table S17. Comparison of U-Qox, bond lengths across the series of UO2>" complexes.

Complex U-07 U-08 U—Ooxo (avg., A)P
L5UO; 1.772(4) 1.781(4) 1.777(4)
LSUO, * 1.783(8) 1.792(7) 1.788(8)
L5UO:Na 1.761(5) 1.770(4) 1.766(5)
L5UO:Na’ 1.789(5) 1.791(5) 1.790(5)
L3UO;Na-DCE 1.779(5) 1.780(5) 1.780(5)
L3UO;Na-MeCN 1.779(3) 1.783(3) 1.781(3)
LSUO;Na * 1.782(5) 1.780(5) 1.781(5)
L3UO:Li 1.778(1) 1.784(2) 1.781(2)
LSUO:Li 1.782(4) 1.786(4) 1.784(4)
L5U0:Ca 1.772(5) 1.776(5) 1.774(5)
L5U0:Ca’ 1.767(4) 1.768(4) 1.768(4)
L°UO,Ca? 1.795(4) 1.783(4) 1.789(4)

(a) Structural data taken from references 24 (CCDC 1960628), 25 (CCDC 1960628),
26 (CCDC 1960629), and 27 (CCDC 1960630). (b) Average of the U-O7 and U-O8
bond distances.
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Table S18. Crystal and Refinement Data for BaPenta and L3UO:.

BaPenta (q55j) L3UO: (q75Kk)
CCDC accession code 2344717 2344718
Empirical formula C25H39N309F3SBag s C2sH30N4O7U
Formula weight 719.35 736.56
Temperature 200(2) K 200(2) K
Wavelength 1.54178 1.54178
Crystal system Orthorhombic Monoclinic

Space group

™ o S =

Y
Volume

V4
Density (calculated)
Absorption coefficient
F(000)
Crystal size
Theta range
Index ranges

Reflections collected
Independent reflections

Completeness/Omax
Absorption correction
Max./Min. Transmission
Refinement method
Data/restraints/parameters
Goodness-of-fit on F*
Final R indices [I>20(1)]
R indices (all data)
Largest diff. peak & hole

Pcen (No. 56)
20.6676(3) A
23.1000(4) A
27.4588(4) A
90°
90°
90°
13109.4(4) A3
16
1.458 g cm™
6.073 mm™!
5936.0
0.19 x 0.06 x 0.05 mm?
2.869 to 70.352°
—25<h<24,-27<k<26,-33<1<23
84666

12311
[Rint = 0.0395, Rsigma = 0.0250]

99.9%/66.000°
Multi-scan
1.000 and 0.525
Full-matrix least-squares on F?
12311/53/834
1.036
R1=0.0438, wR, =0.1252
R1=0.0544, wR> = 0.1360
1.11 and —0.71 e.A3

P2i/c (No. 14)
10.3526(3) A
13.0258(3) A
19.7606(5) A
90°
100.3600(10)°
90°
2621.29(12) A3
4
1.866 g cm™
17.867 mm™!
1424.0
0.089 x 0.067 x 0.036 mm?
4.085 to 70.183°
—11<h<12,-15<k<15,-21<1<23
16635

4798
[Rint = 0.0510, Rsigma = 0.0489]

99.6%/66.000°
Multi-scan
1.000 and 0.723
Full-matrix least-squares on F?
4798/128/409
1.095
Ri1=10.0362, wR> = 0.0887
R1=0.0394, wR, =0.0917
2.13 and -2.32 e.A3

S188



Table S19. Crystal and Refinement Data for L5UQO2Na and L3UO;Na’.

L5UO:Na (q50Kk)

L5UO:Na’ (v16f)

CCDC accession code
Empirical formula
Formula weight
Temperature
Wavelength
Crystal system
Space group

™ o S =

Y
Volume

V4
Density (calculated)
Absorption coefficient
F(000)
Crystal size
Theta range
Index ranges

Reflections collected
Independent reflections

Completeness/Omax
Absorption correction
Max./Min. Transmission

Refinement method

Data/restraints/parameters

Goodness-of-fit on F
Final R indices [[>20(1)]
R indices (all data)
Largest diff. peak & hole

2344720
C24H27F3N3019SNaU
867.56
200(2) K
1.54178
Monoclinic
P2i/c (No. 14)
12.1266(4) A
12.9389(4) A
19.1605(6) A
90°
104.0830(10)°
90°
2916.02(16) A3
4
1.976 g cm™
17.193 mm™!

1672.0
0.158 x 0.033 x 0.028 mm?
3.758 to 70.180°
—12<h<14,-12<k<14,-23<I<22
18416

5266
[Rint = 0.0598, Rsigma = 0.0582]

97.7%/70.180°
Numerical
1.000 and 0.368
Full-matrix least-squares on F?
5266/0/418
1.048
R1=0.0392, wR> =0.0981
Ri1 =0.0432, wR> =0.1019
3.04 and -2.02 e.A3

2344719
C24H27F3N3019SNaU
867.56
200(2) K
1.54178
Monoclinic
P2i/c (No. 14)
12.1206(4) A
12.9470(4) A
19.1487(6) A
90°
104.1704(11)°
90°
2913.48(16) A3
4
1.978 g cm™
17.208 mm™!
1672.0

0.025 x 0.080 x 0.085 mm?
4.165 to 68.335°
—14<h<14,-15<k<11,-20<I<22
16811

5185
[Rint = 0.0429, Rsigma = 0.0428]

99.0%/66.000°
Numerical
1.000 and 0.279
Full-matrix least-squares on F?
5185/31/436
1.042
Ri1=10.0335, wR> =0.0845
R1=0.0382, wR, =0.0876
2.53 and —1.98 e.A3
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Table S20. Crystal and Refinement Data for L3UQ2Na-DCE and L3UO;Na-MeCN.

L5U0;Na-DCE (q49K)

L5U0O:Na-MeCN (q56Kk)

CCDC accession code
Empirical formula
Formula weight
Temperature
Wavelength
Crystal system
Space group

™ o S =

Y
Volume

V4
Density (calculated)
Absorption coefficient
F(000)
Crystal size
Theta range
Index ranges

Reflections collected
Independent reflections

Completeness/Omax
Absorption correction
Max./Min. Transmission
Refinement method
Data/restraints/parameters
Goodness-of-fit on F*
Final R indices [I>20(1)]
R indices (all data)
Largest diff. peak & hole

2344721
C26H31N3010F3SC12NaU
966.52
200(2) K
1.54178
Triclinic
P1 (No. 2)
10.2238(3) A
12.1909(4) A
13.9815(5) A
99.7935(14)°
98.0293(15)°
103.3418(13)°
1641.52(9) A3
2
1.955 g em™
16.814 mm™!
936.0
0.146 x 0.04 x 0.025 mm?
3.811 to 70.574°
—11<h<12,-14<k<14,-14<I<16
20295

5758
[Rint = 0.0497, Rsigma = 0.0453]

96.0%/66.000°
Numerical
1.000 and 0.099
Full-matrix least-squares on F?
5758/52/455
1.047
Ri1=0.0371, wR> = 0.0960
R1=0.0388, wR, = 0.0980
1.86 and —1.87 e.A™3

2344722
C26H30N4010F3SNaU
908.62
200(2) K
1.54178
Triclinic
P1 (No. 2)
9.7725(3) A
12.1131(4) A
14.1658(5) A
75.1951(11)°
80.6655(12)°
73.5073(10)°
1547.22(9) A3
2
1.950 g cm™
16.248 mm™!
880.0
0.099 x 0.074 x 0.024 mm?
3.242 to 70.062°
—11<h<11,-14<k<14,-14<I<16
18109

5409
[Rint = 0.0296, Rsigma = 0.0283]

96.1%/66.000°
Numerical
1.000 and 0.315
Full-matrix least-squares on F?
5409/44/472
1.080
R1=0.0227, wR> = 0.0564
R1=0.0232, wR, = 0.0568
1.83 and —1.51 e.A™3
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Table S21. Crystal and Refinement Data for L3UQ:Li and LUQ;Li.

L3UO;Li (ak2133c)

LSUO:Li (ak2152c¢)

CCDC accession code
Empirical formula
Formula weight
Temperature
Wavelength
Crystal system
Space group

™ o S =

Y
Volume

V4
Density (calculated)
Absorption coefficient
F(000)
Crystal size
Theta range
Index ranges

Reflections collected
Independent reflections

Completeness/Omax
Absorption correction
Max./Min. Transmission

Refinement method

Data/restraints/parameters

Goodness-of-fit on F
Final R indices [[>20(1)]
R indices (all data)
Largest diff. peak & hole

2344723
Ca6H30F3LiN4O10SU
892.57
120(2) K
0.71073
Triclinic
P1 (No. 2)
9.8299(11) A
12.1237(14) A
13.9454(16) A
75.861(2)°
78.916(2)°
70.940(2)°
1511.7(3) A
2
1.961 g cm™
5.518 mm™!
864.0
0.272 x 0.149 x 0.053 mm?
1.517 to 28.313°
—13<h<13,-16<k<16,-18<I<18

35001

7504
[Rint = 0.0223, Rsigma = 0.0177]

100.0%/28.313°
Numerical
1.000 and 0.442
Full-matrix least-squares on F?
7504/66/486
1.075
Ri1=0.0172, wR>=0.0395
R1=0.0195, wR> = 0.0402
1.35and 0.8 e.A?

2344724
Ca6H31F3LiN3O11SU
895.57
1202) K
1.54178
Monoclinic
P2i/c (No. 14)
12.7315(5) A
10.6287(4) A
22.1874(10) A
90°
98.1210(10)°
90°
2972.3(2) A3
4
2.001 gem™
16.780 mm™!
1736.0
0.234 x 0.098 x 0.041 mm?
3.507 to 69.872°
—15<h<15,-12<k<12,-26<I<26
88628

5581
[Rint = 0.0520, Rsigma = 0.0205]

100.0%/69.872°
Numerical
1.000 and 0.420
Full-matrix least-squares on F?
5581/22/431
1.048
R1=0.0347, wR> = 0.0904
Ri1=0.0362, wR> =0.0917
4.03 and —1.03 e.A3
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Table S22. Crystal and Refinement Data for L3UQ2Ca and L3UO;Ca’.

L5U0:Ca (ak2153g)

L5U0:Ca’ (ak2153n-No33)

CCDC accession code
Empirical formula
Formula weight
Temperature
Wavelength
Crystal system
Space group

™ o S =

Y
Volume

V4
Density (calculated)
Absorption coefficient
F(000)
Crystal size
Theta range
Index ranges

Reflections collected
Independent reflections

Completeness/Omax
Absorption correction
Max./Min. Transmission

Refinement method

Data/restraints/parameters

Goodness-of-fit on F
Final R indices [[>20(1)]
R indices (all data)
Largest diff. peak & hole

2344725
C25H27N3013F6S2Cal
1033.72
120(2) K
0.71073
Monoclinic
P2i/c (No. 14)
12.2866(8) A
18.0256(12) A
15.5245(10) A
90°
106.773(2)°
90°
3292.0(4) A3
4
2.086 g cm™
5.316 mm™!
2000.0
0.21 x 0.151 x 0.12 mm?
1.730 to 28.325°
—16<h<16,-24<k<21,-20<1<20
85825

8210
[Rint = 0.0581, Rsigma = 0.0315]

100.0%/25.242°
Numerical
1.000 and 0.638
Full-matrix least-squares on F?
8210/78/561
1.077
R1=0.0481, wR, =0.1042
Ri1 =0.0652, wR> =0.1115
3.74 and —1.68 ¢.A3

2344726
C25H27N3013F6S2Cal
1033.72
120(2) K
0.71073
Orthorhombic
Pna2; (No. 33)
15.7347(10) A
10.8087(7) A
19.3100(12) A
90°
90°
90°
3284.1(4) A3
4
2.091 gem™
5.329 mm™!
2000.0
0.164 x 0.128 x 0.074 mm?
2.159 to 28.314°
—20<h<20,-14<k<14,-25<1<25
87657

8182
[Rint = 0.0449, Ryigma = 0.0222]

99.9%7/28.314°
Multi-scan
1.000 and 0.865
Full-matrix least-squares on F?
8182/149/492
1.094
R1=10.0318, wR> =0.0659
R1=0.0361, wR, =0.0675
2.51 and —-1.56 e.A™3
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