Supporting Information

Tunable Optical and thermodynamic characters: The ignition ways of energetic metal complexes with different crystal fields

Kun Wang^{*a, b**}, Xiaoqi Yang^{*a*}, Peipei Zhang^{*a*}, Shu Bu^{*a*}, Longjiu Cheng^{*a*}, Jianguo Zhang^{*b*}

^a Department of Chemistry, Key Laboratory of Functional Inorganic Materials of Anhui Province, Anhui University, Hefei, Anhui 230601, P. R. China

^bState Key Laboratory of Explosion Science and Technology, Beijing Institute of Technology, Beijing 100081 P. R. China

*Corresponding Author: Kun Wang: wangkun@ahu.edu.cn

Contents

Contents1
Section 1 The confirmation of theoretical methods1
Section 2 Gas-phase structural parameters4
Section 3 Calculation of Crystal structures6
3.1 Theoretical cell parameters of crystal structures
3.2 Structural parameters based on the optimized crystals12
3.3 Density of States and partial density of states
Section 4 CPMD simulations
4.1 Convergence curves of the temperature, virtual kinetic energies of electrons and the total
electronic energies
4.2 The snapshots of the ignition and chain growth steps
Section 5 Optical characters
5.1 The effect of the ligands and anions
5.2 The absorption characters of abstracted gas-phase molecules
5.3 Details of excited states and NIR excitation of molecules
5.4 Proportions of holes and electrons in charge transition of [Cr/Fe/Cu(DAT) ₆](ClO ₄) ₂ 42

Section 1 The confirmation of theoretical methods

The cut-off energy test (with the cutoff energy of 900eV) and k-point test (with the k-points grid of $2\times2\times4$ Monkhorst-Pack meshes of Cr, Fe, Co, Ni, Cu, Zn, and $2\times2\times2$ Monkhorst Pack meshes of Mn) are summarized in Table S1~S2. Based on the tests, we have confirmed the k-points of $2\times2\times4$ and cutoff energy of 900 eV for Cr, Fe, Co, Ni, Cu, Zn, and $2\times2\times2$ and cutoff energy of 900 eV for Mn in the optimization. The convergence standards we applied in the optimization is maintained as: 1) the energy is less than 1×10^{-5} eV/atom; 2) max force is less than 0.03 eV/Å; 3) max stress is less than 0.05 GPa and 4) the displacement is less than 0.001 Å.

[Zn(DAT) ₆ (ClO ₄) ₂					
K points (Monkhorst-pack grid)	Energy (eV)	Time (s)			
1×1×1	-17071.531	134.43			
1×1×2	-17077.268	176.19			
2×1×2	-17071.944	402.98			
2×2×2	-17071.938	318.84			
2×2×3	-17077.247	401.17			
2×2×4	-17077.246	615.07			
2×4×2	-17077.250	791.55			
3×1×2	-17071.944	827.69			
Cutoff energy	Energy (eV)	Time (s)			
600	-17070.937	477.49			
700	-17071.291	643.80			
750	-17071.486	539.14			
800	-17071.663	702.23			
850	-17071.815	905.13			
900	-17077.246	615.07			

Table S1 The tests of k-point grids and cutoff energy of [Zn(DAT)₆(ClO₄)₂.

[Mn(DAT) ₆ (ClO ₄) ₂					
K points (Monkhorst-pack grid)	Energy (eV)	Time (s)			
1×1×1	-32031.913	1231.61			
1×1×2	-32031.912	1581.46			
1×2×1	-32031.904	1074.10			
2×1×1	-32031.904	1236.01			
2×1×2	-32031.904	954.88			
2×2×1	-32031.894	1325.56			
2×2×2	-32031.895	1325.56			
2×2×3	-32031.895	10374.58			
2×4×2	-32031.895	2876.33			
3×1×2	-32031.895	3122.89			
Cutoff energy	Energy (eV)	Time (s)			
700	-32030.621	746.32			
750	-32031.009	1044.95			
800	-32031.367	663.14			
850	-32031.659	1002.61			
900	-32031.895	1445.20			
950	-32032.075	1933.24			
1000	-32032.200	1602.70			

Table S2 The tests of k-point grids and cutoff energy of $[Mn(DAT)_6(ClO_4)_2]$.

Section 2 Gas-phase structural parameters

We have done the benchmark DFT calculation with different basis sets and corresponding time cost for gas-phase $[Zn(DAT)_6](ClO_4)_2$.

	Typical bond length and angles	time
	Zn-N1/N1-CI/N1-N2/N2-N3/N3-N4/N4-C1/N4-N5/N6-C1	
Experimental	2.218/1.332/1.373/1.274/1.355/1.339/1.386/1.317	
results		
6-311G**/m062x	2.225/1.329/1.350/1.267/1.353/1.349/1.378/1.335	18h32m
M062X/def2svp	2.283/1.334/1.340/1.266/1.345/1.353/1.368/1.328	4h28m
M062X/def2tzvp	2.359/1.328/1.349/1.264/1.347/1.347/1.375/1.332	2d19h8m
B3LYP/def2tzvp	2.421/1.335/1.356/1.273/1.358/1.356/1.379/1.328	1d1h28m
TPSSh/def2tzvp	2.354/1.338/1.358/1.277/1.360/1.357/1.383/1.328	1d3h4m
BPW91/def2tzvp	2.407/1.346/1.363/1.287/1.369/1.367/1.384/1.330	21h29m
M062X/def2qzvp	2.320/1.329/1.349/1.264/1.346/1.347/1.375/1.331	18d16h51m

Table S3 The benchmark calculation of the gas-phase structure of $[Zn(DAT)_6](ClO_4)_{2.}$

Table S4 The nature population analysis (NPA) charges of metals and coordinated atoms, bond distances (D(Å)) and Wiberg bond index(WBI (a.u)) of coordinative bonds, configuration of center metal for (a) $[Cr(DAT)_6](ClO_4)_2$; (b) $[Mn(DAT)_6](ClO_4)_2$; (c) $[Fe(DAT)_6](ClO_4)_2$; (d) $[Co(DAT)_6](ClO_4)_2$; (e) $[Ni(DAT)_6](ClO_4)_2$; (f) $[Cu(DAT)_6](ClO_4)_2$; (g) $[Zn(DAT)_6](ClO_4)_2$.

Molecule	NPA change (e)	M-N1/M-N1a/ M-N1b/M-N1c/ M-N1d/M-N1e		M-N1/M-N1a/ N1-N2/N2-N A change (e) M-N1b/M-N1c/ N4-C1/C1-N6/J M-N1d/M-N1e		N1-N2/N2-N3/N3-N4/ N4-C1/C1-N6/N4-N5/Cl-O	configurati	ΔE i (kcal /mol)
	N1/N1a/N1b/N1c /M/N1d/N1e	D(Å)	WBI (a.u.)	D(Å)	_ 01			
(a)	-0.47/-0.53/-0.54/-0.49 /1.61/-0.56/-0.52	2.53/2.15/ 2.16/2.39/ 2.14/2.17	0.05/0.05/0.15/ 0.06/0.06/0.14	1.39/1.29/1.38/ 1.36/1.33/1.37/1.73	(t2g) ⁴ (eg) ⁰	36.03		
(b)	-0.51/-0.52/-0.55/-0.56 /1.72/-0.55/-0.54	2.29/2.30/ 2.26/2.21/ 2.22/2.22	0.07/0.07/0.08/ 0.08/0.08/0.08	1.39/1.29/1.39/ 1.36/1.33/1.37/1.74	(t2g) ⁵ (eg) ⁰	68.80		
(c)	-0.50/-0.54/-0.53/-0.56 /1.71/-0.56/-0.53	2.29/2.21/ 2.22/2.18/ 2.20/2.20	0.07/0.08/0.08/ 0.08/0.09/0.09	1.39/1.29/1.38/ 1.36/1.33/1.37/1.72	(t2g) ⁵ (eg) ¹	50.51		
(d)	-0.49/-0.55/-0.53/-0.54 /1.69/-0.53/-0.54	2.26/2.17/ 2.23/2.13/ 2.27/2.14	0.08/0.09/0.08/ 0.09/0.09/0.10	1.38/1.29/1.38/ 1.36/1.33/1.37/1.73	(t2g) ⁵ (eg) ²	33.55		
(e)	-0.51/-0.51/-0.53/-0.55 /1.66/-0.54/-0.53	2.17/2.20/ 2.17/2.11/ 2.12/2.11	0.08/0.08/0.13/ 0.18/0.05/0.06	1.39/1.29/1.39/ 1.36/1.33/1.37/1.73	(t2g) ⁶ (eg) ²			
(f)	-0.47/-0.55/-0.55/-0.56 /1.66/-0.58/-0.53	2.54/2.07/ 2.08/2.31/ 2.05/2.09	0.05/0.10/0.11/ 0.05/0.11/0.11	1.39/1.29/1.38/ 1.36/1.33/1.37/1.73	(t2g) ⁶ (eg) ³			
(g)	-0.50/-0.55/-0.55/-0.57 /1.75/-0.56/-0.54	2.28/2.17/ 2.17/2.14/	0.07/0.07/0.08/ 0.07/0.08/0.08	1.39/1.29/1.38/ 1.36/1.33/1.37/1.73	(t2g) ⁶ (eg) ⁴			

Section 3 Calculation of Crystal structures

3.1 Theoretical cell parameters of crystal structures

In the optimization, the convergence standards we applied is maintained as: 1) the energy is less than 1×10^{-5} eV/atom; 2) max force is less than 0.03 eV/Å; 3) max stress is less than 0.05 GPa and 4) the displacement is less than 0.001 Å. We have confirmed the k-points of $2 \times 2 \times 4$ for Cr, Fe, Co, Ni, Cu, Zn complexes, and $2 \times 2 \times 2$ for $[Mn(DAT)_6](ClO_4)_2$. The cutoff energy of 900 eV has been set as for all the complexes in the optimization.

	[Cr(DAT) ₆](ClO ₄) ₂		coordinates	
<i>a</i> (Å)	11.7917	Ν	0.07354 0.18010 0.30716	.30716
$b(\text{\AA})$	11.7917	Ν	0.20537 0.25881 0.26495	1.26495
$c(\text{\AA})$	6.4497	Ν	0.23354 0.37604 0.20459	1.20459
α(°)	90.0000	Ν	0.11580 0.37468 0.20542	.20542
$eta(^\circ)$	90.0000	Ν	0.09510 0.47622 0.14928	.14928
γ(°)	120.0000	Н	0.14815 0.55650 0.24315	.24315
Symmetry	<i>P-3</i>	Н	0.11894 0.50093 -0.00430	0.00430
		Ν	-0.10652 0.22254 0.28063	0.28063
		Н	-0.12863 0.29418 0.24651	.24651
	x,y,z	Н	-0.17792 0.12418 0.28715	0.28715
	-y,x-y,z	С	0.01832 0.25434 0.26620	.26620
Symmetry code	-x+y,-x,z	Ο	0.58053 0.37843 0.29267	.29267
	-x,-y,-z	Cr	0.00000 0.00000 0.50000	.50000
	y,-x+y,-z	Cl	0.66667 0.33333 0.36634	1.36634
	x-y,x,-z	Ο	0.66667 0.33333 0.58945	1.58945

Table S5 The theoretical cell parameters of the optimized $[Cr(DAT)_6](ClO_4)_2$.

	[Mn(DAT) ₆](ClO ₄)	2	coo	rdinates	
<i>a</i> (Å)	11.8435	N	0.18292	0.10596	0.15155
b(Å)	11.8435	Ν	0.26216	0.05383	0.13231
$c(\text{\AA})$	13.0810	Ν	0.37845	0.14299	0.10176
$\alpha(^{\circ})$	90.0000	Ν	0.37551	0.25814	0.10032
$\beta(^{\circ})$	90.0000	Ν	0.47704	0.38054	0.07443
γ(°)	120.0000	Н	0.50350	0.38276	-0.00104
Symmetry	P-3C1	Н	0.55597	0.40702	0.12186
		Ν	0.22476	0.32767	0.14275
		Н	0.12701	0.30176	0.14546
	x,y,z	Н	0.29496	0.42082	0.12345
	-y,x-y,z	С	0.25604	0.23476	0.13155
Symmetry code	-x+y,-x,z	Ο	0.79766	0.37997	0.35660
	y,x,-z+1/2	Mn	0.00000	0.00000	0.25000
	x-y,-y,-z+1/2	Cl	0.66667	0.33333	0.32020
	-x,-x+y,-z+1/2	Ο	0.66667	0.33333	0.21015
	-x,-y,-z				
	y,-x+y,-z				
	x-y,x,-z				
	-y,-x,z+1/2				
	-x+y,y,z+1/2				
	x,x-y,z+1/2				

Table S6 The theoretical cell parameters of the optimized $[Mn(DAT)_6](ClO_4)_2$.

	[Fe(DAT) ₆](ClO ₄) ₂		coordinates		
<i>a</i> (Å)	11.7755	Ν	0.17881	0.10579	0.31048
$b(\text{\AA})$	11.7755	Ν	0.25701	0.05217	0.26659
$c(\text{\AA})$	6.4476	Ν	0.37404	0.14066	0.20407
α(°)	90.0000	Ν	0.37331	0.25749	0.20516
$\beta(^{\circ})$	90.0000	Ν	0.47524	0.37967	0.14869
γ(°)	120.0000	Н	0.55567	0.40651	0.24228
Symmetry	P-3	Н	0.49962	0.38048	-0.00510
		Ν	0.22241	0.32899	0.28301
		Н	0.29424	0.42244	0.24689
	x,y,z	Н	0.12390	0.30210	0.29046
	-y,x-y,z	С	0.25335	0.23524	0.26805
Symmetry code	-x+y,-x,z	О	0.20196	0.58028	0.29263
	-x,-y,-z	Fe	0.00000	0.00000	0.50000
	y,-x+y,-z	Cl	0.33333	0.66667	0.36626
	x-y,x,-z	Ο	0.33333	0.66667	0.58954

Table S7 The theoretical cell parameters of the optimized $[Fe(DAT)_6](ClO_4)_2$.

Table S8 The theoretical cell parameters of the optimized $[Co(DAT)_6](ClO_4)_2$.

[Co(DAT) ₆](ClO ₄) ₂		coordinates
11.7577	N	0.17772 0.10529 0.31203
11.7577	Ν	0.25478 0.05086 0.26415
6.4306	Ν	0.37169 0.13895 0.19944
90.0000	Ν	0.37205 0.25645 0.20372
90.0000	Ν	0.47430 0.37861 0.14689
120.0000	Н	0.55539 0.40460 0.23893
P-3	Н	0.49751 0.37989 -0.00797
	[Co(DAT)6](ClO4)2 11.7577 11.7577 6.4306 90.0000 90.0000 120.0000 P-3	[Co(DAT)6](CIO4)2 11.7577 N 11.7577 N 6.4306 N 90.0000 N 90.0000 N 120.0000 H P-3 H

		Ν	0.22309 0.32966 0.28819
		Н	0.29522 0.42278 0.24969
	x,y,z	Н	0.12432 0.30269 0.29275
	-y,x-y,z	С	0.25281 0.23500 0.27009
Symmetry code	-x+y,-x,z	Ο	0.20181 0.57972 0.29594
	-X,-Y,-Z	Co	0.00000 0.00000 0.50000
	y,-x+y,-z	Cl	0.33333 0.666667 0.36952
	x-y,x,-z	Ο	0.33333 0.666667 0.59348

Table S9 The theoretical cell parameters of the optimized $[Ni(DAT)_6](ClO_4)_2$.

	[Ni(DAT) ₆](ClO ₄) ₂		coordinates
a (Å)	11.7517	Ν	0.17534 0.10477 0.31283
$b(\text{\AA})$	11.7517	Ν	0.25137 0.04950 0.26382
c(Å)	6.4186	Ν	0.36868 0.13708 0.19928
α(°)	90.0000	Ν	0.37009 0.25507 0.20435
$\beta(^{\circ})$	90.0000	Ν	0.47311 0.37710 0.14815
γ(°)	120.0000	Н	0.55376 0.40236 0.24121
Symmetry	P-3	Н	0.49669 0.37834 -0.00682
		Ν	0.22298 0.33024 0.29119
		Н	0.29545 0.42284 0.25085
	x,y,z	Н	0.12423 0.30354 0.29386
	-y,x-y,z	С	0.25126 0.23454 0.27175
Symmetry code	-x+y,-x,z	Ο	0.20183 0.57967 0.29412
	-x,-y,-z	Ni	0.00000 0.00000 0.50000
	y,-x+y,-z	Cl	0.33333 0.66667 0.36785
	x-y,x,-z	0	0.33333 0.66667 0.59235

	[Cu(DAT) ₆](ClO ₄) ₂		coordinates		
<i>a</i> (Å)	11.7741	Ν	0.17811 0.10566 0.30996		
$b(\text{\AA})$	11.7741	Ν	0.25643 0.05226 0.26902		
$c(\text{\AA})$	6.4382	Ν	0.37383 0.14074 0.20736		
α(°)	90.0000	Ν	0.37288 0.25745 0.20701		
$\beta(^{\circ})$	90.0000	Ν	0.47528 0.37980 0.15244		
γ(°)	120.0000	Н	0.55484 0.40654 0.24821		
Symmetry	P-3	Н	0.50115 0.38109 -0.00088		
		Ν	0.22148 0.32889 0.28123		
		Н	0.29340 0.42228 0.24492		
	x,y,z	Н	0.12296 0.30190 0.28969		
	-y,x-y,z	С	0.25251 0.23513 0.26809		
Symmetry code	-x+y,-x,z	Ο	0.20190 0.58048 0.28758		
	-x,-y,-z	Cu	0.00000 0.00000 0.50000		
	y,-x+y,-z	Cl	0.33333 0.666667 0.36137		
	x-y,x,-z	0	0.33333 0.666667 0.58485		

Table S10 The theoretical cell parameters of the optimized $[Cu(DAT)_6](ClO_4)_2$.

	[Zn(DAT) ₆](ClO ₄))2	coordinates
<i>a</i> (Å)	11.7801	Ν	0.07322 0.17984 0.30852
$b(\text{\AA})$	11.7801	Ν	0.20490 0.25810 0.26635
c(Å)	6.4500	Ν	0.23336 0.37511 0.20397
a(°)	90.0000	Ν	0.11565 0.37406 0.20436
$eta(^\circ)$	90.0000	Ν	0.09520 0.47586 0.14827
γ(°)	120.0000	Н	0.14888 0.55628 0.24172
Symmetry	P-3	Н	0.11838 0.50024 -0.00554
		Ν	-0.10683 0.22247 0.28124
		Н	-0.12878 0.29414 0.24588
	x,y,z	Н	-0.17831 0.12402 0.28862
	-y,x-y,z	С	0.01802 0.25392 0.26659
Symmetry code	-x+y,-x,z	Ο	0.58022 0.37819 0.29394
	-x,-y,-z	Zn	0.00000 0.00000 0.50000
	y,-x+y,-z	Cl	0.666667 0.33333 0.36762
	x-y,x,-z	Ο	0.66667 0.33333 0.59081

Table S11 The theoretical cell parameters of the optimized $[Zn(DAT)_6](ClO_4)_2$.

3.2 Structural parameters based on the optimized crystals

Table S12 The band gaps, selected atomic charges, Metal stabilization energy (MSE), typical bondlengths and bond angles of $[Cr(DAT)_6](ClO_4)_2$.

Cr(DAT) ₆ (ClO ₄) ₂							
Band gap	0			MSE(eV)	-11.80		
Charge(N1/N1a/N1b/M/N1c/N1d/N1e)				-0.13/-0.13/-0.13/0.40/-0.13/-0.13/-0.13			
Charge(C1/C1a/C1b/C1c/C1d/N1e)				0.13/0.13/0.13/0.13/0.13	3/0.13		
Charge(N2/N3/N4/N5)			-0.03/-0.05/0.05/-0.14				
M-N1(D/P)	2.24/0.13	C1a-N1a(D/P)	1.35/1.01	N3-N4(D/P)	1.38/0.68		
M-N1a(D/P)	2.24/0.13	C1c-N1c(D/P)	1.35/1.01	N4-N5(D/P)	1.38/0.59		
M-N1b(D/P)	2.24/0.13	C1d-N1d(D/P)	1.35/1.01	Cl-O(D/P)	1.44/0.43		
M-N1c(D/P)	2.24/0.13	C1e-N1e(D/P)	1.35/1.01	N1a-M-N1b(°)	88.09		
M-N1d(D/P)	2.24/0.13	C1b-N1b(D/P)	1.35/1.01	N1b-M-N1c(°)	91.91		
M-N1e(D/P)	2.24/0.13	C1-N4(D/P)	1.36/0.93	N1c-M-N1d(°)	91.91		
C1-N1(D/P)	1.35/1.01	N2-N3(D/P)	1.31/0.91	N1d-M-N1e(°)	88.09		

Mn(DAT) ₆ (ClO ₄) ₂						
Band gap	2.15			MSE (eV)	-15.01	
Charge(N1/N1a/N1b/M/N1c/N1d/N1e)				-0.11/-0.11/-0.11/0.32/-0.1	1/-0.11/-0.11	
Charge(C1/C1a/C1b/C1c/C1d/N1e)				0.13/0.13/0.13/0.13/0.13/0.13/		
Charge(N2/N3/N4/N	5)			-0.03/-0.05/0.05/-0.14		
M-N1(D/P)	2.28/0.19	C1a-N1a(D/P)	1.35/1.01	N3-N4(D/P)	1.38/0.68	
M-N1a(D/P)	2.28/0.19	C1b-N1b(D/P)	1.35/1.01	N4-N5(D/P)	1.38/0.59	
M-N1b(D/P)	2.28/0.19	C1c-N1c(D/P)	1.35/1.01	Cl-O(D/P)	1.44/0.42	
M-N1c(D/P)	2.28/0.19	C1d-N1d(D/P)	1.35/1.01	N1-M-N1a(°)	95.20	
M-N1d(D/P)	2.28/0.19	C1e-N1e(D/P)	1.35/1.01	N1a-M-N1b(°)	82.87	
M-N1e(D/P)	2.28/0.19	C1-N4(D/P)	1.36/0.93	N1b-M-N1c(°)	95.20	
C1-N1(D/P)	1.35/1.01	N2-N3(D/P)	1.30/0.90	N1c-M-N1d(°)	82.87	

Table S13 The band gaps, selected atomic charges, MSE, typical bond lengths and bond angles of $[Mn(DAT)_6](ClO_4)_2$.

Fe(DAT) ₆ (ClO ₄) ₂					
Band gap	0			MSE(eV)	-17.81
Charge(N1/N1a/N1b	/M/N1c/N1d/N	N1e)		-0.10/-0.10/-0.10/0.27/-0.1	0/-0.10/-0.10
Charge(C1/C1a/C1b	/C1c/C1d/N1e)		0.13/0.13/0.13/0.13/0.13/0	0.13
Charge(N2/N3/N4/N	5)			-0.03/-0.05/0.05/-0.14	
M-N1(D/P)	2.23/0.19	C1a-N1a(D/P)	1.35/1.00	N3-N4(D/P)	1.38/0.68
M-N1a(D/P)	2.23/0.19	C1b-N1b(D/P)	1.35/1.00	N4-N5(D/P)	1.38/0.60
M-N1b(D/P)	2.23/0.19	C1c-N1c(D/P)	1.35/1.00	Cl-O(D/P)	1.44/0.43
M-N1c(D/P)	2.23/0.19	C1d-N1d(D/P)	1.35/1.00	N1-M-N1a(°)	89.05
M-N1d(D/P)	2.23/0.19	C1e-N1e(D/P)	1.35/1.00	N1a-M-N1b(°)	90.95
M-N1e(D/P)	2.23/0.19	C1-N4(D/P)	1.36/0.93	N1b-M-N1c(°)	90.95
C1-N1(D/P)	1.35/1.00	N2-N3(D/P)	1.31/0.91	N1c-M-N1d(°)	89.05

Table S14 The band gaps, selected atomic charges, MSE, typical bond lengths and bond angles of $[Fe(DAT)_6](ClO_4)_2$.

Co(DAT) ₆ (ClO ₄) ₂					
Band gap	0.51			MSE (eV)	-14.46
Charge(N1/N1a/N1b/M/N1c/N1d/N1e)				-0.10/-0.10/-0.10/0.24/-0.	10/-0.10/-0.10
Charge(C1/C1a/C1b/C1c/C1d/N1e)				0.13/0.13/0.13/0.13/0.13/	0.13
Charge(N2/N3/N4/N	5)			-0.02/-0.05/0.05/-0.14	
M-N1(D/P)	2.20/0.20	C1a-N1a(D/P)	1.35/1.00	N4-N5(D/P)	1.38/0.60
M-N1a(D/P)	2.20/0.20	C1b-N1b(D/P)	1.35/1.00	Cl-O(D/P)	1.44/0.43
M-N1b(D/P)	2.20/0.20	C1d-N1d(D/P)	1.35/1.00	N1-M-N1a(°)	91.67
M-N1c(D/P)	2.20/0.20	C1e-N1e(D/P)	1.35/1.00	N1a-M-N1b(°)	88.33
M-N1d(D/P)	2.20/0.20	C1-N4(D/P)	1.36/0.93	N1b-M-N1c(°)	91.67
M-N1e(D/P)	2.20/0.20	N2-N3(D/P)	1.31/0.91	N1c-M-N1d(°)	91.67
C1-N1(D/P)	1.35/1.00	N3-N4(D/P)	1.38/0.68	N1d-M-N1e(°)	88.33

Table S15 The band gaps, selected atomic charges, MSE, typical bond lengths and bond angles of $[Co(DAT)_6](ClO_4)_2$.

Ni(DAT) ₆ (ClO ₄) ₂					
Band gap	1.63			MSE (eV)	-15.55
Charge(N1/N1a/N1b/M/N1c/N1d/N1e)				-0.09/-0.09/-0.09/0.20/-0.0	09/-0.09/-0.09
Charge(C1/C1a/C1t	o/C1c/C1d/N1e	2)		0.13/0.13/0.13/0.13/0.13/0).13/
Charge(N2/N3/N4/N	[5)			-0.02/-0.05/0.05/-0.14	
M-N1(D/P)	2.17/0.22	C1a-N1a(D/P)	1.35/1.01	N3-N4(D/P)	1.38/0.68
M-N1a(D/P)	2.17/0.22	C1b-N1b(D/P)	1.35/1.01	N4-N5(D/P)	1.38/0.60
M-N1b(D/P)	2.17/0.22	C1c-N1c(D/P)	1.35/1.01	Cl-O(D/P)	1.44/0.43
M-N1c(D/P)	2.17/0.22	C1d-N1d(D/P)	1.35/1.01	N1-M-N1a(°)	87.86
M-N1d(D/P)	2.17/0.22	C1e-N1e(D/P)	1.35/1.01	N1a-M-N1b(°)	92.14
M-N1e(D/P)	2.17/0.22	C1-N4(D/P)	1.36/0.93	N1b-M-N1c(°)	92.14
C1-N1(D/P)	1.35/1.01	N2-N3(D/P)	1.31/0.91	N1c-M-N1d(°)	87.86

Table S16 The band gaps, selected atomic charges, MSE, typical bond lengths and bond angles of $[Ni(DAT)_6](ClO_4)_2$.

$Cu(DAT)_6(ClO_4)_2$						
Band gap	0			MSE (eV)	-12.00	
charge(N1/N1a/N1b/M/N1c/N1d/N1e)				-0.12/-0.12/-0.12/0.38/-0.1	2/-0.12/-0.12	
charge(C1/C1a/C1b/C1c/C1d/N1e)				0.13/0.13/0.13/0.13/0.13/0.13		
charge(N2/N3/N4/N5)				-0.02/-0.05/0.05/-0.14		
M-N1(D/P)	2.20/0.15	C1a-N1a(D/P)	1.35/1.01	N3-N4(D/P)	1.38/0.68	
M-N1a(D/P)	2.20/0.15	C1b-N1b(D/P)	1.35/1.01	N4-N5(D/P)	1.38/0.60	
M-N1b(D/P)	2.20/0.15	C1c-N1c(D/P)	1.35/1.01	Cl-O(D/P)	1.44/0.43	
M-N1c(D/P)	2.20/0.15	C1d-N1d(D/P)	1.35/1.01	N1-M-N1a(°)	88.01	
M-N1d(D/P)	2.20/0.15	C1e-N1e(D/P)	1.35/1.01	N1a-M-N1b(°)	91.99	
M-N1e(D/P)	2.20/0.15	C1-N4(D/P)	1.36/0.93	N1b-M-N1c(°)	91.99	
C1-N1(D/P)	1.35/1.01	N2-N3(D/P)	1.31/0.91	N1c-M-N1d(°)	88.01	

Table S17 The band gaps, selected atomic charges, MSE, typical bond lengths and bond angles of $[Cu(DAT)_6](ClO_4)_2$.

$Zn(DAT)_6(ClO_4)_2$						
Band gap	3.59			MSE(eV)	-13.62 eV	
charge(N1/N1a/N1b/	/M/N1c/N1d/N	1e)		-0.12/-0.12/-0.12/0.40/-0.	12/-0.12/-0.12	
charge(C1/C1a/C1b/C1c/C1d/N1e)				0.13/0.13/0.13/0.13/0.13/0.13		
charge(N2/N3/N4/N	5)			-0.03/-0.05/0.05/-0.14		
M-N1(D/P)	2.22/0.21	C1a-N1a(D/P)	1.35/1.01	N3-N4(D/P)	1.38/0.68	
M-N1a(D/P)	2.22/0.21	C1b-N1b(D/P)	1.35/1.01	N4-N5(D/P)	1.38/0.60	
M-N1b(D/P)	2.22/0.21	C1c-N1c(D/P)	1.35/1.01	Cl-O(D/P)	1.44/0.43	
M-N1c(D/P)	2.22/0.21	C1d-N1d(D/P)	1.35/1.01	N1-M-N1a(°)	87.71	
M-N1d(D/P)	2.22/0.21	C1e-N1e(D/P)	1.35/1.01	N1a-M-N1b(°)	92.29	
M-N1e(D/P)	2.22/0.21	C1-N4(D/P)	1.36/0.93	N1b-M-N1c(°)	92.29	
C1-N1(D/P)	1.35/1.01	N2-N3(D/P)	1.31/0.92	N1c-M-N1d(°)	87.71	

Table S18 The band gaps, selected atomic charges, MSE, typical bond lengths and bond angles of $[Zn(DAT)_6](ClO_4)_2$.

3.3 Density of States and partial density of states

We performed the Density of states and partial density of states for the seven complexes based on the optimized structures.

Figure S1 The density of states (DOS) and partial density of states (pDOS) of [Cr(DAT)₆](ClO₄)₂.

Figure S2 The density of states (DOS) and partial density of states (pDOS) of [Mn(DAT)₆](ClO₄)₂.

Figure S3. The density of states (DOS) and partial density of states (pDOS) of $[Fe(DAT)_6](ClO_4)_2$.

Figure S4. The density of states (DOS) and partial density of states (pDOS) of $[Co(DAT)_6](ClO_4)_2$.

Figure S5. The density of states (DOS) and partial density of states (pDOS) of [Ni(DAT)₆](ClO₄)₂.

Figure S6. The density of states (DOS) and partial density of states (pDOS) of $[Cu(DAT)_6](ClO_4)_2$.

Figure S7. The density of states (DOS) and partial density of states (pDOS) of $[Zn(DAT)_6](ClO_4)_2$.

Section 4 CPMD simulations

4.1 Convergence curves of the temperature, virtual kinetic energies of electrons and the total electronic energies

The convergence statements suggest the equilibrium of the system before increasing the temperature, which is a necessary step in the molecular dynamic study. In this step, we initialize both the electronic and ionic velocities to zero to conserve the total energy and stay close to the Born-Oppenheimer surface.

In addition, the atomic force should converge to an appropriate range (around 10^{-3} atomic units) on the basis of the ground state structure. With the increased temperature, the system tends to equilibrium under the Nose's thermostats. We put the convergence of temperature of ions (T_{ions}), kinetic energies of virtual electrons (E_{kinc}) and the total electronic energies (E_{tot}) in Figure S8~S14, indicating our systems have been relaxed enough for the preparation of CPMD study.

Figure S8. The convergence curves of the temperature of ions (T_{ions}), kinetic energies of virtual electrons (E_{kinc}) and the total electronic energies (E_{tot}) of [$Cr(DAT)_6$](ClO_4)₂.

Figure S9. The convergence curves of the temperature of ions (T_{ions}) , kinetic energies of virtual electrons (E_{kinc}) and the total electronic energies (E_{tot}) of $[Mn(DAT)_6](ClO_4)_2$.

Figure S10. The convergence curves of the temperature of ions (T_{ions}) , kinetic energies of virtual electrons (E_{kinc}) and the total electronic energies (E_{tot}) of $[Fe(DAT)_6](ClO_4)_2$.

Figure S11. The convergence curves of the temperature of ions (Tions), kinetic energies of virtual electrons (Ekinc) and the total electronic energies (Etot) of $[Co(DAT)_6](ClO_4)_2$.

Figure S12. The convergence curves of the temperature of ions (T_{ions}) , kinetic energies of virtual electrons (E_{kinc}) and the total electronic energies (E_{tot}) of $[Ni(DAT)_6](ClO_4)_2$.

Figure S13. The convergence curves of the temperature of ions (T_{ions}) , kinetic energies of virtual electrons (E_{kinc}) and the total electronic energies (E_{tot}) of $[Cu(DAT)_6](ClO_4)_2$.

Figure S14. The convergence curves of the temperature of ions (T_{ions}) , kinetic energies of virtual electrons (E_{kinc}) and the total electronic energies (E_{tot}) of $[Zn(DAT)_6](ClO_4)_2$.

4.2 The snapshots of the ignition and chain growth steps

Figure S15. The snapshots of the chain initiation and chain growth process of $[Cr(DAT)_6](ClO_4)_2$.

Figure S16. The snapshots of the chain initiation and chain growth process of $[Mn(DAT)_6](ClO_4)_2$.

Figure S17. The snapshots of the chain initiation and chain growth process of $[Fe(DAT)_6](ClO_4)_2$.

Figure S18. The snapshots of the chain initiation and chain growth process of $[Co(DAT)_6](ClO_4)_2$.

Figure S19. The snapshots of the chain initiation and chain growth process of $[Ni(DAT)_6](ClO_4)_2$.

Figure S20. The snapshots of the chain initiation and chain growth process of $[Cu(DAT)_6](ClO_4)_2$.

Figure S21. The snapshots of the chain initiation and chain growth process of $[Zn(DAT)_6](ClO_4)_2$.

Section 5 Optical characters

5.1 The effect of the ligands and anions

The peaks of NO_3^- and ClO_4^- are also similar with each other in the vis-NIR area. But for the electronic properties in Table 3, compare with 1-AT, DAT appears lower ionization energy (IE) and weaker electron affinity (EA). Therefore, DAT appears stronger Lewis basicity than that of 1-AT. ClO_4^- appears stronger IE and EA than that of NO_3^- .

Table S19 The ionization energy (IE) and electron affinity (EA) of center metal.

	DAT	ClO ₄ -	1-AT	NO ₃ -
EA	52.55	-230.01	-19.81	-182.85
IE	45.66	128.20	236.96	93.69

Figure S22 The absorption spectrum of 1-AT, DAT, NO_3^- and CIO_4^- ranged at 200 ~1000 nm.

5.2 The absorption characters of abstracted gas-phase molecules

Figure S23 The absorption spectrum of seven Gas-phase bimoleculars ranged at 800 ~1200 nm.

5.3 Details of excited states and NIR excitation of molecules

Table S20 The excited states and NIR excitation $(1.03 \sim 1.38 \text{ eV})$ with the corresponding energies, oscillator strengths and the CT modes of $[Cr(DAT)_6](ClO_4)_2$.

[Cr(DAT) ₆](ClO ₄) ₂					
Excitation	S0→S1	S0→S2	S0→S3	S0→S4	S0→S5
Energy	0.0629 eV	0.1016 eV	0.1194 eV	0.1645 eV	0.3955 eV
(wavelength)	19726.81 nm	12198.66 nm	10380.67 nm	7538.40 nm	3134.51 nm
Oscillator strength	0.0035	0	0	0.02	0.021
Excitation	S0→S6	S0→S 7	S0 → S8	S0→S9	S0→S10
En angel(mana lan eth)	0.5133 eV 241	0.5551 eV	0.6162 eV	0.6626 eV	0.7372 eV
Energy(wave length)	5.64 nm	2233.49 nm	2012.20 nm	1871.24 nm	1681.92 nm
oscillator strength	0.013	0.045	0.067	0.004	0.037
Excitation	S0→S14	S0→S15	S0→S20		
En angel(mana lan eth)	1.1642 eV	1.1675 eV	1 2592 -14		
Energy(wave length)	1065.01 nm	1061.95 nm	1.2382 ev		
oscillator strength	0.04	0.05	0.02		

Table S21 The excited states and NIR excitation $(1.03 \sim 1.38 \text{ eV})$ with the corresponding energies, oscillator strengths and the CT modes of $[Mn(DAT)_6](ClO_4)_{2.}$

[Mn(DAT) ₆](ClO ₄) ₂					
Excitation	S0→S1	S0→S2	S0→S3	S0→S 4	S0→S5
Enorgy (wave longth)	1.0072 eV	1.0315 eV	1.1339 eV	1.1581 eV	1.1782 eV
Energy(wave length)	1230.99 nm	1202.00 nm	1093.43 nm	1070.55 nm	1052.30 nm
oscillator strength	0	0	0	0	0
Excitation	S0→S6	S0→S 7	S0→S8	S0→S9	S0→S10
Enorgy (wave longth)	1.1792 eV	1.2311 eV	1.2553 eV	1.3052 eV	1.3062 eV
Energy(wave length)	1051.47 nm	1007.11 nm	987.71 nm	949.93 nm	949.23 nm
oscillator strength	0	0	0	0	0

Table S22 The excited states and NIR excitation $(1.03 \sim 1.38 \text{ eV})$ with the corresponding energies, oscillator strengths and the CT modes of $[Fe(DAT)_6](ClO_4)_2$.

[Fe(DAT) ₆](ClO ₄) ₂					
Excitation	S0→S1	\$0 → \$2	S0→S3	S0→S4	S0→S5
	0.2697 eV	0.2738 eV	0.4832 eV	0.4967 eV	0.6437 eV
Energy(wave length)	4597.05 nm	4528.97 nm	2565.77 nm	2496.06 nm	1926.03 nm
oscillator strength	0	0.001	0.002	0.002	0
	S0→S6	S0→S 7	S0→S8	S0→S9	S0→S10
	0.7854 eV	0.7931 eV	0.9342 eV	1.0340 eV	1.0913 eV
Energy(wave length)	1578.69 nm	1563.25 nm	1327.18 nm	1199.05 nm	1136.16 nm
oscillator strength	0	0.003	0	0.01	0.06
	S0→S11	S0→S13	S0→S14		
	1.2074 eV	1.2532 eV	1.4004 eV		
Energy(wave length)	1026.86 nm	989.46	885.33 nm		
oscillator strength	0.04	0.04	0.01		

Table S23 The excited states and NIR excitation $(1.03 \sim 1.38 \text{ eV})$ with the corresponding energies, oscillator strengths and the CT modes of $[Co(DAT)_6](ClO_4)_2$.

$[Co(DAT)_6](ClO_4)_2$					
Excitation	S0→S1	S0→S2	\$0 → \$3	S0→S4	S0→S5
En angri(mana langth)	0.6371 eV	0.6773 eV	0.8056 eV	0.9241 eV	0.9320 eV
Energy(wave length)	1946.20	1830.56 nm	1539.10 nm	1341.66 nm	1330.28 nm
oscillator strength	0	0	0	0	0
Excitation	S0→S6	S0→S7	S0→S8	S0→S9	S0→S10
	0.9644 eV	0.9726 eV	1.0485 eV	1.0930 eV	1.0934 eV
Energy(wave length)	1285.60 nm	1274.79 nm	1182.45 nm	1134.34 nm	1133.93 nm
oscillator strength	0	0	0	0	0

Table S24 The excited states and NIR excitation $(1.03 \sim 1.38 \text{ eV})$ with the corresponding energies, oscillator strengths and the CT modes of $[Ni(DAT)_6](CIO_4)_2$.

[Ni(DAT) ₆](ClO ₄) ₂					
Excitation	S0→S1	S0→S2	S0→S3	S0→S4	S0→S5
	0.8921 eV	0.9174 eV	0.9326 eV	0.9578 eV	1.0389 eV
Energy(wave length)	1389.74 nm	1351.45 nm	1329.49 nm	1294.48 nm	1193.44 nm
oscillator strength	0	0	0	0	0
Excitation	S0→S6	S0→S 7	S0→S8	S0→S9	S0→S10
Energy(wave length)	1.0606 eV	1.0794 eV	1.0859 eV	1.0933 eV	1.1342 eV
	1169.05 nm	1148.62 nm	1141.80 nm	1134.01 nm	1093.13 nm
oscillator strength	0	0	0	0	0

Table S25 The excited states and NIR excitation $(1.03 \sim 1.38 \text{ eV})$ with the corresponding energies, oscillator strengths and the CT modes of $[Cu(DAT)_6](ClO_4)_2$.

[Cu(DAT) ₆](ClO ₄) ₂					
Excitation	S0→S1	S0→S2	S0→S3	S0→S4	S0→S5
Energy(wave length)	0.1860 eV	0.2462 eV	0.3838 eV	0.4622 eV	0.6531 eV
	6667.08 nm	5035.25 nm	3230.39 nm	2682.65 nm	1898.49 nm
oscillator strength	0.0042	0.0160	0.024	0.068	0.04
Excitation	S0→S6	S0→S 7	S0→S8	S0→S9	S0→S10
Energy(wave length)	0.7015 eV	0.8602 eV	1.1260 eV	1.4571 eV	1.5277 eV
	1767.38 nm	1441.34 nm	1101.13 nm	850.92 nm	811.60 nm
oscillator strength	0.04	0.11	0.16	0.007	0.024

Table S26 The excited states and NIR excitation $(1.03 \sim 1.38 \text{ eV})$ with the corresponding energies, oscillator strengths and the CT modes of $[\text{Zn}(\text{DAT})_6](\text{ClO}_4)_2$.

$[Zn(DAT)_6](ClO_4)_2$					
Excitation	S0→S1	S0→S2	S0→S3	S0→S4	S0→S5
E.,	0.8894 eV	0.9289 eV	1.0539 eV	1.0610 eV	1.0939 eV
Energy(wave length)	1393.95 nm	1334.76 nm	1176.43 nm	1168.51 nm	1133.41 nm
oscillator strength	0	0	0	0	0
Excitation	S0→S6	S0→S 7	S0→S8	S0→S9	S0→S10
Energy(wave length)	1.2264 eV	1.2966 eV	1.3858 eV	1.4613 eV	1.5045 eV
	1010.93 nm	956.25 nm	894.70 nm	848.48 nm	824.11 nm
oscillator strength	0	0	0	0	0

5.4 Proportions of holes and electrons in charge transition of [Cr/Fe/Cu(DAT)₆](ClO₄)₂

[Cr(DAT) ₆](ClO ₄) ₂	S14		S15		S20	
	Hole	Electron	Hole	Electron	Hole	Electron
\mathbf{M}^{2+}	73.43 %	1.47 %	0.07 %	0.00 %	72.85 %	1.44 %
Ligands	26.50%	97.51%	2.53%	0.01 %	19.81%	98.51%
ClO ₄ -	0.03%	0.01%	0.00 %	0.00 %	0.03%	0.01%
M ²⁺	0.01 %	0.19 %	68.48 %	1.73 %	0.55 %	0.01 %
Ligands	0.02 %	0.83%	28.89%	98.24%	0.79%	0.01 %
ClO ₄ -	0.00 %	0.00 %	0.04%	0.01 %	0.00 %	0.04%

Table S27 Proportions of holes and electrons of [Cr(DAT)₆](ClO₄)₂ in charge transition.

Table S28 Proportions of holes and electrons of $[Fe(DAT)_6](ClO_4)_2$ in charge transition.

[Fe(DAT) ₆](ClO ₄) ₂	S	89	S	10	S	511	S	13
	Hole	Electron	Hole	Electron	Hole	Electron	Hole	Electron
M ²⁺	0.01 %	0.65 %	0.01 %	11.18 %	0.01 %	0.18 %	0.01 %	0.18 %
Ligands	1.79%	99.28	1.73%	88.17%	1.74%	1.71%	1.80%	2.38%
ClO ₄ -	48.50%	0.03%	46.69%	0.11%	46.72%	1.42 %	48.29 %	4.13 %
\mathbf{M}^{2+}	0.44 %	0.00 %	1.39 %	0.05 %	1.36 %	11.21 %	0.56 %	4.30%
Ligands	49.11%	0.03 %	50.02%	0.48%	50.00%	85.44%	49.20%	89.11%
ClO ₄ -	0.14 %	0.00 %	0.14 %	0.00 %	0.14 %	0.03%	0.15 %	0.03 %

Table S29 Proportions of holes and electrons of $[Cu(DAT)_6](ClO_4)_2$ in charge transition.

[Cu(DAT) ₆](ClO ₄) ₂	S8				
	Hole	Electron			
\mathbf{M}^{2+}	12.05 %	0.93 %			
Ligands	34.07%	41.04%			
ClO ₄ -	0.04%	0.19 %			
\mathbf{M}^{2+}	20.51 %	0.08 %			
Ligands	8.02%	9.86%			
ClO ₄ -	25.31 %	47.91 %			