### **Supporting Information**

# Bi-functional S-scheme cobalt-porphyrin conjugated polymer/ $C_3N_4$ heterojunction for cooperative $CO_2$ reduction and tetracycline degradation

Chao Xu,<sup>a</sup> Shien Guo,<sup>b</sup>\* Jiaxin Wang,<sup>a</sup> Yiqing Jiang,<sup>a</sup> Xiaomin Wu,<sup>a</sup> Dandan Lin,<sup>a</sup> Yuting Xiao<sup>a</sup>\*

<sup>a</sup>Key Laboratory of Jiangxi Province for Persistent Pollutants Prevention Control and Resources Reuse, Nanchang Hangkong University, Nanchang 330063, Republic of China.

<sup>b</sup>School of Chemical Engineering, Jiangxi Normal University, Nanchang 330022, People's Republic of China.

Corresponding authors:

Yuting Xiao, Ph.D., Email: yutingxiao9@sina.com

Shien Guo, Ph.D., Email: guoshien@jxnu.edu.cn

## Contents

| Characterization                                                                                   |
|----------------------------------------------------------------------------------------------------|
| Photoelectrochemical test                                                                          |
| Fig. S1. TEM image of CN nanosheets                                                                |
| Fig. S2. TEM image of CoPor-DBE nanoflakesS6                                                       |
| Fig. S3. AFM image (a) and corresponding height profile (b) along the white of the                 |
| 50CoPor-DBE/CN heterojunction                                                                      |
| Fig. S4. <sup>13</sup> C CP-MAS NMR spectra of Por-DBES7                                           |
| Fig. S5. $N_2$ adsorption-desorption isotherms (inset pore-size distribution profile) of (a)       |
| CoPor-DBE, (b) CN, and (c) 50CoPor-DBE/CN composite                                                |
| Table S1. The specific surface area and porosity of different samples.         S8                  |
| Fig. S6. Schematic diagram illustrating the S-scheme charge-transfer process in the                |
| CoPor-DBE/CN heterojunction                                                                        |
| Fig. S7. DMPO spin-trapping ESR spectra recorded for (a) $\bullet O_2^-$ and (b) $\bullet OH$ over |
| CoPor-DBE, CN, and 50CoPor-DBE/CN                                                                  |
| Fig. S8. Schematic diagrams of experimental setup for photocatalytic performance test.             |
|                                                                                                    |
| Table S2. Comparison of the activity of 50CoPor-DBE/CN in the cooperative $CO_2$                   |
| reduction and tetracycline decomposition with the catalysts reported in literatureS11              |
| Fig. S7. (a) XRD pattern and (b) FT-IR spectra of 50CoPor-DBE/CN hybrid before and                 |
| after cycling reaction                                                                             |
| Fig. S10. High-resolution Co 2p spectra of CoPor-DBE/CN before and after cycling test.             |
|                                                                                                    |
| Fig. S11. In-situ FT-IR measurements for CO <sub>2</sub> photoreduction over 50CoPor-DBE/CN        |
| at room temperature under light irradiationS14                                                     |
| Table S3. Fitted parameters from time-resolved PL spectra of pristine CN, CoPor-DBE                |
| and 50CoPor-DBE/CN                                                                                 |

#### Characterization

Tetramethylsilane (TMS) as the internal standard, hydrogen nuclear magnetic resonance (NMR) spectra at 500 MHz and <sup>13</sup>C nuclear magnetic resonance (<sup>13</sup>C NMR) spectra at 100 MHz or 150 MHz were acquired on a Bruker Avance spectrometer. Solid-state <sup>13</sup>C NMR spectra were recorded using a Bruker Avance III 500 and MAS III equipment. The specific surface area was determined using the Brunauer-Emmet-Teller (BET) method. The nitrogen adsorption-desorption isotherm was measured on a Micromeritics ASAP 2010 analyzer at a temperature of 77 K, following vacuum activation of the sample at 120 °C overnight prior to measurement. The powder X-ray diffraction (XRD) was recorded on a D8 Advance diffractometer with Cu Ka radiation ( $\lambda$ =0.15418 nm) in the 2 $\theta$  range from 2~60°. The morphology and microstructure was observed by transmission electron microscopy (TEM, Tecnai G2 F20). The UV-vis diffuse reflectance spectra (DRS) were measured on a Varian Cary 5000 UV-vis spectrophotometer with pure white BaSO<sub>4</sub> as the reference. X-ray photoelectron spectroscopy (XPS) and ultraviolet photoelectron spectroscopy (UPS) measurements were analyzed using an ESCA-Lab-200i-XL spectrometer (PHI, USA) with monochromatic Al Ka radiation (1486.6 eV). Fourier transformation infrared spectra were recorded on a Nicolet 6700 (Thermofisher, USA). Samples were dried and compressed to a plate with KBr for measurement. Steady-state photoluminescence (PL) spectra were collected by a FluoroMax-4 spectrofluorometer (Horiba Scientific). The time-resolved fluorescence decay spectra were measured by FLS980 spectrometer (Edinburgh Instruments, UK). Kelvin probe force microscope (KPFM) analysis was performed on a Multi Mode 8 Bruker spectrometer

#### Photoelectrochemical test

Photocurrent, Mott-Schottky plots, and electrochemical impedance spectroscopy were conducted using a standard three-electrode system on a CHI660E electrochemical workstation (Chenhua, China). The photocatalyst-coated FTO served as the working electrode, while platinum foil was utilized as the counter electrode, and an Ag/AgCl electrode was employed as the reference electrode. The working electrode was prepared

by applying a polymer aqueous slurry onto an FTO glass substrate with an area of 1 cm<sup>2</sup>.

#### Synthesis of 5,10,15,20-tetrakis(4-ethynylphenyl) porphyrin

To a 250 ml round bottom flask was added 4-ethynylbenzaldehyde (2.6 g, 20 mmol), 60 ml of propionic acid, 30 ml of nitrobenzene, sonicated to dissolve 4ethynylbenzaldehyde. The reaction was heated to 140 °C. 1.4 ml of pyrrole was added slowly using a constant pressure dispensing funnel and the reaction was allowed to run for 90 minutes, then the system was cooled to 60 °C. The reaction was stopped by the addition of 10 ml of methanol and stirring for half an hour. The product was filtered and washed with methanol. After vacuum drying, 1.0g of purple powder Por (5,10,15,20-tetrakis(4-ethynylphenyl) porphyrin) was obtained in 27.9% yield.

<sup>1</sup>H NMR (500 MHz, Chloroform-*d*) δ 3.30 – 3.35 (s, 4H), 7.68 – 7.74 (t, *J* = 7.2 Hz, 1H), 7.80 – 7.86 (d, *J* = 5.9 Hz, 1H), 7.87 – 7.93 (d, *J* = 7.7 Hz, 8H), 8.14 – 8.20 (d, *J* = 7.7 Hz, 8H), 8.79 – 8.89 (s, 8H)





#### Synthesis of Co(II)-5,10,15,20-tetrakis(4-ethynylphenyl) porphyrin

To a 100 ml round bottom flask was added Por (290.4 mg, 0.4 mmol), anhydrous cobalt acetate (141.2 mg, 0.8 mmol) and 60 ml of DMF and reacted under argon at 140°C for 4 hours. The crude product was extracted with water and dichloromethane to remove DMF and evaporated under reduced pressure to give a brown-red solid. The resulting product was dissolved with ethyl acetate, filtered to remove the solid, and the ethyl acetate was evaporated under reduced pressure to give Co-Por (Co(II)-5,10,15,20-tetrakis(4-ethynylphenyl)porphyrin).





Fig. S1. TEM image of CN nanosheets.



Fig. S2. TEM image of CoPor-DBE nanoflakes.



**Fig. S3**. AFM image (a) and corresponding height profile (b) along the white of the 50CoPor-DBE/CN heterojunction



Fig. S4. <sup>13</sup>C CP-MAS NMR spectra of Por-DBE.



**Fig. S5**. N<sub>2</sub> adsorption-desorption isotherms (inset pore-size distribution profile) of (a) CoPor-DBE, (b) CN, and (c) 50CoPor-DBE/CN composite.

| Samples        | S <sub>BET</sub><br>(m²/g) | Total pore volume<br>(cm <sup>3</sup> g <sup>-1</sup> ) |
|----------------|----------------------------|---------------------------------------------------------|
| CoPor-DBE      | 442.34                     | 0.2995                                                  |
| CN             | 51.49                      | 0.1456                                                  |
| 50CoPor-DBE/CN | 105.83                     | 0.2321                                                  |

Table S1. The specific surface area and porosity of different samples.



**Fig. S6.** Schematic diagram illustrating the S-scheme charge-transfer process in the CoPor-DBE/CN heterojunction.



Fig. S7. DMPO spin-trapping ESR spectra recorded for (a)  $\cdot O_2^-$  and (b)  $\cdot OH$  over CoPor-DBE, CN, and 50CoPor-DBE/CN.



Fig. S8. Schematic diagrams of experimental setup for photocatalytic performance test.

| Comula                                |                                | TC degradation rate | Yield                     | Ref. |
|---------------------------------------|--------------------------------|---------------------|---------------------------|------|
| Sample                                | Light source                   | (%)                 | $(\mu mol g^{-1} h^{-1})$ |      |
| SBNCN-3                               | 300 W Xe lamp, (λ              |                     |                           |      |
|                                       | > 420 nm)                      | 78                  | 2.26                      | [1]  |
| ZnO/CN                                | 300 W Xe lamp                  | 92.6                | 7.68                      | [2]  |
| g-C <sub>3</sub> N <sub>4</sub> /BiOI | 300 W Xe lamp,                 |                     |                           | [3]  |
|                                       | $(\lambda \ge 400 \text{ nm})$ | 100                 | 12.45                     |      |
| $CuInZnS$ - $Ti_3C_2T_x$              | 300 W Xe lamp                  | 98.5                | 10.2                      | [4]  |
| Bi <sub>2</sub> WO <sub>6</sub> /BCDs | $300~W$ Xe lamp, ( $\lambda$   | 20                  | 10.1                      | [6]  |
|                                       | > 420 nm)                      | 80                  | 12.1                      | [5]  |
| $Bi_{12}O_{17}Br_2/g$ - $C_3N_{4-x}$  | 300 W Xe lamp                  | 97                  | 11.2                      | [6]  |
| 50CoPor-DBE/CN                        | 300 W Xe lamp                  | 02.0                | 167                       | This |
|                                       | $(\lambda \ge 400 \text{ nm})$ | 93.8                | 16./                      | Work |

**Table S2.** Comparison of the activity of 50CoPor-DBE/CN in the cooperative  $CO_2$  reduction and tetracycline decomposition with the catalysts reported in literature.

#### Reference

[1] Xu, Y.; You, Y.; Huang, H.; Guo, Y.; Zhang, Y.  $Bi_4NbO_8Cl \{001\}$  nanosheets coupled with g-C<sub>3</sub>N<sub>4</sub> as 2D/2D heterojunction for photocatalytic degradation and CO<sub>2</sub> reduction. *J. Hazard. Mater.* **2020**, 381, 121159.

[2] Pham, T. H.; Tran, M. H.; Chu, T. T. H.; Myung, Y.; Jung, S. H.; Mapari, M. G.; Taeyoung, K. Enhanced photodegradation of tetracycline in wastewater and conversion of CO<sub>2</sub> by solar light assisted ZnO/g-C<sub>3</sub>N<sub>4</sub>. *Environ. Res.* **2023**, 217, 114825.

[3] Li, H.; Wang, D.; Miao, C.; Xia, F.; Wang, Y.; Wang, Y.; Liu, C.; Che, G. g-C<sub>3</sub>N<sub>4</sub>/BiOI S-scheme heterojunction: A 2D/2D model platform for visible-light-driven photocatalytic CO<sub>2</sub> reduction and pollutant degradation. *J. Environ. Chem. Eng.* **2022**, 10, 108201.

[4] Wang, L.; Zhang, Z.; Guan, R.; Wu, D.; Shi, W.; Yu, L.; Li, P.; Wei, W.; Zhao, Z.; Sun, Z. Synergistic CO<sub>2</sub> reduction and tetracycline degradation by CuInZnS-Ti<sub>3</sub>C<sub>2</sub>T<sub>x</sub> in one photoredox cycle. *Nano Res.* **2022**, 15, 8010-8018. [5] Li, X.; Yu, Y.; Wang, Y.; Di, Y.; Liu, J.; Li, D.; Wang, Y.; Zhu, Z.; Liu, H.; Wei,
M. Withered magnolia-derived BCDs onto 3D flower-like Bi<sub>2</sub>WO<sub>6</sub> for efficient photocatalytic TC degradation and CO<sub>2</sub> reduction. *J. Alloy. Compond.* 2023, 965, 171520.

[6] Jia, X.; Cao, J.; Sun, H.; Li, X.; Lin, H.; Chen, S. Interfacial engineering of  $Bi_{12}O_{17}Br_2/g-C_3N_{4-x}$  S-scheme junction boosting charge transfer for cooperative tetracycline decomposition and CO<sub>2</sub> reduction. *Appl. Catal. B: Environ.* **2024**, 343, 123522.



Fig. S7. (a) XRD pattern and (b) FT-IR spectra of 50CoPor-DBE/CN hybrid before and after cycling reaction.



Fig. S10. High-resolution Co 2p spectra of CoPor-DBE/CN before and after cycling test.



Fig. S11. In-situ FT-IR measurements for  $CO_2$  photoreduction over 50CoPor-DBE/CN at room temperature under light irradiation.

| samples        | $\tau_1$ (ns) | Rel. (%) | $\tau_2$ (ns) | Rel. (%) | $\tau_{ave} \left( ns \right)$ |
|----------------|---------------|----------|---------------|----------|--------------------------------|
| CN             | 0.75          | 39.72    | 7.35          | 60.28    | 4.72                           |
| CoPor-DBE      | 0.39          | 69.48    | 5.01          | 30.52    | 1.80                           |
| 50CoPor-DBE/CN | 1.82          | 31.29    | 9.85          | 68.71    | 7.34                           |

**Table S3.** Fitted parameters from time-resolved PL spectra of pristine CN, CoPor-DBEand 50CoPor-DBE/CN.