Electronic Supplementary Information

Cadmium-rich intermetallic phases *A*Rh₂Cd₂₀ – Structure, magnetic behavior, ¹⁵¹Eu Mössbauer and ¹¹³Cd solid-state NMR spectroscopy

Lars Schumacher^a, Florian Schreiner^b, Aylin Koldemir^a, Oliver Janka^c, Michael Ryan Hansen^b and Rainer Pöttgen^{*a}

- ^{*a*} Institut für Anorganische und Analytische Chemie, Universität Münster, Corrensstraße 30, 48149 Münster, Germany. E-mail: pottgen@uni-muenster.de
- ^b Institut für Physikalische Chemie, Universität Münster, Corrensstrasse 30, D-48149 Münster, Germany
- ^c Universität des Saarlandes, Anorganische Festkörperchemie, Campus C4 1, 66123 Saarbrücken, Germany

ORCID:	Lars Schumacher	0009-0009-9444-8773
	Florian Schreiner	0009-0007-4486-7940
	Michael Ryan Hansen	0000-0001-7114-8051
	Aylin Koldemir	0009-0004-3819-3853
	Oliver Janka	0000-0002-9480-3888
	Rainer Pöttgen	0000-0003-0962-279X

Received ## December 2024, Accepted ## ####### 2025

DOI: ########

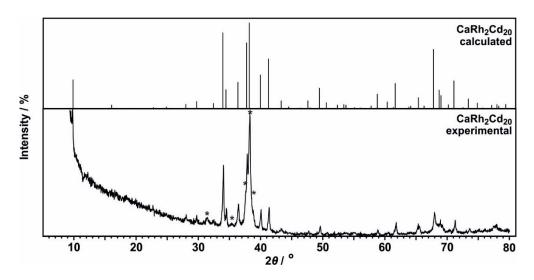

Sample	Nucleus	τ / μs	Ω / MHz	N	NS	<i>d</i> ₁ / s	v _{MAS} / kHz	n _{rot}	Echoes recorde d	Echoes processe d
YRh ₂ Cd ₂₀	⁸⁹ Y	150	0.5	80	512	32.0	-	_	128	64
	¹⁰³ Rh	500	0.4	80	32768	2.0	_	_	80	80
	¹¹³ Cd	50	0.5	80	2048	8.0	12.5	9	80	12
LaRh ₂ Cd ₂₀	¹⁰³ Rh	500	0.4	80	32768	2.0	-	_	80	80
	¹¹³ Cd	50	0.5	80	32768	2.0	10.0	7	80	12
	¹¹³ Cd	50	0.5	80	8192	8.0	12.5	7	80	12
YbRh ₂ Cd ₂₀	¹⁷¹ Yb	50	1.0	40	10240	6.0	-	_	80	20
	¹⁰³ Rh	500	0.4	80	32768	2.0	-	_	80	80
	¹¹³ Cd	50	0.5	80	2048	8.0	12.5	9	80	12

Table S1 Experimental parameters for the static WCPMG and WCPMG-MAS NMR experiments.^a

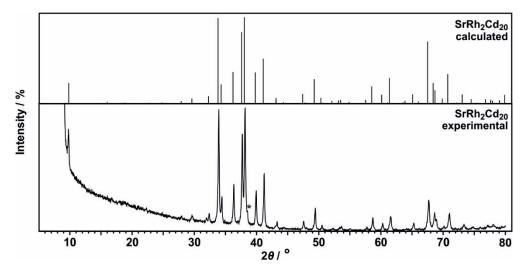

^a The listed parameters correspond to: pulse length τ , WURST sweep width Ω , WURST shape parameter N, number of scans NS, recycle delay d_1 , number of acquired echoes as well as number of processed echoes, and in the case of WCPMG-MAS experiments, MAS frequency v_{MAS} and number of rotor periods recorded per echo n_{rot} .

Table S2 Lattice parameters and mass% of $LaRh_2Cd_{20}$ and $RhCd_{9+\delta}$ for the first and second measurement. Standard deviations are given in parentheses.

Compound	<i>a</i> (pm)	<i>V</i> (nm ³)	mass%				
first measurement							
LaRh ₂ Cd ₂₀	1565.22(1)	3.8350	69.3(2)				
$RhCd_{9+\delta}$	2008.88(4)	8.1071	30.7(2)				
second measurement							
$LaRh_2Cd_{20}$	1565.27(1)	3.8350	60.1(2)				
$RhCd_{9+\delta}$	2008.57(2)	8.1033	39.9(2)				

Fig. S1 Calculated (top) and experimental (bottom) Guinier powder patterns (Cu $K\alpha_1$ radiation) of the CaRh₂Cd₂₀ sample. Asterisks mark reflections from side-products.

Fig. S2 Calculated (top) and experimental (bottom) Guinier powder patterns (Cu $K\alpha_1$ radiation) of the SrRh₂Cd₂₀ sample. Asterisks mark reflections from side-products.

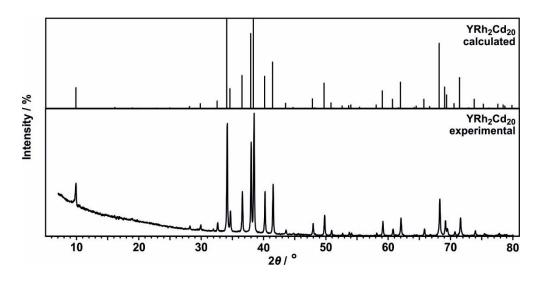


Fig. S3 Calculated (top) and experimental (bottom) Guinier powder patterns (Cu $K\alpha_1$ radiation) of the YRh₂Cd₂₀ sample.

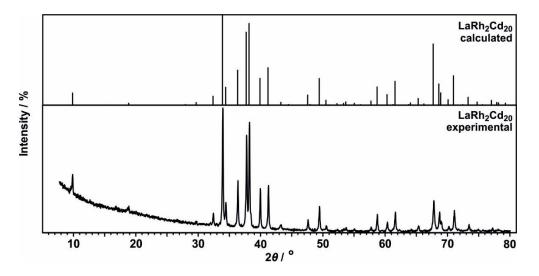


Fig. S4 Calculated (top) and experimental (bottom) Guinier powder patterns ($CuK\alpha_1$ radiation) of the LaRh₂Cd₂₀ sample.

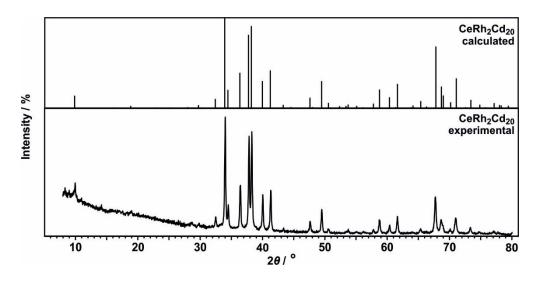


Fig. S5 Calculated (top) and experimental (bottom) Guinier powder patterns ($CuK\alpha_1$ radiation) of the $CeRh_2Cd_{20}$ sample.



Fig. S6 Calculated (top) and experimental (bottom) Guinier powder patterns (Cu $K\alpha_1$ radiation) of the PrRh₂Cd₂₀ sample.

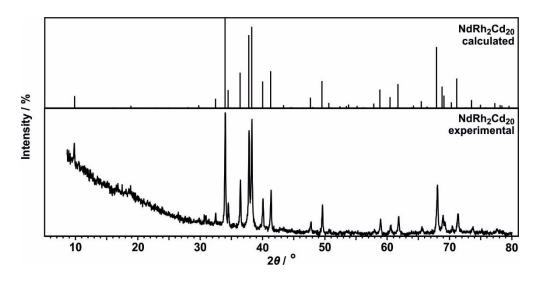


Fig. S7 Calculated (top) and experimental (bottom) Guinier powder patterns (Cu $K\alpha_1$ radiation) of the NdRh₂Cd₂₀ sample.

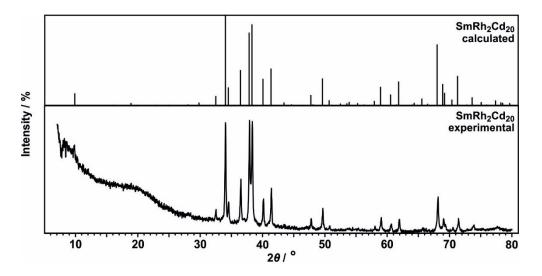


Fig. S8 Calculated (top) and experimental (bottom) Guinier powder patterns (Cu $K\alpha_1$ radiation) of the SmRh₂Cd₂₀ sample.

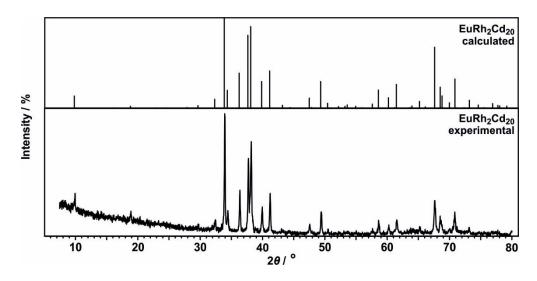


Fig. S9 Calculated (top) and experimental (bottom) Guinier powder patterns ($CuK\alpha_1$ radiation) of the $EuRh_2Cd_{20}$ sample.

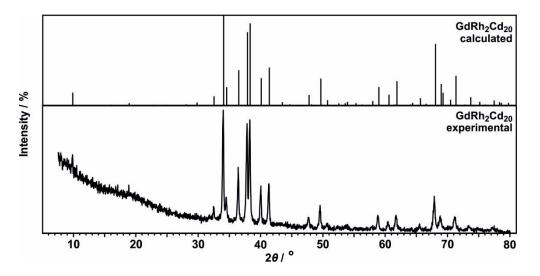


Fig. S10 Calculated (top) and experimental (bottom) Guinier powder patterns (Cu $K\alpha_1$ radiation) of the GdRh₂Cd₂₀ sample.

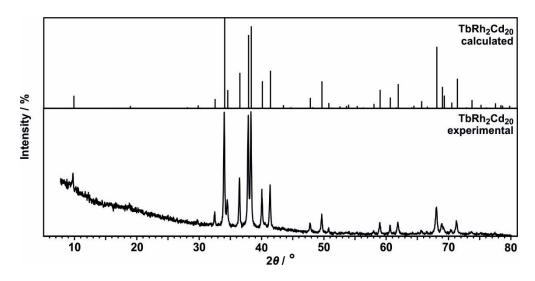


Fig. S11 Calculated (top) and experimental (bottom) Guinier powder patterns (Cu $K\alpha_1$ radiation) of the TbRh₂Cd₂₀ sample.

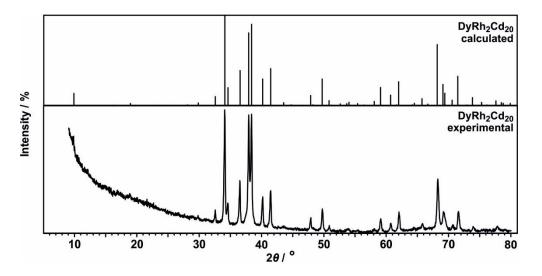


Fig. S12 Calculated (top) and experimental (bottom) Guinier powder patterns (Cu $K\alpha_1$ radiation) of the DyRh₂Cd₂₀ sample.

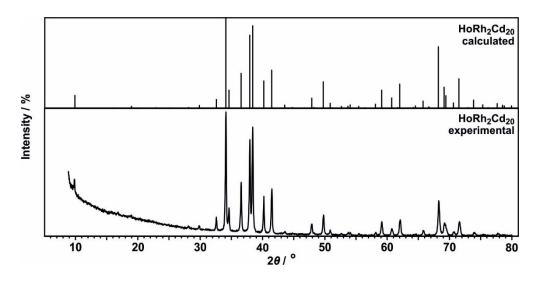
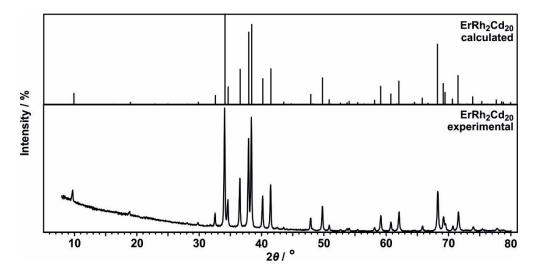



Fig. S13 Calculated (top) and experimental (bottom) Guinier powder patterns (Cu $K\alpha_1$ radiation) of the HoRh₂Cd₂₀ sample.

Fig. S14 Calculated (top) and experimental (bottom) Guinier powder patterns (Cu $K\alpha_1$ radiation) of the ErRh₂Cd₂₀ sample.

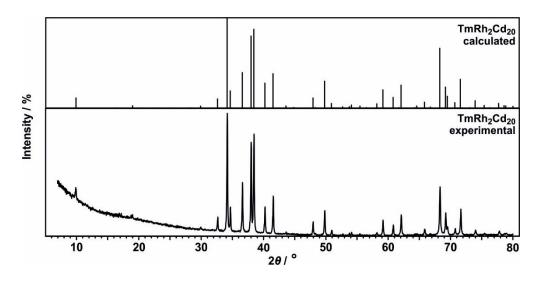
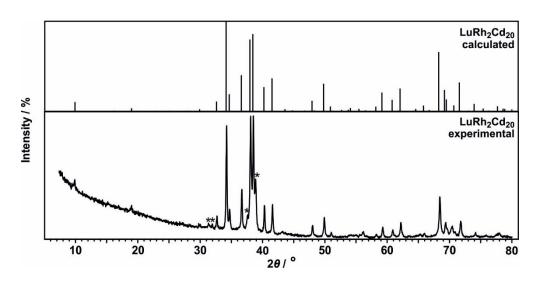
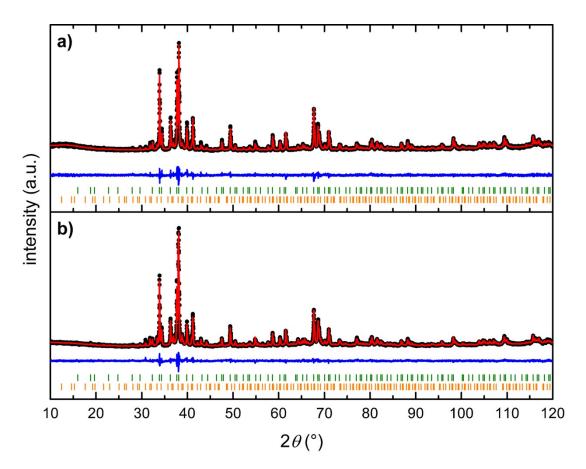
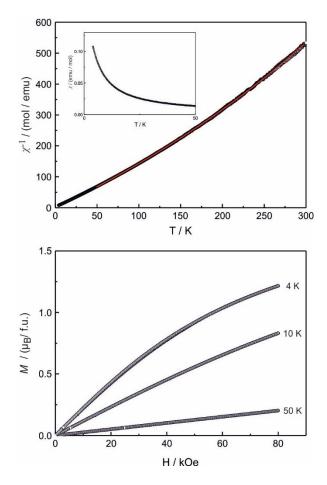
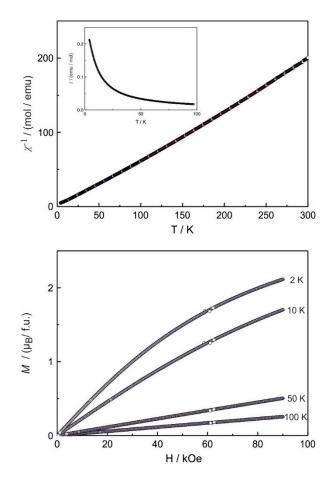
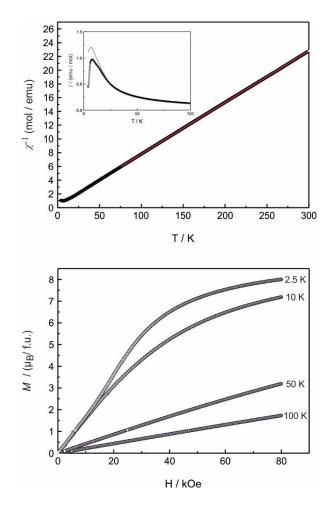
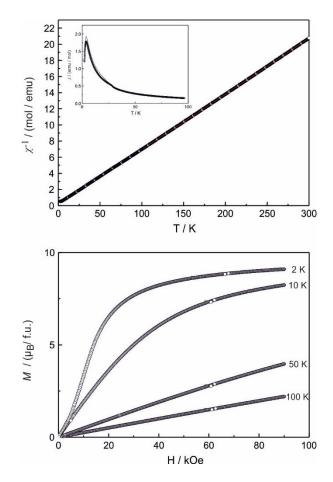



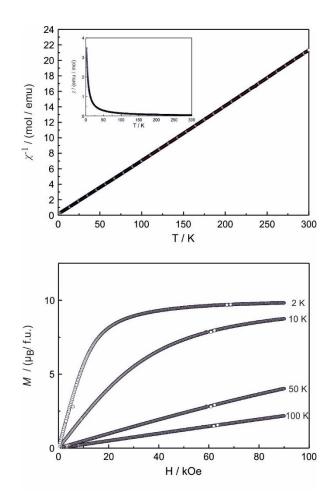
Fig. S15 Calculated (top) and experimental (bottom) Guinier powder patterns (Cu $K\alpha_1$ radiation) of the TmRh₂Cd₂₀ sample.

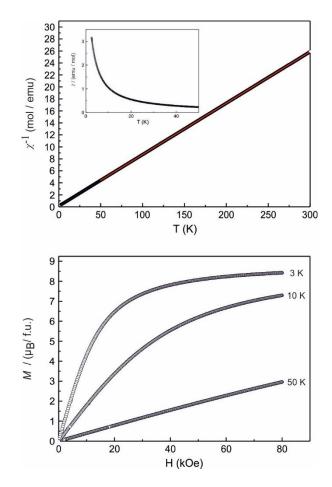
Fig. S16 Calculated (top) and experimental (bottom) Guinier powder patterns (Cu $K\alpha_1$ radiation) of the LuRh₂Cd₂₀ sample. Asterisks mark reflections from side-products.

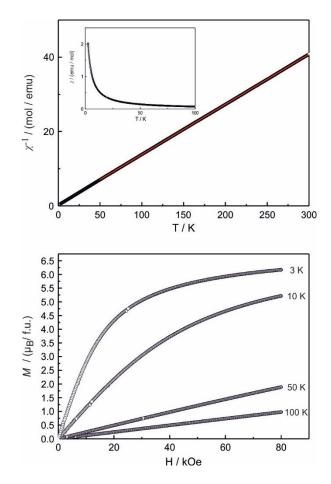




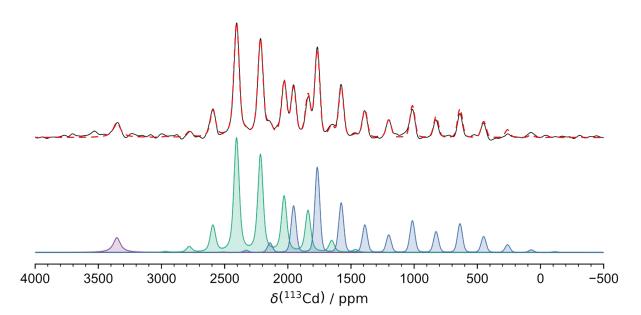

Fig. S17 Rietveld refinements of LaRh₂Cd₂₀. (a) After approximately 4 weeks after preparation and (b) three weeks after recording the diffraction pattern shown in (a). Black points: experimental data, red line: refined pattern, blue line: difference experimental minus refined. Green dashes indicate the Bragg positions of LaRh₂Cd₂₀, orange dashes the ones of RhCd_{9+ δ}.

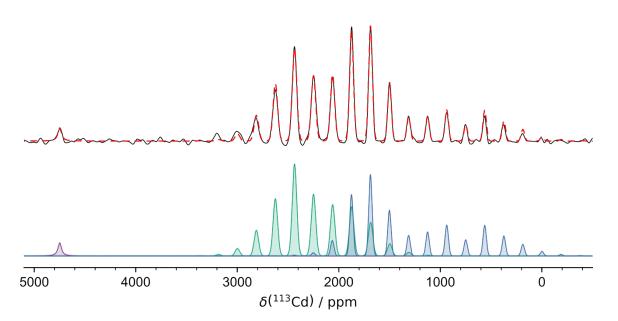

Figure S18 Magnetic data of $CeRh_2Cd_{20}$: Zero field cooled / field cooled (ZFC/FC) measurements at an applied field of 100 Oe (inset), inverse susceptibilities measured at 10 kOe; the red line emphasizes the fit regime (top) and magnetization isotherms recorded at 4, 10 and 50 K.

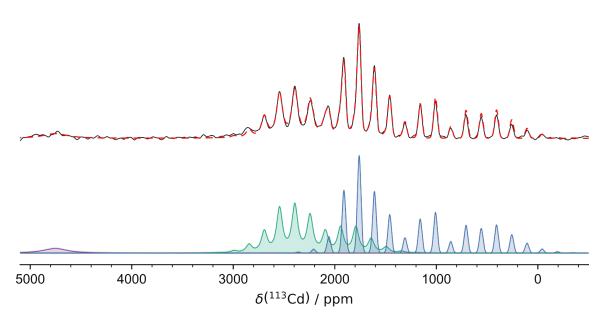

Figure S19 Magnetic data of PrRh₂Cd₂₀: Zero field cooled / field cooled (ZFC/FC) measurements at an applied field of 100 Oe (inset), inverse susceptibilities measured at 10 kOe (top) and magnetization isotherms recorded at 2, 10, 50 and 100 K.


Figure S20 Magnetic data of TbRh₂Cd₂₀: Zero field cooled / field cooled (ZFC/FC) measurements at an applied field of 100 Oe (inset), inverse susceptibilities measured at 10 kOe; the red line emphasizes the fit regime (top) and magnetization isotherms recorded at 2.5, 10, 50 and 100 K.


Figure S21 Magnetic data of DyRh₂Cd₂₀: Zero field cooled / field cooled (ZFC/FC) measurements at an applied field of 100 Oe (inset), inverse susceptibilities measured at 10 kOe (top) and magnetization isotherms recorded at 2, 10, 50 and 100 K.


Figure S22 Magnetic data of HoRh₂Cd₂₀: Zero field cooled / field cooled (ZFC/FC) measurements at an applied field of 100 Oe (inset), inverse susceptibilities measured at 10 kOe (top) and magnetization isotherms recorded at 2, 10, 50 and 100 K.


Figure S23 Magnetic data of $ErRh_2Cd_{20}$: Zero field cooled / field cooled (ZFC/FC) measurements at an applied field of 100 Oe (inset), inverse susceptibilities measured at 10 kOe; the red line emphasizes the fit regime (top) and magnetization isotherms recorded at 3, 10 and 50 K.


Figure S24 Magnetic data of TmRh₂Cd₂₀: Zero field cooled / field cooled (ZFC/FC) measurements at an applied field of 100 Oe (inset), inverse susceptibilities measured at 10 kOe; the red line emphasizes the fit regime (top) and magnetization isotherms recorded at 3, 10, 50 and 100 K.

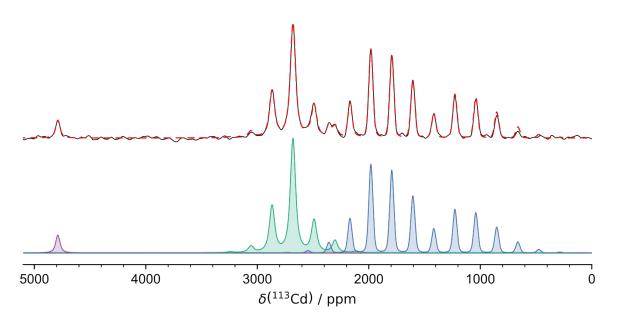

Figure S25 ¹¹³Cd WCPMG-MAS NMR spectrum of YRh_2Cd_{20} recorded in 2048 scans with 80 echoes of which 12 were processed, each spanning 9 rotor periods at a MAS frequency of 12.5 kHz and 8.0 s recycle delay. The three shadings indicate the three crystallographically independent cadmium sites (see Tables 6 and S1).

Figure S26 ¹¹³Cd WCPMG-MAS NMR spectrum of LaRh₂Cd₂₀ recorded in 8192 scans with 80 echoes of which 12 were processed, each spanning 7 rotor periods at a MAS frequency of 12.5 kHz and 8.0 s recycle delay. The three shadings indicate the three crystallographically independent cadmium sites (see Tables 6 and S1).

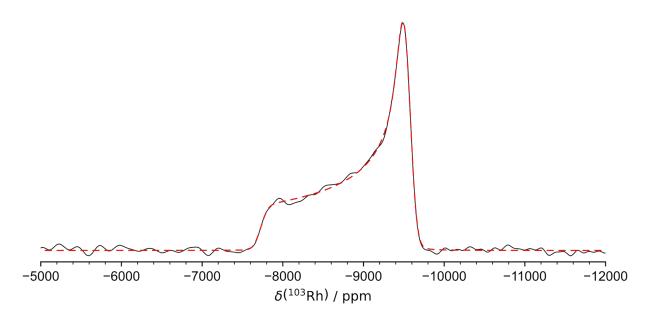

Figure S27 ¹¹³Cd WCPMG-MAS NMR spectrum of LaRh₂Cd₂₀ recorded in 32768 scans with 80 echos of which 12 were processed, each spanning 7 rotor periods at a MAS frequency of 10.0 kHz and 8.0 s recycle delay. The three shadings indicate the three crystallographically independent cadmium sites (see Tables 6 and S1).

Figure S28 ¹¹³Cd WCPMG-MAS NMR spectrum of YbRh₂Cd₂₀ recorded in 2048 scans with 80 echoes of which 10 were processed, each spanning 9 rotor periods at a MAS frequency of 12.5 kHz and 8.0 s recycle delay. The three shadings indicate the three crystallographically independent cadmium sites (see Tables 6 and S1).

Figure S29 ¹⁰³Rh WCPMG NMR spectrum of YRh_2Cd_{20} recorded in 32768 scans with 80 echoes and 2.0 s recycle delay. The fit is shown as red dashed line.

Figure S30 ¹⁰³Rh WCPMG NMR spectrum of $LaRh_2Cd_{20}$ recorded in 32768 scans with 80 echoes and 2.0 s recycle delay. The fit is shown as red dashed line.

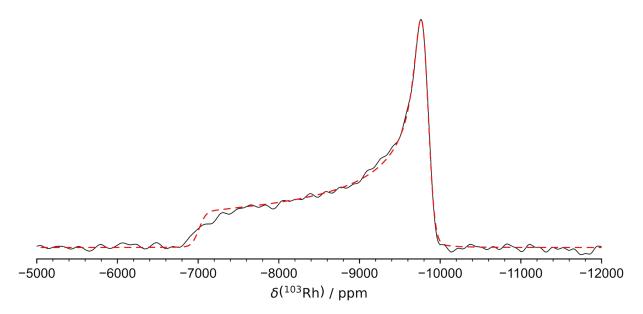


Figure S31 ¹⁰³Rh WCPMG NMR spectrum of YbRh₂Cd₂₀ recorded in 32768 scans with 80 echoes and 2.0 s recycle delay. The fit is shown as red dashed line.