Fine color-tuning of Ir(III) tetrazolato complexes: synthesis, photophysical properties and OLED device fabrication

Nicola Monti,^a Eleonora Previati,^{a,e} Giulia Vigarani,^a Massimo Cocchi,^b Francesca Tinti,^b Paolo Raiteri,^c Stefano Zacchini,^a Loris Giorgini,^a Massimiliano Massi,^d Stefano Stagni^{a*}, Valentina Fiorini.^{a*}

a: Department of Industrial Chemistry "Toso Montanari", University of Bologna, Via Gobetti 85, 40129 Bologna, Italy.

b: Institute for Organic Synthesis and Photoreactivity, CNR, via Gobetti 101, 40129 Bologna, Italy.

c: Curtin Institute for Computation and School of Molecular and Life Sciences, Curtin University, P.O. Box U1987, Perth, WA 6845, Australia

d: Curtin Institute for Functional Molecules and Interfaces, School of Molecular and Life Science, Curtin University, Kent Street, Bentley 6102 WA, Australia.

e. Department of Applied Science and Technology -DISAT, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy.

ESI – ELECTRONIC SUPPLEMENTARY INFORMATION

Index

NMR spectroscopy	1
Photophysical Properties	
X-ray crystallography	
TD-DFT	

NMR spectroscopy Figure S1: [Ir(ppyCN)₂(PTZ)] ¹H-NMR, Acetone-d⁶, 400 MHz, 298K.

Figure S2: [Ir(ppyCN)₂(PTZ)] ¹³C-NMR, Acetone-d⁶, 100 MHz, 298K.

Figure S3: [Ir(ppyCN)₂(PYZ)] ¹H-NMR, Acetone-d⁶, 400 MHz, 298K.

Figure S5: [Ir(ppyCN)₂(PTZ-CF₃)] ¹H-NMR, Acetone-d⁶, 400 MHz, 298K.

Figure S6: [Ir(ppyCN)₂(PTZ-CF₃)] ¹³C-NMR, Acetone-d⁶, 100 MHz, 298K.

169.316	163.062	152.751 151.565 150.752	147.031 146.977 146.932	143.201	137.455	132.096 131.653 131.393 130.553	125.090 125.090 122.0964 122.0964 122.0964 121.2868 121.270 121.462	115.738
V		1W	V		V			V

Figure S7: [Ir(F₂ppy-CN)₂(PTZ)] ¹H-NMR, CD₃CN, 400 MHz, 298K.

Figure S8: [Ir(F₂ppy-CN)₂ (PTZ)] ¹³C-NMR, Acetone-d⁶, 100 MHz, 298K.

Figure S9: [Ir(F₂ppy-CN)₂ (PYZ)] ¹H-NMR, Acetone-d⁶, 400 MHz, 298K.

Figure S11: [Ir(F₂ppy-CN)₂ (PTZ-CF₃)] ¹H-NMR, Acetone-d⁶, 400 MHz, 298K.

Figure S13: [**Ir(ppyCN)**₂(**PTZ-Me**)]⁺[**PF**₆]⁻¹**H-NMR**, Acetone-d⁶, 400 MHz, 298K.

169.221	166.847	151.543 151.382 150.999	147.995	144.601 142.769 142.667 141.044	32.016 31.618 31.618 31.618 30.963 30.963 30.963 30.963 30.963 25.059 25	115.548
		Ŵ		IVI		V

Figure S16: [**Ir(ppyCN)**₂(**PYZ-Me**)]⁺[**PF**₆]⁻ ¹³**C-NMR**, Acetone-d⁶, 100 MHz, 298K.

168.906	165.351	151.216	146.540 145.324 145.324 145.324 142.792 142.792	139.802	10000000000000000000000000000000000000	115.487
---------	---------	---------	--	---------	--	---------

Figure S17: [**Ir(ppyCN)**₂(**PTZ-CF**₃-**Me**)]⁺[**PF**₆]⁻¹**H-NMR**, Acetone-d⁶, 400 MHz, 298K.

175 170 165 160 155 150 145 140 135 130 125 120 115 110 105 100 95 90 85 80 75 70 65 60 55 50 45 40 f1 (ppm)

Figure S20: [Ir(F₂ppy-CN)₂(PTZ-Me)]⁺[PF₆]⁻¹³C-NMR Acetone-d⁶, 100 MHz, 298K.

70.161 69.978 68.638	53.144 51.676 51.528 51.528 44.117	41.604	30,433 5,433 255,748 255,135 255,135	15.354	00.855 00.421 00.421
17	V I	Ī	ĪŴ	Ī	W

1.754

Figure S23: [**Ir(F₂ppy-CN)**₂(**PTZ-CF**₃-**Me**)]⁺[**PF**₆]⁻¹**H-NMR**, Acetone-d⁶, 400 MHz, 298K.

Figure S24: [Ir(F₂ppy-CN)₂(PTZ-CF₃-Me)]⁺[PF₆]⁻¹³C-NMR, Acetone-d⁶, 100 MHz, 298K.

Photophysical Properties

Excitation spectrum (λ_{max} = 590 nm), 298K

Absorption profile, 298K

Air-equilibrated (black line) and deoxygenated (blue line) emission profiles, 298K

Excitation spectrum (λ_{max} = 582 nm), 298K

Emission profile, 77K

Figure S27: Photophysical Characterization of **[Ir(ppyCN)₂(PTZ-CF₃)]**,10⁻⁵M, CH₃CN.

Excitation spectrum (λ_{max} = 584 nm), 298K

Figure S28: Photophysical Characterization of [Ir(ppyCN)₂(PTZ-Me)]⁺, 10⁻⁵M, CH₃CN.

Excitation spectrum (λ_{max} = 566 nm), 298K

Figure S29: Photophysical Characterization of **[Ir(ppyCN)**₂(**PYZ-Me)**]⁺, 10⁻⁵M, CH₃CN.

Excitation spectrum (λ_{max} = 614 nm), 298K

Figure S30: Photophysical Characterization of **[Ir(ppyCN)₂(PTZ-CF₃-Me)]**⁺,10⁻⁵M, CH₃CN.

Excitation spectrum (λ_{max} = 568 nm), 298K

Figure S31: Photophysical Characterization of **[Ir(F₂ppy-CN)₂(PTZ)]**, 10⁻⁵M, CH₃CN.

Excitation spectrum (λ_{max} = 540 nm), 298K

Figure S32: Photophysical Characterization of **[Ir(F₂ppy-CN)₂(PYZ)]**, 10⁻⁵M, CH₃CN.

Excitation spectrum (λ_{max} = 532 nm), 298K

Figure S33: Photophysical Characterization of **[Ir(F₂ppy-CN)₂(PTZ-CF₃)]**, 10⁻⁵M, CH₃CN.

Excitation spectrum (λ_{max} = 536 nm), 298K

Figure S34: Photophysical Characterization of $[Ir(F_2ppy-CN)_2(PTZ-Me)]^+$, 10⁻⁵M, CH₃CN.

Excitation spectrum (λ_{max} = 520 nm), 298K

Figure S35: Photophysical Characterization of [Ir(F₂ppy-CN)₂(PYZ-Me)]⁺)]⁺, 10⁻⁵M, CH₃CN.

Figure S36: Photophysical Characterization of [Ir(F₂ppy-CN)₂(PTZ-CF₃-Me)]⁺, 10⁻⁵M, CH₃CN.

Excitation spectrum (λ_{max} = 520 nm), 298K

Emission profile, 77K

Figure S37: CV curves of [Ir(ppyCN)₂(PYZ)], 10⁻³M (a) oxidation, (b) reduction.

Figure S39: CV curves of [Ir(ppyCN)₂(PTZ)], 10⁻³M (a) oxidation, (b) reduction.

Figure S41 CV curves of [Ir(ppyCN)₂(PTZ-CF₃)], 10⁻³M (a) oxidation, (b) reduction

Figure S43: CV curves of [Ir(F₂ppy-CN)₂(PTZ)], 10⁻³M (a) oxidation, (b) reduction.

Figure S45: CV curves of **[Ir(F₂ppy-CN)₂(PYZ)]**, 10⁻³M (a) oxidation, (b) reduction.

Figure S48: CV curves of **[Ir(F₂ppy-CN)₂(PTZ-CF₃-Me)]**⁺, 10⁻³M (a) oxidation, (b) reduction.

Tentative photostability test on [Ir(F2ppy-CN)2(PTZ)]

Figure S49. Five successive emission profiles recorded after successive cycle of irradiation (20 min. exposure, Xe arc lamp 450W, λ exc = 350 nm, slit = 5 nm).

X-ray crystallography

Table S1: Crystal data and collection details for [Ir(ppyCN)₂(PTZ-CF₃)]·solv.

Formula	$C_{31}H_{17}F_{3}IrN_{9}$
Fw	764.73
Т, К	100(2)
λ, Å	0.71073
Crystal system	Monoclinic
Space Group	P21/c
<i>a,</i> Å	12.1158(13)
<i>b,</i> Å	14.7808(16)
<i>c,</i> Å	20.394(2)
β, °	105.660(3)
Cell Volume, Å ³	3516.6(7)
Z	4
D_c , g cm ⁻³	1.444
μ, mm ⁻¹	3.844
F(000)	1480
Crystal size, mm	0.16×0.15×0.12
heta limits, °	1.724–24.998
	$-14 \le h \le 14$
Index ranges	$-17 \le k \le 17$
	$-24 \le I \le 24$
Reflections collected	29645
Independent reflections	6116 [<i>R</i> _{int} = 0.1061]
Completeness to θ max	98.7%
Data / restraints / parameters	6116 / 300 / 397
Goodness on fit on F ²	1.245
$R_1 (I > 2\sigma(I))$	0.1300
wR ₂ (all data)	0.2943
Largest diff. peak and hole, e Å ⁻³	4.172 / -1.640

TD-DFT

Table S2: Contour HOMO – LUMO for all the neutral and cationic fluorine-free Ir(III) compounds. from left to right: [Ir(ppyCN)₂(PTZ)], [Ir(ppyCN)₂(PTZ-Me)]⁺, [Ir(ppyCN)₂(PYZ)], [Ir(ppyCN)₂(PYZ-Me)]⁺, [Ir(ppyCN)₂(PTZ-CF₃)], [Ir(ppyCN)₂(PTZ-CF₃-Me)]⁺. The images were produced using the Gaussian outputs, but the results are analogous to those obtained from ORCA

Table S3: Contour HOMO – LUMO for all the neutral and cationic fluorinated Ir(III) compounds. from left to right: [Ir(F₂ppy-CN)₂(PTZ)], [Ir(F₂ppy-CN)₂(PTZ-Me)]⁺, [Ir(F₂ppy-CN)₂(PYZ)], [Ir(F₂ppy-CN)₂(PYZ-Me)]⁺, [Ir(F₂ppy-CN)₂(PTZ-CF₃)], [Ir(F₂ppy-CN)₂(PTZ-CF₃-Me)]⁺. The images were produced using the Gaussian outputs, but the results are analogous to those obtained from ORCA

LUMO+1			
LUMO			
НОМО			