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General experimental procedures

All reagents were obtained from commercial sources (Loba Chemie, Spectrochem, Sigma-
Aldrich, TCI, and Avra). The silylated phosphines 1a-1¢ were synthesised using a significantly
modified synthetic technique previously described. ! The starting material [Ru(p-cymene)Cl]>
was prepared according to the reported procedure.? Dichloromethane (DCM) was dried in an
Argon/Nitrogen environment using a distillation system over calcium hydride. THF and n-
hexane were dried in an environment of nitrogen and argon using a distillation apparatus over
sodium metal and benzophenone. The ligands and metal complexes were synthesised in N> and
Ar atmospheres using Tensil Schlenk tubes and Schlenk flasks. All catalytic reactions were
performed in a borosil-sealed tube and Tensil Schlenk tubes under N> conditions. For column
chromatography, Spectrochem chemical company's 100-200 mesh silica gel was employed.
Gradient elution was performed using distilled hexane and ethyl acetate. UV light was used to
identify TLC plates at 254 nm. The NMR spectra were measured using a "Bruker AVANCE
NEO Ascend 400 and 700" 400 and 700 MHz FT-NMR. Chemical shifts are expressed in parts
per million (ppm) relative to tetramethylsilane (TMS), with the residual solvent serving as an
internal standard (CDCls, 'H; 7.26 ppm, and '*C; 77.16 ppm, and DMSO-d6, 'H; 2.5 ppm, and
13C; 39.52 ppm). Coupling constants are expressed in Hertz units. Individual peaks are reported
as multiplicities (integration and coupling constants in Hz), where s = singlet, d = doublet, t =
triplet, ¢ = quartet, and dd = doublet of doublet, br = broad. ESI-MS/HR-MS spectra were
measured using the "Xevo G2-XS QT of Quadrupole Time of Flight Mass Spectrometer
Waters." "Elementar, UNICUBE" was used to do elemental analysis measurements. The

Rigaku Smart Lab X-ray diffractometer was used for the XRD analysis.

Supporting Spectral Data of Compounds
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Scheme S1. Reactivity of phosphine 1a with [Ru(p-cymene)Clz]2].
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Figure S1. 'H NMR spectrum of compound 1b measured in CDCls.
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Figure S2. 3'P{'H } NMR spectrum of compound 1b measured in CDCls.
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Figure S3. 3C NMR spectrum of compound 1b measured in CDCls.
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Figure S4. ESI-HRMS spectrum of compound 1b measured in acetonitrile, (top; theoretical

isotopic pattern, bottom; calculated isotopic pattern).
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Figure S6. 'H NMR spectrum of compound 3 measured in C¢De.
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Figure S8. 3!P{'H} NMR spectrum of compound 3 measured in C¢Ds.
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Figure S7. 3'P NMR spectrum of compound 3 measured in CDCls.
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Figure S9. *'P NMR spectrum of compound 3 measured in C¢D.

7159

—-73.48

T T T T T T T T T T T T T T T T T T T T T T T T T
20 10 0 -0 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 ~-190 -200 -210 -220
ppm



Figure S10. F NMR spectrum of compound 3 measured in CDCl;.
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Figure S11. ’F NMR spectrum of compound 3 measured in C¢De.
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Figure S12. 3C NMR spectrum of compound 3 measured in CDCl;,

in CDCl,
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Figure S13. '"H NMR stacking spectrum of compound 3 measured in CDCl; and C¢Ds,

in CDCl,
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Figure S14. 3'P NMR stacking spectrum of compound 3 measured in CDCl3 and CDe.
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Figure S15. '"H'H COSY NMR spectrum of compound 3 measured in CDCls.

20

40

r60

r100

r1z0

160

180

T T T T T T T T T T T T
10 9 8 7 6 5 4 3 2 1 0 -1

Figure S16. The HSQC spectrum of compound 3 measured in CDCl3.
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Figure S18. VT {'H} NMR spectra of compound 3 measured in CDCl3 (p-cymene proton

region).
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Figure S19. VT {3!P} NMR spectra of compound 3 measured in CDCls.
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Figure S20. ESI-HRMS spectrum of compound 3 measured in acetonitrile, (top; theoretical

isotopic pattern, bottom; calculated isotopic pattern).
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Figure S21. UV-Vis spectrum of the complex 3 in CH2Cl> medium.

mmmmmmmmmmmm PERAEEEOEELESS
S nEEINERATHRRANANREIEEEERA

B ERE T 5 283 & =
cLN'T_'?_T:_NALN'T_'?_'?‘;'\‘:'T_'T_T'\‘:MET":MN‘D”‘DQ ww  mmme=mm. = e e o @
=i Y R I N |
i 1 n
100 T l ' \
|
A L1 S S 15 SR U S Y U S
— T R oy o ®oop 7 T
z 2 8§ ©oE z S =z =2 r &g z =
I I3 OG5S z 3 ER- R = b
T T T T T T T T T T T T T T T T T T T T T T T
110 105 10.0 95 90 &5 &0 75 70 65 60 55 50 45 40 35 30 25 20 15 10 05 00 05 -10

ppm

Figure S22. 'H NMR spectrum of compound 5 measured in CDCls.
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Figure S23. 3'P{'H} NMR spectrum of compound 5 measured in CDCls
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Figure S24. *'P NMR spectrum of compound 5 measured in CDCl5,
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Figure S25. 13C NMR spectrum of compound 5 measured in CDCls.
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Figure S26. ESI-HRMS spectrum of compound 5 measured in acetonitrile.
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Figure S27. ESI-HRMS spectrum of compound 5 measured in acetonitrile, (fop; theoretical

isotopic pattern, bottom; calculated isotopic pattern).
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Figure S28. 'H'H COSY NMR spectrum of compound 5 measured in CDCls
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Figure S29. HSQC spectrum of compound 5 measured in CDCl3
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Figure S30. UV-Vis spectrum of the complex 5 in CH>Cl, medium.
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Figure S31. '"H NMR spectrum of compound 6 measured in CDCls.
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Figure 35. ESI-HRMS spectrum of compound 6 measured in acetonitrile, (fop; theoretical

isotopic pattern, bottom; calculated isotopic pattern).
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Figure S36. 'H NMR spectrum of compound 5° measured in CDCl;,
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Figure S38. 3C NMR spectrum of compound 5’ measured in CDCls.
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Figure S39. DEPT-135{!3C} NMR spectrum of compound 5’ measured in CDCls.
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Figure 40. ESI-HRMS spectrum of compound 5’ measured in acetonitrile, (fop; theoretical

isotopic pattern, bottom; calculated isotopic pattern).
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Figure S42. Stacking UV-Vis spectrum of the complexes 3, 5, 5° in CH>Cl, medium.
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Scheme S2. NMR experiment determination of complex 4.
Synthetic procedure for NMR experiments-1

A solution comprising 12 mg of silylated phosphine 1b in 0.4 ml of CDCl3 was prepared
in an Eppendorf vial. Similarly, another Eppendorf vial containing 9 mg of (p-Cymene)
ruthenium (II) chloride dimer was added to 0.4 ml of CDCIls. Subsequently, both
solutions were transferred to NMR tube under an argon atmosphere. The transition in
color of the reaction mixture to a vivid blood red was observed. Subsequent proton and
phosphorus NMR spectroscopy analyses were conducted at regular intervals. The
spectra revealed the presence of intermediate A and 4 in the reaction mixture. Notably,
a characteristic doublet in the proton NMR spectrum at -7.24 ppm suggested a potential
Si-H-Ru interaction, corroborating the presence of intermediate 4. Furthermore, the
phosphorus NMR spectrum displayed a singlet at 28.4 ppm indicative of intermediate
A and the peak at 55.3 ppm for 4.

Supporting spectral data
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Figure S43. 'TH NMR of reaction mixture after 5 min showing the presence of intermediate A

and 4 measured in CDCls.
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Figure S44. '"H NMR of reaction mixture after 5 min showing the presence of intermediate A
and 4 measured in CDCl3,
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Figure S45. 3'P NMR of reaction mixture after 5 min showing the presence of intermediate A
and 4 measured in CDCI;. (* = Unidentified impurities).
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Figure S47. '"H NMR of reaction mixture after 10 min showing the presence of intermediate A

and 4 measured in CDCls.
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Synthetic procedure for NMR experiments-2

A solution comprising 24 mg of silylated phosphine 1b in 0.4 mL of CsD¢ was prepared
in an Eppendorf vial. Similarly, another Eppendorf vial containing 19 mg of (p-cymene)
ruthenium (II) chloride dimer was added to 0.4 mL of CsDs. Subsequently, both
solutions were transferred to NMR tube under an argon atmosphere. The transition in
color of the reaction mixture to a vivid blood red was observed. Subsequent proton and
phosphorus NMR spectroscopy analyses were conducted at regular intervals. The
spectra revealed the presence of intermediate A and 4 in the reaction mixture. Notably,
a characteristic doublet in the proton NMR spectrum at -6.89 ppm suggested a potential
Si-H-Ru interaction, corroborating the presence of intermediate 4. Furthermore, the
phosphorus NMR spectrum displayed a singlet at 55.26 ppm indicative of intermediate
4.
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intermediate int. A and 4.
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Figure S50. 'TH NMR of reaction

intermediate int. A and 4.

mixture after 5 min, showing the presence of both
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Figure S51.

intermediate int. A and 4.
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Figure S52. 3'P NMR of reaction mixture after 5 min, showing the presence of both

intermediate int. A and 4
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Figure S53. 'H NMR of reaction mixture after 10 min, showing the presence of 4
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Figure S54. "TH NMR of reaction mixture after 10 min, showing the presence of 4.
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Figure S55. *'P NMR of reaction mixture after 10 min, showing the presence of 4.

Synthetic procedure for NMR tube experiment with addition of H20 for compound
5

Scheme S3

ph,kh 0.5eq Cl
P [RuCly(p-cymene)] Ru”
3 h 7 7Y~
Si’H 10 equiv. H,O Ph SI\\ H
1b N\ 5
0.5eq
.[RuCl,(p-cymene)], -H,
I
-7 Ru Ruy —Cl
Ph\P/RU,/\CI CI 5equ|v Ph\P/ 2

Ph\ e
, “H s fH THO T py Si’Hé—
Ph Si N NN
W AR
O-Hs*
A l_'lk_J b

A solution comprising 12 mg of silylated phosphine 1b dissolved in 0.4 ml of CDCls
was prepared within an Eppendorf vial. Concurrently, an equivalent volume of CDCl3
was introduced into another Eppendorf vial containing 9 mg of (p-Cymene) ruthenium

(IT) chloride dimer. Subsequently, both solutions were transferred to a NMR tube under

31



an inert argon atmosphere. The transition of the reaction mixture's color to a vivid blood-
red hue was visually observed. Following a 10-minute interval, 5 pL of H>O (5 equiv.)
was added to the reaction mixture within the NMR tube. The mixture was then manually
agitated for 10 minutes. Proton and phosphorus NMR measurements were performed at
regular intervals thereafter. The NMR analysis revealed that upon the addition of water
to the reaction mixture containing intermediate 4, the formation of compound 5 was
observed after 10 minutes. Furthermore, after 20 minutes, the ratio of intermediates to
compound 5 remained nearly unchanged. Subsequently, it was observed that after 45
minutes, complete conversion had occurred. The NMR tube was then removed, and the
solvent was evaporated from the reaction mixture. The residue was washed with »n-
hexane (1 x 3 mL) to yield a faint-orange solid, which was subsequently dried under

vacuum to afford compound 5 as a faint-orange solid.

Supporting spectral data
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Figure S56. 'H NMR of reaction mixture, 10 min after addition of H>O showing the presence

of both intermediate 4 and 5 measured in CDCl;.
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Figure S57. 'H NMR of reaction mixture, 10 min after addition of H>O showing the

presence of both intermediate 4 and 5 and release of Hz
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Figure S58. *'P NMR of reaction mixture, 10 min after addition of H,O showing the

presence of both intermediate 4 and complex 5 (* = Unidentified impurities).
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Figure S59. '"H NMR of reaction mixture, 20 min after addition of H>O showing the

presence of both intermediate 4 and 5.
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Figure S60. 'H NMR of reaction mixture, 20 min after addition of H>O showing the

presence of both intermediate 4 and 5.
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Figure S61. *'P NMR of reaction mixture, 20 min after addition of H,O showing the

presence of both intermediate 4 and 5.
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Figure S62. '"H NMR of reaction mixture, 45 min after addition of H>O showing the

presence of 5.
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Figure S63. *'P NMR of reaction mixture, 45 min after addition of H,O showing the

presence of 5.
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Figure S64.

with hexane.

"H NMR of reaction mixture, 1h after addition of H.O and after washing
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Figure S65. *'P NMR of reaction mixture, 1h after addition of H,O and after washing

with hexane.

Synthetic procedure for NMR tube experiment for compound 4’ which upon

addition of H20 formed compound 6
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A solution comprising 12 mg of silylated phosphine 1¢ dissolved in 0.4 ml of dry CDCl3
was prepared within an Eppendorf vial. Concurrently, an equivalent volume of dry
CDCIl3 was introduced into another Eppendorf vial containing 6.6 mg of (p-Cymene)

ruthenium (II) chloride dimer. Subsequently, both solutions were transferred to a NMR
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tube under an inert argon atmosphere. The transition of the reaction mixture's color to a

vivid blood-red hue was visually observed. Following a 1-hour interval, 4.8 uL of H,O

(10 equiv.) was added to the reaction mixture within the NMR tube. The mixture was

then manually agitated for 10 minutes. Proton and phosphorus NMR measurements

were performed at regular intervals thereafter. The NMR analysis revealed that due to

the presence of atmospheric moisture reaction mixture contained intermediates 4° and b

in 50% ratio. Furthermore, after 1 hour, we added 5 equiv. of H>O due to which

compound 6 was formed solely. The NMR tube was then removed, and the solvent was

evaporated from the reaction mixture. The residue was washed with n-hexane (1 x 3

mL) to yield a faint-orange solid, which was subsequently dried under vacuum to afford

compound 6 as a faint-orange solid.
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Figure S66. 'H NMR stacking spectrum of compound 4’ changing to 6 measured in

CDCls.
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Figure S67. 3'P NMR stacking spectrum of compound 4’ changing to 6 measured in
CDCls.

HBpin
o Cat.3
I (0.05 mol%) HCI/MeOH
CL —— o~ ——— pp” DoH
Ph” "H  neat/C¢Hg Ph~ OBpin  g50¢ 15h
rt, 4.5h
entry deviation from the standard conditions yield of product (%)°
1 none 93.7
2 0.1 mol% cat. 3 93.5
3 5 mol% cat. 3 93
4 1 mol% cat. 3 93.2
5 0.5 mol% cat.3 93
6 1 mol% cat.5 92
7 2 mol% cat.3 93.5
8 0.025 mol% cat. 3 90
9 12h instead of 6h 93.6
10 4h instead of 6h 85.5
1 8h instead of 6h 93
“Reaction conditions: Aldehyde (1 equiv.), HBpin (1 equiv.), cat.3 (0.05 mol%),
neat condition, RT, 6 h. ’Isolated yields.

Table S1. Optimisation table for the synthesis of primary alcohol from aldehyde.
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General Procedure for Aldehydes to Alcohol conversion (8a-8r)

In a nitrogen atmosphere, a 25 mL schlenk tube was charged with 1 equiv. of aldehyde, 1 equiv.
of pinacolborane, and 0.05 mol% of Cat.3 [benzene, 1-2 ml, for solid substrates]. For the
duration of 4.5 hours, the reaction mixture was stirred at room temperature. After the reaction
was complete, the resulting boronate ester residue was treated with 1.5 h of refluxing methanol
and 1 M aqueous HCI. The aliquot is then dichloromethane extracted after being evaporated
under vacuum. The pure primary alcohols (8a-r) were obtained by drying, evaporating, and
purifying the mixed organic layers through column chromatography over silica-gel (100-200
mesh) with an ethyl acetate/hexane mixture as eluent.

Preparation of primary alcohol (8a)3’4

(i) HBpin,
cat.3 (0.05 mol%)
_neat, rt, 45h
(ii HCI/CH3OH

95 °C, 1.5h

8a was prepared according to the general procedure. The aliquot is then dichloromethane

extracted after being evaporated under vacuum. The pure primary alcohol (8a) was obtained

OH] by drying, evaporating, and washing with n-hexane (2x2 mL). (86 mg, 93.7%). 'H
NMR (400 MHz, CDCl3); 6 = 7.30 — 7.16 (m, SH, PhH), 4.56 (s, 2H, Ph-CH>), 2.34
(s, 1H, OH). 3C NMR (101 MHz, CDCls); § = 140.9 (PhC), 128.6 (PhC), 127.6
(PhC), 127.1 (PhC), and 65.2 (Ph-CH>) ppm.

Preparation of primary alcohol (8b)’

O._H (i) HBpin, OH
cat.3 (0.05 mol%)
CQHG, rnt,45h
(i) HCI/CH3;OH
95 °C, 1.5h
CN CN

8b was prepared according to the general procedure. The aliquot is then dichloromethane
OH

extracted after being evaporated under vacuum. The pure primary alcohol (8b) was
obtained by drying, evaporating, and washing with n-hexane (2 x 2 mL). (30 mg,
98.5%) '"H NMR (400 MHz, CDCl3); § = 7.62 (d, J = 8.2 Hz, 2H, ArH), 7.46 (d, J =
8.1 Hz, 2H, ArH), 4.76 (s, 2H, Ar-CH>), 2.33 (s, 1H, OH). *C NMR (101 MHz,
CDClh); 6 =146.4 (Ar(), 132.4 (Ar(), 127.1 (ArC), 118.9 (ArCN), 111.2 (ArC), and 64.2 (Ar-
CH2) ppm.

CN

Preparation of alcohol (8c)°
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H OH
(i) HBpin, cat.3 (0.05 mol%)
02N C6H6! rt, 45h

(i) HCI/CH30H
95 °C, 1.5h

NO,

8c was prepared according to the general procedure. The aliquot is then dichloromethane

OH extracted after being evaporated under vacuum. The pure primary alcohol (8¢)
NO,| Was obtained by drying, evaporating, and washing with n-hexane (2 X 2 mL).
(27.5 mg, 91 %) '"H NMR (400 MHz, CDCls); § = 8.10 (dd, J= 8.2, 1.0 Hz, 1H,
ArH), 7.75 (d, J= 7.3 Hz, 1H, ArH), 7.67 (td, J= 7.6, 1.1 Hz, 1H, ArH), 7.50 — 7.44 (m, 1H,
AtrH), 4.97 (s, 2H, Ar-CH»), 2.71 (s, 1H, OH). '*C NMR (101 MHz, CDCl5); § = 147.8 (ArC),
136.9 (ArC), 134.3 (ArC), 130.1 (ArC), 128.6 (ArC), 125.1 (ArC), and 62.6 (Ar-CH>) ppm.

Preparation of alcohol (8d)***

O._H OH
(i) HBpin, cat.3 (0.05 mol%)
F neat, rt, 4.5 h F

(ii) HCI/CH30H
95 °C, 1.5h

8d was prepared according to the general procedure. The aliquot is then dichloromethane

OH | extracted after being evaporated under vacuum. The pure primary alcohol (8d) was
F| obtained by drying, evaporating, and washing with n-hexane (2 x 2 mL). (55 mg,
96%). 'H NMR (400 MHz, CDCl3) § = 7.43 (td, J= 7.5, 1.5 Hz, 1H, ArH), 7.32 —
7.26 (m, 1H, ArH), 7.15 (td, J="7.5, 0.9 Hz, 1H, ArH), 7.08 — 6.99 (m, 1H, ArH), 4.77 (s, 2H,
Ar-CH,), 1.79 (s, 1H, OH) ppm. '°F NMR (377 MHz, CDCl3) § =-119.83 (s) ppm.

Preparation of alcohol (8e)°

OxH (i) HBpin, OH
cat.3 (0.05 mol%)
Br neat, rt, 4.5 h Br
(ii) HCI/CH30H

95 °C, 1.5h

8e was prepared according to the general procedure. The aliquot is then dichloromethane

oH extracted after being evaporated under vacuum. The pure primary alcohol (8e) was
obtained by drying, evaporating, and washing with n-hexane (2 x 2 mL). (28 mg,
92%). '"H NMR (400 MHz, CDCl3); § = 7.55 (dd, J= 7.9, 0.7 Hz, 1H, ArH), 7.49
(dd,J=17.6,1.0 Hz, 1H, ArH), 7.34 (t,J=17.5 Hz, 1H, ArH), 7.17 (td, J=7.7, 1.5
Hz, 1H, AtH), 4.76 (s, 2H, Ar-CH>), 2.00 (s, 1H, OH).'3C NMR (101 MHz, CDCls); § = 139.9

(ArC), 132.7 (ArC), 129.3 (ArC), 129.1 (ArC), 127.8 (ArC), 122.7 (ArC), and 65.3 (Ar-CHa)

Br|

ppm.
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Preparation of alcohol (8f)>*

© (i) HBpin, OH
cat.3 (0.05 mol%)
neat, rt, 4.5 h_
(if) HCI/CH;0H
95 °C, 1.5h
NO, NO,

8f was prepared according to the general procedure. The aliquot is then dichloromethane

extracted after being evaporated under vacuum. The pure primary alcohol (8f) was

OH
obtained by drying, evaporating, and purifying the mixed organic layers through

column chromatography over silica-gel (100-200 mesh) with an ethyl
NO, acetate/hexane mixture as eluent. (28 mg, 92%). 'H NMR (400 MHz, CDCls); & =
8.20 (d, J = 8.6 Hz, 2H, ArH), 7.52 (d, J = 8.6 Hz, 2H, ArH), 4.83 (s, 2H, Ar-CH>), 2.33 (s,
1H, OH) ppm. 1*C NMR (101 MHz, CDCls); § = 148.3 (ArC), 147.4 (ArC), 127.1 (ArC), 123.8
(ArC), and 64.1(Ar-CH>) ppm.
Preparation of alcohol (8g)>’

O (i) HBpin, OH
cat.3 (0.05 mol%)
neat, rt,4.5h _
(ii) HCI/CH3;OH
95 °C, 1.5h
CF; CF;

8g was prepared according to the general procedure. The aliquot is then dichloromethane

o] Cxtracted after being evaporated under vacuum. The pure primary alcohol (8g) was
obtained by drying, evaporating, and purifying the mixed organic layers through
column chromatography over silica-gel (100-200 mesh) with an ethyl
CFs acetate/hexane mixture as eluent. (38 mg, 94%). 'H NMR (400 MHz, CDCls); & =
7.54 (d, J = 8.1 Hz, 2H, ArH), 7.39 (d, J = 8.0 Hz, 2H, ArH), 4.68 (s, 2H, Ar-CH>), 2.02 (s,
1H, OH). "°F NMR (377 MHz, CDCls); § = -62.49 (s). *C NMR (101 MHz, CDCls); & = 144.9
(ArC), 129.9 (d, J = 32.3 Hz, ArC), 126.9 (ArC), 125.6 (q, J = 7.7, 3.8 Hz, Ar-CF3), 122.9
(ArC), and 64.5 (Ar-CH») ppm.

Preparation of alcohol (8h)®

cat.3 (0.05 mol%)
C6H6’ rt, 4.5h
(i) HCI/CH50H
NO, 95°C,1.5h NO,
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8h was prepared according to the general procedure. The aliquot is then dichloromethane

OH extracted after being evaporated under vacuum. The pure primary alcohol (8h) was

obtained by drying, evaporating, and purifying the mixed organic layers through

NO, column chromatography over silica-gel (100-200 mesh) with an ethyl

acetate/hexane mixture as eluent. (29 mg, 95%). 'H NMR (400 MHz, CDCls); § =
8.25 (s, 1H, ArH), 8.14 (d, /= 8.1 Hz, 1H, ArH), 7.70 (d,J=7.6 Hz, 1H, ArH), 7.53 (t, J=7.9
Hz, 1H, ArH), 4.83 (s, 2H, Ar-CH>), 1.98 (s, 1H, OH) ppm. *C NMR (101 MHz, CDCl3); § =
148.6 (ArC), 143.0 (ArC), 132.7 (ArC), 129.6 (Ar(), 122.6 (ArC), 121.6 (ArC), and 64.1(Ar-
CH>) ppm.

Preparation of alcohol (8i)°

(i) HBpin,

OH
cat.3 (0.05 mol%)
CeHg, rt,4.5h
(ii) HCI/CH;OH
NO, 95 °C, 1.5h NO
Cl

8i was prepared according to the general procedure. The aliquot is then dichloromethane

extracted after being evaporated under vacuum. The pure primary alcohol (8i)

OH
was obtained by drying, evaporating, and purifying the mixed organic layers
through column chromatography over silica-gel (100-200 mesh) with an ethyl
& NO2 acetate/hexane mixture as eluent (37 mg, 91.5%). 'H NMR (400 MHz, CDCl3);

5=7.87 (s, 1H, ArH), 7.50 (s, 2H, ArH), 4.75 (s, 2H, Ar-CH>), 2.22 (s, 1H, OH) ppm '*C NMR
(101 MHz, CDCl3); & = 140.4 (ArC), 131.9 (ArC), 130.8 (ArC), 130.1 (ArC), 124.6 (ArC),
122.4 (ArC), and 62.2 (Ar-CH>) ppm.

Preparation of alcohol (8j)'°

cat.3 (0.05 mol%)
CGHG! rt, 45h
(ii) HCI/CH3OH
95 °C, 1.5h
O~ H O~ H

8j was prepared according to the general procedure. The aliquot is then dichloromethane

extracted after being evaporated under vacuum. The pure primary alcohol (8j)

OH
was obtained by drying, evaporating, and purifying the mixed organic layers
through column chromatography over silica-gel (100-200 mesh) with an ethyl
acetate/hexane mixture as eluent. (30 mg, 74%). '"H NMR (400 MHz, CDCl5); &
O H

=10.00 (s, 1H, ArCOH), 7.87 (d, J = 8.1 Hz, 2H, ArH), 7.53 (d, J = 8.0 Hz, 2H,
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ArH), 4.80 (s, 2H, Ar-CHa), 2.34 (t, J= 7.5 Hz, 1H, OH) ppm. '*C NMR (101 MHz, CDCls);
&= 192.2 (ArCOH), 147.9 (ArC), 135.8 (ArC), 130.2 (ArC), 127.1 (ArC), and 64.7 (Ar-CHa)

ppm.
Preparation of alcohol (8k)'!

@) H (i) HBpin, OH
cat.3 (0.05 mol%)
CeHg, rt, 4.5 h
(ii) HCI/CH30OH

95 °C, 1.5h
Cl Cl

8k was prepared according to the general procedure. The aliquot is then dichloromethane

extracted after being evaporated under vacuum. The pure primary alcohol (8k) was obtained

on1 by drying, evaporating, and purifying the mixed organic layers through column
chromatography over silica-gel (100-200 mesh) with an ethyl acetate/hexane
mixture as eluent. (28 mg, 93%). '"H NMR (400 MHz, CDCls); 6 =7.35(d, J=8.3
Hz, 2H, ArH), 7.30 (d, J = 8.5 Hz, 2H, ArH), 4.67 (s, 2H, Ar-CH>), 2.00 (s, 1H,
OH) ppm. 1*C NMR (101 MHz, CDCl3); & = 139.3 (ArC), 133.5 (ArC), 128.8 (ArC), 128.4
(ArC), and 64.6 (Ar-CH») ppm.

Preparation of alcohol (81)!?

Cl

H__O (i) HBpin, OH
cat.3 (0.05 mol%)

OH  C4Hg, 1t, 4.5 OH
OO (i) HCI/CH;OH OO

95 °C, 1.5h

81 was prepared according to the general procedure. The aliquot is then dichloromethane

extracted after being evaporated under vacuum. The pure primary alcohol (81) was obtained by

HO drying, evaporating, and purifying the mixed organic layers through column

OH| chromatography over silica-gel (100-200 mesh) with an ethyl acetate/hexane
OO mixture as eluent. (51 mg, 84%). 'H NMR (400 MHz, CDCl3); § = 8.22 (d, J
=8.6 Hz, 1H, ArH), 7.77 (d, J= 8.0 Hz, 1H, ArH), 7.64 (d,J=8.3 Hz, 1H, ArH), 7.44 (t, J =
7.5 Hz, 1H, ArH), 7.32 (t, J= 7.4 Hz, 1H, ArH), 7.06 (d, J = 8.0 Hz, 1H, ArH), 4.81 (s, 2H,
Ar-CHa), 2.58 (s, 2H, OH) ppm. 3C NMR (101 MHz, CDCls); = 151.8 (ArC), 133.6 (ArC),
129.8 (ArC), 129.0 (ArC), 126.9 (Ar(C), 123.4 (Ar(), 123.3 (Ar(), 118.2 (ArC), 117.4 (ArC),
and 56.1 (Ar-CHz) ppm.

Preparation of alcohol (8m)"
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o H (i) HBpin, OH
cat.3 (0.05 mol%)
N CeHe, 1, 4.5 h
| (i) HCUCH;0H ||
N" ¢l 95°C, 1.5h N7 el

N

8m was prepared according to the general procedure. The aliquot is then dichloromethane

extracted after being evaporated under vacuum. The pure primary alcohol (8m) was obtained
OH

by drying, evaporating, and purifying the mixed organic layers through column

A chromatography over silica-gel (100-200 mesh) with an ethyl acetate/hexane
| N” ¢l mixture as eluent (38 mg, 94%). "H NMR (400 MHz, CDCl3); §=8.35(d, J=1.5
Hz, 1H, PyH), 7.69 (dd, J= 8.2, 2.2 Hz, 1H, PyH), 7.32 (d, J=8.2 Hz, 1H, PyH), 4.72 (s, 2H,
Py-CH>), 1.89 (brs, 1H, OH) ppm. *C NMR (101 MHz, CDCls); § = 150.7 (PyC), 148.3 (PyC),
137.8 (PyC), 135.3 (PyC), 124.3 (PyC), and 61.9 (Py-CH>) ppm.

Preparation of alcohol (8n)'?

o H (i) HBpin, oH
cat.3 (0.05 mol%)
Ce¢Hg, 1t, 4.5 h
| (if) HCI/CH3OH ||
=N 95°C, 1.5h

_N

8n was prepared according to the general procedure. The aliquot is then dichloromethane

extracted after being evaporated under vacuum. The pure primary alcohol (8n) was obtained

chromatography over silica-gel (100-200 mesh) with an ethyl acetate/hexane

by drying, evaporating, and purifying the mixed organic layers through column
i}

mixture as eluent. (36 mg, 89%). 'H NMR (400 MHz, CDCls); § = 7.50 (s, 1H,
PyH), 7.40 (d, J= 7.6 Hz, 1H, PyH), 7.22 (dt, J = 15.2, 7.8 Hz, 2H, PyH), 4.62 (s, 2H, Py-
CH»), 2.43 (s, 1H, OH) ppm. 3C NMR (101 MHz, CDCl3); § = 143.2 (PyC), 130.7 (PyC),
130.2 (PyC), 129.9 (PyC), 125.4 (PyC), 122.7 (PyC), and 64.4 (Py-CH>) ppm.
Preparation of alcohol (80)'
H O () HBpin,  HO

cat.3 (0.05 mol%)

CeHe, 1, 4.5h

(i) HCI/CHZOH
OH 95°C, 1.5h OH

80 was prepared according to the general procedure. The aliquot is then dichloromethane

HO extracted after being evaporated under vacuum. The pure primary alcohol (80)
Ej\ was obtained by drying, evaporating, and purifying the mixed organic layers
OH

through column chromatography over silica-gel (100-200 mesh) with an ethyl
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acetate/hexane mixture as eluent. (29 mg, 72%). 'H NMR (400 MHz, CDCl3); § = 7.22 (d, J =
7.8 Hz, 1H, ArH), 6.92 (d, J= 7.4 Hz, 1H, ArH), 6.87 (s, 1H, ArH), 6.76 (d, J = 8.5 Hz, 1H,
ArH), 4.94 (s, 1H, OH), 4.66 (s, 2H, Ar-CH>). '*C NMR (101 MHz, CDCl); § = 143.1 (ArC),
130.0 (ArC), 119.3 (ArC), 114.7 (ArC), 113.9 (ArC), and 65.2 (Ar-CH) ppm.
Preparation of alcohol (8p)"°

H.__O (i) HBpin,  HO

cat.3 (0.05 mol%)
CGHG’ rt, 45h _

(i) HCI/ICH;0H
95 °C, 1.5h

8p was prepared according to the general procedure. The aliquot is then dichloromethane
extracted after being evaporated under vacuum. The pure primary alcohol (8p) was obtained

by drying, evaporating, and purifying the mixed organic layers through column

HO
chromatography over silica-gel (100-200 mesh) with an ethyl acetate/hexane

mixture as eluent. (28.3 mg, 93%). 'H NMR (400 MHz, CDCls); = 7.39 — 7.33
(m, 1H, ArH), 7.20 (dt, J= 8.6, 4.7 Hz, 3H, ArH), 4.68 (s, 2H, Ar-CH>), 2.36 (s, 3H, Ar-CH3),
1.90 (s, 1H, OH) ppm. *C NMR (101 MHz, CDCls); & = 138.8 (ArC), 136.2 (ArC), 130.4
(ArC), 127.9 (ArC), 127.7 (ArC), 126.2 (ArC), 63.6 (Ar-CH»), and 18.7 (Ar-CH3) ppm.

Preparation of alcohol (8q)°

H__O (i) HBpin,  HO
cat.3 (0.05 mol%)
CGHG’ rt, 4.5h
(i) HCI/ICH;0H
95 °C, 1.5h
OMe OMe

8q was prepared according to the general procedure. The aliquot is then dichloromethane

extracted after being evaporated under vacuum. The pure primary alcohol (8q) was obtained
HO

by drying, evaporating, and purifying the mixed organic layers through column
chromatography over silica-gel (100-200 mesh) with an ethyl acetate/hexane
mixture as eluent. (23 mg, 76%). '"H NMR (400 MHz, CDCls); 6 =7.29 (d, J=8.5
OMe| Hz, 2H, ArH), 6.89 (d, J = 8.5 Hz, 2H, ArH), 4.61 (s, 2H, Ar-CH>), 3.81 (s, 3H,
Ar-OCHs), 1.74 (s, 1H, OH) ppm. 3*C NMR (101 MHz, CDCl3); 6 = 159.3 (ArC), 133.2 (ArC),
128.8 (ArC), 114.1 (ArC), 65.2 (Ar-CH>), and 55.4 (Ar-OCH3) ppm.

Preparation of alcohol (8r)°
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(i) HBpin, cat.3 (0.05 mol%)
CgHg, rt, 4.5 h
(ii) HCI/CH3OH
95 °C, 1.5h

8r was prepared according to the general procedure. The aliquot is then dichloromethane

HO

extracted after being evaporated under vacuum. The pure primary alcohol (8r)
was obtained by drying, evaporating, and purifying the mixed organic layers
through column chromatography over silica-gel (100-200 mesh) with an ethyl
acetate/hexane (1:1) mixture as eluent. (51 mg, 90%). 'H NMR (400 MHz,

CDCls) 8 7.28 (d,J = 7.4 Hz, 2H), 7.20 (d, J = 7.6 Hz, 2H), 4.67 (s, 2H), 2.39 (s, 3H), 1.84 (s,
1H) ppm. *C NMR (101 MHz, CDCl3) 8 = 138.0 (Aryl), 137.5 (Aryl), 129.4 (Aryl), 127.2
(Aryl), 65.4 (Aryl-CH>), and 21.3 (Aryl-CH3) ppm.

Supporting spectral data of primary alcohols
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Figure S68. 'H NMR spectrum of 8a measured in CDCl;.
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Figure S69. 1°C NMR spectrum of 8a measured in CDCls.
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Figure S70. GC-MS spectrum of 8a measured in ethyl acetate.
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Figure S75. 'TH NMR spectrum of 8d measured in CDCls.
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Figure S76. 'F NMR spectrum of 8d measured in CDCls.
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Figure S78. 3C NMR spectrum of 8e measured in CDCls.

52



753
751
—7.26
4,83
2.33

B2
g9
<

195

2.0

10.0 9.5 9.0 8.5 8.0

| P ) —

75 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0 0.5 1.0
ppm
Figure S79. 'H NMR spectrum of 8f measured in CDCls.
\Y4 Ll
I
|
I
I
i J L.L A J. L
léﬂ lI"D léﬂ lgﬂ l“lﬂ l;ﬂ 1IZD liﬂ 160 QID BID 7ID 60 SID 4ID EID ZID IID é

ppm

Figure S80. '*C NMR spectrum of 8f measured in CDCls.
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Figure S82. 'F NMR spectrum of 8g measured in CDCls.
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Figure S84. 'H NMR spectrum of 8h measured in CDCl;.
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Figure S86. '"H NMR spectrum of 8i measured in CDCl;.
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Figure S87. 1C NMR spectrum of 8i measured in CDCl;.
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Figure S88. GC-MS spectrum of 8i measured in ethyl acetate.
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Figure S90. '*C NMR spectrum of 8j measured in CDCls.
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Figure S92. 3*C NMR spectrum of 8k measured in CDCls.
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Figure S94. >*C NMR spectrum of 81 measured in CDCl;.
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Figure S96. >*C NMR spectrum of 8m measured in CDCl;.
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Figure S97. GC-MS spectrum of 8m measured in ethyl acetate.
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Figure S98. "H NMR spectrum of 8n measured in CDCl;.
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Figure S104. GC-MS spectrum of 8p measured in ethyl acetate.
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Figure S106. 3C NMR spectrum of 8q measured in CDCl;.
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Figure S108. "H NMR spectrum of 8r measured in CDCl;.
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Figure S107. GC-MS spectrum of 8q measured in ethyl acetate.
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Figure S109. 3C NMR spectrum of 8r measured in CDCls.

HBpin
o Cat.3 P REEEE ‘. o
g, Loom) | | HOIMeOH
Ph”~ “CH, neat/CgHg 1HsC OBpini 95°C. 1.5

60 °C, 12h “intermediate

H,C” “OH

entry deviation from the standard conditions yield of product (%)
1 none 81
2 0.1 mol% cat. 3 80.8
3 1 mol% cat. 3 81
4 0.5 mol% cat.3 80.6
5 24h instead of 13.5h 81
6 10h instead of 13.5h 72
7 8h instead of 13.5h 70

@Reaction conditions: Ketone (1 equiv.), HBpin (1 equiv.), cat.3 (0.05 mol%),
neat/CgHg condition, RT, 13.5 h. bisolated yields.

Table S2. Optimisation table for the synthesis of secondary alcohol from ketone.

General Procedure for ketone to secondary alcohol conversion (10a-1)

In a nitrogen atmosphere, a 25 mL Schlenk tube was charged with 1 equiv. of ketone, 1 equiv.
of pinacolborane, and 0.1 mol% of Cat.3 [benzene, 1-2 ml, for solid substrates]. For the
duration of 12 h, the reaction mixture was stirred at 60 °C. After the reaction was complete, the
resulting boronate ester residue was treated with 1.5 h of refluxing methanol and 1 M aqueous

HCI. The aliquot is then dichloromethane extracted after being evaporated under vacuum. The
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pure secondary alcohols (10a-1) were obtained by drying, evaporating, and purifying the mixed
organic layers through column chromatography over silica-gel (100-200 mesh) with an ethyl
acetate/hexane mixture as eluent.

Preparation of secondary alcohol (10a)'°

o (i) HBpin, OH
cat.3 (0.05 mol%)
Br heat, 60 °C, 12 h Br
(i) HCI/CHZOH
95 °C, 1.5h

10a was prepared according to the general procedure. The aliquot is then dichloromethane

extracted after being evaporated under vacuum. The pure secondary alcohol (10a)

OH
was obtained by drying, evaporating, and purifying the mixed organic layers

> through column chromatography over silica-gel (100-200 mesh) with an ethyl
acetate/hexane mixture as eluent (33.5 mg, 83%). 'H NMR (400 MHz, CDCl3); &
=7.59 (d,J=17.8 Hz, 1H, ArH), 7.51 (d, /= 8.0 Hz, 1H, ArH), 7.34 (t,J = 7.5 Hz, 1H, ArH),
7.12 (t,J=17.6 Hz, 1H, ArH), 5.24 (q,J= 6.4 Hz, 1H, CH), 1.48 (d, J= 6.4 Hz, 3H, CH3) ppm.
BC NMR (101 MHz, CDCls); & = 144.7 (ArC), 132.8 (ArC), 128.9 (ArC), 127.9 (ArC), 126.8
(ArC), 121.8 (Ar(), 69.3 (ArCCH30H), and 23.7 (ArCCH;0OH) ppm.

Preparation of secondary alcohol (10b)!’

(i) HBpin,
cat.3 (0.05 mol%)
CgHg, 60 °C, 12 h
(i) HCI/CH3OH

95 °C, 1.5h

10b was prepared according to the general procedure. The aliquot is then dichloromethane

OH| extracted after being evaporated under vacuum. The pure secondary alcohol (10b)
was obtained by drying, evaporating, and purifying the mixed organic layers through
column chromatography over silica-gel (100-200 mesh) with an ethyl acetate/hexane
mixture as eluent (36 mg, 90%). '"H NMR (400 MHz, CDCl3); § = 7.67 (d, J = 8.2
Hz, 2H, ArH), 7.13 (d, J= 8.2 Hz, 2H, ArH), 4.85 (q,J= 6.4 Hz, 1H, CH), 1.47 (d, J= 6.5 Hz,
3H, CH3) ppm. *C NMR (101 MHz, CDCl3); § = 145.6 (ArC), 137.6 (ArC), 127.6 (ArC), 92.8
(ArC), 69.9 (ArCCH30H), and 25.4 (ArCCH30OH) ppm.

Preparation of secondary alcohol (10¢)'8
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o (i) HBpin, OH
cat.3 (0.05 mol%)
CgHg, 60 °C, 12 h
(i) HCI/CH;0H

95 °C, 1.5h
Br Br

10c was prepared according to the general procedure. The aliquot is then dichloromethane

oH| extracted after being evaporated under vacuum. The pure secondary alcohol (10c)
was obtained by drying, evaporating, and purifying the mixed organic layers through
column chromatography over silica-gel (100-200 mesh) with an ethyl
Br acetate/hexane mixture as eluent (33.5 mg, 83 %). 'H NMR (400 MHz, CDCls); §
=17.47 (d,J=8.4 Hz, 2H, ArH), 7.25 (d, J= 8.6 Hz, 2H, ArH), 4.87 (q, J = 6.4 Hz, 1H, CH),
1.47 (d, J = 6.5 Hz, 3H, CH3). *C NMR (101 MHz, CDCl3); & = 144.9 (ArC), 131.7 (ArC),
127.3 (ArC), 121.3 (ArC), 69.9 (ArCCH30H), and 25.4 (ArCCH30OH) ppm.

Preparation of secondary alcohol (10d)!!

@ (i) HBpin, OH
cat.3 (0.05 mol%)
neat, 60 °C, 12 h
(i) HCI/CH3;0OH
95 °C, 1.5h
Cl Cl

10d was prepared according to the general procedure. The aliquot is then dichloromethane
extracted after being evaporated under vacuum. The pure secondary alcohol (10d) was obtained
on by drying, evaporating, and purifying the mixed organic layers through column
chromatography over silica-gel (100-200 mesh) with an ethyl acetate/hexane

mixture as eluent (33 mg, 82%). '"H NMR (400 MHz, CDCls); § = 7.30 (m, 4H,

ArH), 4.87 (q,J = 6.4 Hz, 1H, CH), 1.47 (d, J= 6.5 Hz, 3H, CH3) ppm. 1*C NMR (176 MHz,
CDCl3); 6 =144.4 (ArC), 133.2 (ArC), 128.7 (ArC), 126.9 (ArC), 69.8 (ArCCH30H), and 25.4

(ArCCH30H) ppm.

Preparation of secondary alcohol (10e)'8

o (i) HBpin, OH
cat.3 (0.05 mol%)
neat, 60 °C, 12 h
(i) HCI/CH30OH
95 °C, 1.5h
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10e was prepared according to the general procedure. The aliquot is then dichloromethane

oH| extracted after being evaporated under vacuum. The pure secondary alcohol (10e)
was obtained by drying and purifying the mixed organic layers through column
chromatography over silica-gel (100-200 mesh) with an ethyl acetate/hexane mixture

F as eluent (36 mg, 89%). '"H NMR (400 MHz, CDCls); & = 7.67 (d, J = 8.4 Hz, 2H,

ArH), 7.13 (d, J= 8.3 Hz, 2H, ArH), 4.85 (q, J= 6.4 Hz, 1H, CH), 1.82 (s, 1H, OH), 1.47 (d,
J=6.5Hz 3H, CH3) ppm. *C NMR (101 MHz, CDCls); § = 145.6 (ArC), 137.7 (ArC), 127.6
(ArC), 92.8 (ArC), 70.0 (ArCCH30H), and 25.4 (ArCCH3OH) ppm.

Preparation of alcohol (10f)}

(i) HBpin,
cat.3 (0.05 mol%)
CgHg, 60 °C, 12 h
5 (i) HCI/CH4;OH 5
95 °C, 1.5h

10f was prepared according to the general procedure. The aliquot is then dichloromethane

on extracted after being evaporated under vacuum. The pure secondary alcohol (10f)
was obtained by drying, evaporating, and purifying the mixed organic layers through
column chromatography over silica-gel (100-200 mesh) with an ethyl
OMe | acetate/hexane mixture as eluent (37 mg, 92%). '"H NMR (400 MHz, CDCl3); & =
7.30 (d, J = 8.6 Hz, 2H, ArH), 6.89 (d, J = 8.6 Hz, 2H, ArH), 4.86 (q, J = 6.4 Hz, 1H, CH),
3.81 (s, 3H, Ar-OCHs), 1.48 (d, J = 6.4 Hz, 3H, CH3) ppm. *C NMR (101 MHz, CDCl3); § =
159.1 (ArC), 138.1 (ArC), 126.8 (ArC), 114.0 (ArC), 70.1 (ArCCH30H), 55.4 (Ar-OCH3), and

25.2 (ArCCH30H) ppm.

Preparation of alcohol (10g)*

o (i) HBpin, OH
cat.3 (0.05 mol%)
Cl heat, 60 °C, 12 h cl
(i) HCICH30H
95 °C, 1.5h

10g was prepared according to the general procedure. The aliquot is then dichloromethane

extracted after being evaporated under vacuum. The pure secondary alcohol (10g) was obtained
OH

by drying, evaporating, and purifying the mixed organic layers through column
“ chromatography over silica-gel (100-200 mesh) with an ethyl acetate/hexane
mixture as eluent. (34.4 mg, 85%). 'H NMR (400 MHz, CDCls); § = 7.62 — 7.56
(m, 1H, ArH), 7.31 (dd, J = 14.5, 7.7 Hz, 2H, ArH), 7.20 (td, J= 7.7, 1.3 Hz, 1H, ArH), 5.29

(q,J = 6.4 Hz, 1H, CH), 2.05 (s, IH, OH), 1.49 (d, J = 6.4 Hz, 3H, CH3) ppm. '*C NMR (101
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MHz, CDCL3) & = 143.2 (ArC), 131.8 (ArC), 129.5 (ArC), 128.5 (ArC), 127.3 (ArC), 126.5
(ArC), 67.1 (ArCCH3;0H), and 23.6 (ArCCH;0H) ppm.

Preparation of secondary alcohol (10h)

0
(i) HBpin, OH
c| cat.3 (0.05 mol%) cl
CgHg, 60 °C, 12 h
(i) HCI/CH3OH

Cl 95 °C, 1.5h &

10h was prepared according to the general procedure. The aliquot is then dichloromethane

extracted after being evaporated under vacuum. The pure secondary alcohol (10h)

OH
c| was obtained by drying, evaporating, and purifying the mixed organic layers

through column chromatography over silica-gel (100-200 mesh) with an ethyl
Cl acetate/hexane mixture as eluent. (32.7 mg, 81%). 'H NMR (400 MHz, CDCls); &
=7.53 (d,J=8.4 Hz, 1H, ArH), 7.33 (d,J= 1.2 Hz, 1H, ArH), 7.27 (d, J= 7.3 Hz, 1H, ArH),
5.23(q,J=6.3 Hz, 1H, CH), 1.45 (d, J= 6.4 Hz, 3H, CH;) ppm. *C NMR (101 MHz, CDCl5);
o = 141.9 (ArC), 133.5 (ArC), 132.3 (ArC), 129.2 (ArC), 127.6 (ArC), 127.5 (ArC), 66.7
(ArCCH30H), and 23.7 (ArCCH30H) ppm.

Preparation of secondary alcohol (10i)

o) (i) HBpin, OH
cat.3 (0.05 mol%)
neat, 60 °C, 12 h_
(if) HCI/CH3;OH
Br 95°C, 1.5h Br

10i was prepared according to the general procedure. The aliquot is then dichloromethane

OH | extracted after being evaporated under vacuum. The pure secondary alcohol (10i)

was obtained by drying, evaporating, and purifying the mixed organic layers through

Br| column chromatography over silica-gel (100-200 mesh) with an ethyl

acetate/hexane mixture as eluent. (33 mg, 82%) '"H NMR (400 MHz, CDCl3); & = 7.53 (s, 1H,
ArH), 7.39 (d, J= 7.8 Hz, 1H, ArH), 7.31 — 7.25 (m, 1H, ArH), 7.21 (t,J= 7.8 Hz, 1H, ArH),
4.87(q,J=6.4Hz, 1H, CH), 1.48 (d, J= 6.5 Hz, 3H, CH3) ppm. '*C NMR (101 MHz, CDCl5);
o = 148.3 (ArC), 130.6 (ArC), 130.2 (ArC), 128.7 (ArC), 124.1 (ArC), 122.7 (ArC), 69.9
(ArCCH30H), and 25.4 (ArCCH30H) ppm.

Preparation of secondary alcohol (10j) '®

(i) HBpin,

Q cat.3 (0.05 mol%) oH
CgHg, 60 °C, 12 h
O O (i) HCI/CHZOH O O
95 °C, 1.5h
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10j was prepared according to the general procedure. The aliquot is then dichloromethane
extracted after being evaporated under vacuum. The pure secondary alcohol (10j) was obtained
OH by drying, evaporating, and purifying the mixed organic layers through
column chromatography over silica-gel (100-200 mesh) with an ethyl
acetate/hexane mixture as eluent (34.3 mg, 85%). 'H NMR (400 MHz,
CDCl) 6 7.45 —7.34 (m, 8H, ArH), 7.33 — 7.27 (m, 2H, ArH), 5.87 (d, /= 1.5 Hz, 1H, CH),
2.27 (d, J=2.8 Hz, 1H, OH) ppm. 3C NMR (101 MHz, CDCls) & = 143.9 (ArC), 128.6 (ArC),
127.7 (ArC), 126.7 (ArC), and 76.4 (ArCHAr) ppm.
Preparation of secondary alcohol (10k)'®
o) (i) HBpin, OH
cat.3 (0.05 mol%)
neat, 60 °C, 12 h .

(i) HCI/CH3OH
95 °C, 1.5h

10k was prepared according to the general procedure. The aliquot is then dichloromethane

extracted after being evaporated under vacuum. The pure secondary alcohol (10k)

OH
was obtained by drying, evaporating, and purifying the mixed organic layers

through column chromatography over silica-gel (100-200 mesh) with an ethyl
acetate/hexane mixture as eluent. (33 mg, 81%). 'H NMR (400 MHz, CDCls); & = 7.43 — 7.34
(m, 4H, ArH), 7.34 - 7.27 (m, 1H, ArH), 4.90 (q, /= 6.5 Hz, 1H, CH), 1.51 (d,J=6.5 Hz, 3H,
CH3) ppm. *C NMR (176 MHz, CDCls); & = 145.9 (ArC), 128.5 (ArC), 127.5 (ArC), 125.5
(ArC), 70.4 (ArCCH30H), and 25.2 (ArCCH30OH) ppm.

Preparation of secondary alcohol (101)'®

0 (i) HBpin, OH
cat.3 (0.05 mol%)
OMe CgHe, 60°C, 121
(ii) HCI/CH,OH
95 °C, 1.5h

OMe

101 was prepared according to the general procedure. The aliquot is then dichloromethane

HO extracted after being evaporated under vacuum. The pure secondary alcohol

oMe| (101) was obtained by drying, evaporating, and purifying the mixed organic

layers through column chromatography over silica-gel (100-200 mesh) with an
ethyl acetate/hexane mixture as eluent. (36 mg, 88%). 'H NMR (700 MHz, CDCl3); & = 7.38
(d, J=7.5Hz, 1H, ArH), 7.27 (t,J=7.8 Hz, 1H, ArH), 6.99 (t, /= 7.4 Hz, 1H, ArH), 6.91 (d,
J=28.2 Hz, 1H, ArH), 5.13 (q, J = 6.4 Hz, 1H, CH), 3.88 (s, 3H, Ar-OCH3), 1.53 (d,J=17.3
Hz, 3H, CH3) ppm. *C NMR (176 MHz, CDCl3); § = 156.6 (ArC), 133.6 (ArC), 128.3 (ArC),
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126.1 (ArC), 120.8 (ArC), 110.5 (ArC), 66.4 (ArCCH;OH), 55.3 (Ar-OCH;), and 22.9

(ArCCH30H) ppm.
Supporting spectral data of secondary alcohols
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Figure S110. "H NMR spectrum of 10a measured in CDCls.
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Figure S111. 13C NMR spectrum of 10a measured in CDCls.
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Figure S112. GC-MS of 10a measured in ethyl acetate.
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Figure S113. 'H NMR spectrum of 10b measured in CDCls.
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Figure S114. '*C NMR spectrum of 10b measured in CDCls.

Apex Peak #11 Scan: #1031 RT. 6.50 min NL. 3.75E+0C7 Apex + ¢ El Full ms [35 00-500.00]
7608

103

1004

N
w
]

0
@

ac+

504

S

43 04

504

OH

404
v ba —
121.10 |

304

51.07

104
4 L |||.| ||’I ‘ | ’. M. |‘. [} m,
o P 0 0 160 200 90 140 )

Figure S115. GC-MS spectrum of 10b measured in ethyl acetate.
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Figure S118. GC-MS spectrum of 10¢ measured in ethyl acetate.
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Figure S120. '*C NMR spectrum of 10d measured in CDCls.
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Figure S122. 'H NMR spectrum of 10e measured in CDCl;.
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Figure S123. '3C NMR spectrum of 10e measured in CDCls.
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Figure S124. "H NMR spectrum of 10f measured in CDCl3.
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Figure S125. '3C NMR spectrum of 10f measured in CDCl;.
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Figure S126. GC-MS spectrum of 10f measured in ethyl acetate.
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Figure S127. '"H NMR spectrum of 10g measured in CDCls.
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Figure S129. GC-MS spectrum of 10g measured in CDCls.
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Figure S131. '3C NMR spectrum of 10h measured in CDCls.
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Figure S134. 13C NMR spectrum of 10i measured in CDCls.
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Figure S135. GC-MS spectrum of 10i measured in ethyl acetate.
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Figure S137. 13C NMR spectrum of 10j measured in CDCls.
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Figure S139. 'H NMR spectrum of 10k measured in CDCls.
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Figure S140. '*C NMR spectrum of 10k measured in CDCls.
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Figure S144. GC-MS spectrum of 101 measured in ethyl acetate.

General procedure to isolate boronate esters

In a nitrogen atmosphere, a 25 mL Schlenk tube was charged with 1 equiv. of aldehydes or 1
equiv. of ketones, 1 equiv. of pinacolborane, and 0.05 mol% of Cat. 3. For the duration of 4.5
hours (12 h in case of ketone derivatives), the reaction mixture was stirred at room temperature
(50 °C in case of ketones). After the reaction was complete, the resulting reaction mixture was
dissolved in diethyl ether and passed through a short neutral alumina column. The eluent was

collected and removal of solvent afforded the corresponding boronate esters.

Y

Preparation of boronate ester (8a°)"°

o. .0
B
O H HBpin, o
cat.3 (0.05 mol%)
neat, rt, 4.5 h _
7a 8a'

8a’ was prepared according to the general procedure. The reaction mixture was dissolved in
diethyl ether and passed through an alumina short column and then the collected diethyl ether
was evaporated under vacuum to get the boronate ester (8a’) (63 mg, 95%). 'H NMR (400
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MHz, CDCLs); § = 7.33 — 7.22 (m, SH), 4.88 (s, 2H), 1.21 (s, 12H) ppm. !'B NMR (128 MHz,

CDCls) & =22.36 (s) ppm. '*C NMR (101 MHz, CDCLy); & = 139.3, 128.4, 127.5, 126.8, 83.2,
83.1, 66.8, 24.7, and 24.6 ppm.

NMR spectral data
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Figure S145. '"H NMR spectrum of 8a’ measured in CDCls.
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Figure S146. '"B NMR spectrum of 8a’ measured in CDCl;.
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Figure S147. '3C NMR spectrum of 8a’ measured in CDCl3.

Preparation of boronate ester (8e’)

o. .0
B
Ox M HBpin, 0
cat.3 (0.05 mol%) B
Br neat, rt, 4.5 h g r
Te 8e'

8¢’ was prepared according to the general procedure. The reaction mixture was dissolved in
diethyl ether and passed through a alumina short column and then the collected diethyl ether
was evaporated under vacuum to get the boronate ester (8e”) (63.5 mg, 94%). 'H NMR (400
MHz, CDCl3) 6 =7.50 (d, J= 7.9 Hz, 2H), 7.31 (t,J = 7.3 Hz, 1H), 7.12 (t, J = 7.8 Hz, 1H),
4.97 (s, 2H), 1.28 (s, 12H) ppm. ''B NMR (128 MHz, CDCls) § = 22.36 (s) ppm.

NMR spectral data
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Figure S148. "H NMR spectrum of 8e’ measured in CDCls.
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Figure S149. "B NMR spectrum of 8¢’ measured in CDCls.

Preparation of boronate ester (11)

Ve

HBpin, o..0O
o cat.3(0.05 mol%) B
/\f neat, rt,4.5h _ /\/O
H 11

T
-100
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Compound 11 was prepared according to the general procedure. The reaction mixture was
dissolved in diethyl ether and passed through an alumina short column and then the collected
diethyl ether was evaporated under vacuum to get the boronate ester (11) (310 mg, 97%). 'H
NMR (400 MHz, CDCl3) 6 =3.72 (t,J= 6.5 Hz, 2H), 1.58 — 1.42 (m, 2H), 1.20 (s, 12H), 0.84
(t,J=7.4 Hz, 3H) ppm. "B NMR (128 MHz, CDCl3) & = 22.04 (s) ppm. *C NMR (101 MHz,
CDCl) 6 = 83.0, 66.5, 24.5, 24.4, and 10.1 ppm.

NMR spectral data
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Figure S150. '"TH NMR spectrum of 11 measured in CDCls.
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Figure S151. "B NMR spectrum of 11 measured in CDCls.
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Figure S152. 13C NMR spectrum of 11 measured in CDCls.

Preparation of boronate ester (10d”)

96



o. .0
B
o HBpin, o
cat.3 (0.05 mol%)
neat,12 h
50 °C
c1 9d cl 10d’

10d’ was prepared according to the general procedure. The reaction mixture was dissolved in
diethyl ether and passed through a alumina short column and then the collected diethyl ether
was evaporated under vacuum to get the boronate ester (10d”) (28 mg, 93%). 'H NMR (400
MHz, CsDs) 6 7.52 (d, J= 8.5 Hz, 1H), 7.25 (s, 2H), 7.07 (d, /= 8.6 Hz, 1H), 5.33 (d, /= 6.4

Hz, 1H), 1.42 (d, J= 6.5 Hz, 3H) ppm. ''B NMR (128 MHz, C¢Ds) & = 22.61 (s) ppm.
NMR spectral data
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Figure S153. "H NMR spectrum of 10d’ measured in CsDes.
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Figure S154. '"B NMR spectrum of 10d” measured in CeDe.

. QLQ
HBpin, B

(0] cat.3 (0.05 mol%) 0""o

/\/\/\/U\/ neat,12 h > W

rt

Preparation of boronate ester (12)

T
-100

12 was prepared according to the general procedure. The reaction mixture was dissolved in

diethyl ether and passed through a alumina short column and then the collected diethyl ether

was evaporated under vacuum to get the boronate ester (12) (164 mg, 95%) (NB: Proton NMR
is not good due to sensitivity of the of 12). "TH NMR (400 MHz, CDCl3) § = 3.94 — 3.82 (m,
1H), 1.45 — 1.34 (m, 4H), 1.19 (s, 10H), 1.17 (s, 12H), 0.81 (m, 6H) ppm. ''B NMR (128 MHz,
CDCl3) § =22.17 (s) ppm. *C NMR (101 MHz, CDCl3); § = 82.4, 75.9, 36.0, 31.9, 29.6, 29.2,

25.5,24.5,22.7, 14.1, and 9.8 ppm.
NMR spectral data
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Figure S155. 'TH NMR spectrum of 12 measured in CDCls.
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Figure S156. '"B NMR spectrum of 12 measured in CDCls.
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Figure S157. 13C NMR spectrum of 12 measured in CDCls.

General Procedure for intermolecular competition experiments between aldehyde

and ketone

In a nitrogen atmosphere, a 25 mL Schlenk or sealed tube was charged with 1 equiv. of
aldehyde, 1 equiv. of ketone, 1 equiv. of pinacolborane, and 0.05 mol% of Cat. 3. For
the duration of 4h, the reaction mixture was stirred at room temperature. After the
reaction was complete, the resulting reaction mixture was dissolved in diethyl ether and
passed through a short pad of celite filter. The eluent was collected and removal of
solvent afforded the corresponding boronate ester and free ketone. Then the NMR was

measured by adding 1,3,5-trimethoxy benzene as reference.

Scheme S4

Br Br O, 005 moi%cats & . Br
+ + 4 neat, rt, 4h

298 % 92.6%
8e' 9a
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NMR spectral data
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Figure S158. '"H NMR spectrum of intermolecular competition reaction measured in
CDCls.
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Figure S159. '"B NMR spectrum of intermolecular competition reaction measured in
CDCls.
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Scheme S5

o. O
B
o]

Os_CH3 O<__H Os_CH,
Og_yy 0.05mol% Cat3 .
+ *+ o neat, rt, 4h
>96%
8a’ 9k
NMR spectral data
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Figure S160. '"H NMR spectrum of intermolecular competition reaction measured in
CDCls.
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Figure S161. '"B NMR spectrum of intermolecular competition reaction measured in
CDCls.

Procedure for mercury drops experiment to test the homogeneity of the reaction

Scheme S6

(@) H (0]
o) 0
‘B—H 0.05 mol% Cat. 3
+ g neat, rt, 4h
Hg (100 mol%)
7a

8a’

In a nitrogen atmosphere, a 25 mL sealed tube was charged with 1 equiv. of
benzaldehyde, 1 equiv. of pinacolborane, lequiv. of mercury and 0.05 mol% of Cat. 3.
For the duration of 4h, the reaction mixture was stirred at room temperature in neat
condition. After the reaction was complete, the resulting reaction mixture was dissolved
in diethyl ether 15mL and passed through a short pad of celite filter. The eluent was
collected and removal of solvent afforded the corresponding boronate ester. full
conversion was observed from the NMR, which showed that the reaction is following

the homogeneous pathway.
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NMR spectral data
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Figure S162. 'H NMR spectrum of mercury drops experiment reaction measured in

CDCls.
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Figure S163. "B NMR spectrum of mercury drops experiment reaction measured in

CDCls.
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General procedure for aldehydes to alcohol conversion without catalyst

In a nitrogen atmosphere, a 25 mL Schlenk tube was charged with 1 equiv. of aldehyde or
ketone, 1 equiv. of pinacolborane, and [benzene, 1-2 ml, for solid substrates]. For the duration
of 4 hours, the reaction mixture was stirred at room temperature. After the reaction was
complete, the resulting boronate ester residue was treated with 1.5 h of refluxing methanol and
1 M aqueous HCI. The aliquot is then dichloromethane extracted after being evaporated under
vacuum. The pure primary alcohols and secondary alcohols were obtained by drying,
evaporating, and purifying the mixed organic layers through column chromatography over
silica-gel (100-200 mesh) with an ethyl acetate/hexane mixture as eluent.

Scheme S7

PinBO HO

_neat, rt, 4h _ _HCI/MeOH_ .
reflux, 1.5h 2 38%

PinBO

Br
—y Mneat rt, 4h neat, rt, 4h _HCI/MeOH_ >42%
reflux 1.5h
PinBO
O o
B—H neat, 60° C, 12h _HCI/MeOH_
o " reflux, 1.5 trace
10k

mmmmmm
mmmmmm

L

NMR spectral data
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Figure S164. '"H NMR spectrum of 8a measured in CDCls.
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Figure S166. '"H NMR spectrum of 10k measured in CDCl3

Large scale synthesis of boronate ester (2-(benzyloxy)-4,4,5,5-tetramethyl-1,3,2-
dioxaborolane) (8a’)
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o. .0
B
OxH HBpin, 0
cat.3 (0.05 mol%)
neat, rt,4.5h
7a 8a'

In a nitrogen atmosphere, a 25 mL Schlenk tube was charged with 1 equiv. of aldehydes (1000
mg, 9.423 mmol), 1 equiv. of pinacolborane (1206 mg, 9.423 mmol), and 0.05 mol% of Cat. 3
(3.7 mg, 0.00471 mmol). For the duration of 4.5 hours the reaction mixture was stirred at room
temperature. After the reaction was complete, the resulting reaction mixture was dissolved in
diethyl ether and passed through a short pad of celite filter. The eluent was collected and
removal of solvent afforded the corresponding boronate ester 8a’ as colourless liquid. Yield:
2130 mg (96%). '"H NMR (400 MHz, CDCls) § = 7.39 — 7.27 (m, 5H), 4.94 (s, 2H), and 1.27
(s, 12H) ppm. "B NMR (128 MHz, CDCls) § = 22.38 ppm. *C NMR (101 MHz, CDCl3) § =
139.3, 128.4, 127.5, 126.8, 83.1, 66.8, and 24.7 ppm.

NMR spectral data
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Figure S167. '"H NMR spectrum of 8a’ measured in CDCl;.

107



2238

T " r T T T . T T T T T T T T T T T
100 90 80 70 60 50 40 30 20 10 0 40 20 30 40 50 60 70 80 90  -100
ppm

Figure S168. '"B NMR spectrum of 8a’ measured in CDCl3.
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Figure S169. '*C NMR spectrum of 8a’ measured in CDCls.

Detection of intermediate (III) through NMR experiments

Scheme S8
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+ . A
iPr PFg ’Pr_Q_ PFeg

|
/NCCH3 . ) Rull,
Ph— /Ru""c| 2 equiv. HBpin Ph\P/ H

. = / .
Ph/P SiMe; Ce¢Dg, rt, 5min  Ph SiMe;
-CIBpin

In an argon filled glovebox, a 5 mL vial was charged with cat 3 (5 mg, 0.0063 mol), To this
0.6 ml of CsDs was added to give yellowish clear solution. Then HBpin (0.003 ml, 0.0189

mmol) was added to the reaction mixture to form a blood red colour clear reaction mixture
which was transferred into a NMR tube and hand shaken for 2 minutes. Then the NMR was
measured in a regular interval to detect the elusive Ru-H species. A broad singlet was observed
at -6.4 ppm which supports the presence of Ru-H species in the reaction mixture.

NMR spectral data
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Figure S170. "H NMR spectrum of Ru-H species measured in C¢Ds after 5 min.
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Figure S171. 3P NMR spectrum of Ru-H species measured in C¢Dg after 5 min.
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Figure S172. 'TH NMR spectrum of Ru-H species measured in CsDs after 10 min.
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Figure S173. *'P NMR spectrum of Ru-H species measured in C¢Dg after 10 min.
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Figure S174. "TH NMR spectrum of Ru-H species measured in CsDg after 10 min.

Detection of intermediate through HRMS technique

Scheme S9
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. . .
P—C>— | b, P—C— | R,

3 . ) .
Phepe” 7Ol _2€quiv. HBpin_ Phpe” M
P SiMeg CgDe, rt, 5min ~ Ph SiMe
@ -CIBpin

In an argon filled glovebox, a 5 mL vial was charged with cat 3 (5 mg, 0.0063 mol), To this
0.6 mL of CsD¢ was added to give yellowish clear solution. Then HBpin (0.003 ml, 0.0189
mmol) was added to the reaction mixture to form a blood red colour clear reaction mixture
which was taken out from the glove box and hand shaken for 2 minutes. Then ESI-mass was
measured in a regular interval to detect the elusive Ru-H species. The ESI-mass data showed
the m/z values at 571.1210 (calcd 571.1211) for Ru-H species which can be unambiguously
assigned for the presence of cationic ruthenium hydride species in the reaction mixture.

ESI-mass spectral data

300+ 312.0097 7.45e7
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Figure S175. ESI-mass spectrum of reaction mixture showing the presence of both cat 3 and

Ru-H species measured in acetonitrile.
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X-ray crystallographic data of the reported silaylated phosphine and
ruthenium metal complexes

Single crystal X-ray structural data of silylated phosphine 1b

Figure S176. ORTEP view of 1b with 30% ellipsoid probability. hydrogen atoms except Si-H
are omitted for clarity. Important bond lengths [A] and angles [°]; P—Ci; 1.848(3), Si-Ca;
1.891(3), P---Si; 3.283, P-C;-Cy; 118.5(2), C2-Si-C3; 109.83(16), and C3-Si-Ca; 109.09(17).
Crystallization Method; single crystals suitable for XRD measurements were grown by the
slow evaporation of diethyl ether solution of the 1b at room temperature.

Table S3. Crystal data and structure refinement parameters of 1b

CCDC identification number 2368156
Empirical formula C20H21PSi
Formula weight 320.43
Temperature/K 99.97
Crystal system orthorhombic
Space group P212124
a/A 7.49780(10)
b/A 20.0084(2)
c/A 24.0485(3)
o/° 90
/e 90
v/° 90
Volume/A? 3607.73(8)
4 8
Pealeg/cm’ 1.180

w/mm’! 1.921
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F(000) 1360.0

Crystal size/mm> 0.36 X 0.3 x 0.24
Radiation CuKoa (A=1.54184)
20 range for data collection/° 8.58 to 155.644
Index ranges -8<h<9,6-25<k<25,-20<1<30
Reflections collected 37246
Independent reflections 7507 [Rint = 0.0672, Rsigma = 0.0438]
Data/restraints/parameters 7507/0/401
Goodness-of-fit on F? 1.075
Final R indexes [[>=2c (I)] R1=10.0391, wR> = 0.1002
final R indexes [all data] R1=10.0414, wR2 =0.1020
Largest diff. peak/hole / e A-3 0.37/-0.45
Flack parameter 0.346(10)

Single crystal X-ray structural data of ruthenium complex 3

@

c1

c2

N0

Si
S

Figure S177. Solid-state structure of the cationic part of complex 3. Ellipsoids are shown at the
30% probability level; hydrogen atoms, solvent molecule and counter anion are omitted for
clarity. Selected bond lengths [A], angles, and dihedral angles [°]: P—Ru, 2.3771 (6); Ru—ClI,
2.3962(7); Ru—N, 2.040 (2); P—C4, 1.862(3); P—C3, 1.823(3); P—C5, 1.832(3), P-Ru—Cl
89.79(2); P-Ru—N 86.26(7); CI-Ru—N 83.06(7)

Crystallization Method; single crystals suitable for XRD measurements were grown by the
vapor diffusion of n-hexane over benzene solution of the complex 3 at room temperature.

Table S4. Crystal data and structure refinement parameters of 3

CCDC identification number 2368150
Empirical formula C36H43CIF¢NP2RuSi1
Formula weight 830.26
Temperature/K 100.0(2)
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Crystal system triclinic

Space group P-1
a/A 9.6071(2)
b/A 13.6074(2)
c/A 15.4123(3)
o/° 92.9040(10)
pB/e 94.8830(10)
v/° 102.109(2)
Volume/A3 1957.97(6)
Z 2
Pealeg/cm’ 1.408
w/mm! 5.403
F(000) 850.0
Crystal size/mm? 0.29 x 0.24 x 0.21
Radiation Cu Ka (A =1.54184)
20 range for data collection/° 8.502 to 156.75
Index ranges -11<h<12,-17<k<17,-19<1<19
Reflections collected 31178
Independent reflections 8210 [Rint = 0.0614, Rsigma = 0.0425]
Data/restraints/parameters 8210/0/440
Goodness-of-fit on F? 1.038
Final R indexes [[>=2c (I)] R1=0.0467, wR> = 0.1248
Final R indexes [all data] R1=10.0469, wR> = 0.1252
Largest diff. peak/hole / ¢ A 2.43/-2.10

Single crystal X-ray structural data of intermediate ruthenium complex (A)
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Figure S178. Solid-state structure of A. Ellipsoids are shown at the 30% probability level.
Selected bond lengths [A], angles, and dihedral angles [°]: P-Ru, 2.363(3); Ru—Cli, 2.406(3);
Ru—Cly, 2.384(3); P—Cy, 1.849(13); P-Ru—Cl; 86.35(11); P-Ru—Cl; 84.77(10).

Crystallization Method; single crystals suitable for XRD measurements were grown by the

vapor diffusion of diethyl ether over benzene solution of the reaction mixture at room

temperature.

Table S5. Crystal data and structure refinement parameters of int. A

CCDC identification number 2387230

Empirical formula
Formula weight
Temperature/K
Crystal system
Space group

a/A

b/A

c/A

a/°

pre

v/°

Volume/A3

Z

Pcalcg/ cm3
w/mm!

F(000)

Crystal size/mm>
Radiation

C30H35C1,PRuSIH
626.61

99.98
orthorhombic
Pna2;

9.7686(2)
27.1132(6)
12.3737(3)

90

90

90

3277.27(13)

4

1.270

6.292

1288.0

0.26 x 0.24 x 0.22
Cu Ka (A =1.54184)

20 range for data collection/°9.624 to 155.65

Index ranges

Reflections collected
Independent reflections
Data/restraints/parameters
Goodness-of-fit on F?
Final R indexes [[>=2c (I)]
Final R indexes [all data]

-12<h<11,-33<k<29,-14<1<15
14237

5911 [Rint = 0.0679, Rsigma = 0.0612]
5911/1/315

1.087

R1=10.0746, wR2> = 0.1957
R;=0.0793, wR> = 0.1995

Largest diff. peak/hole / e A= 1.44/-1.43

Flack parameter

0.077(13)
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Single crystal X-ray structural data of ruthenium complex 5
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Figure S179. Solid-state structure of complex 5. Ellipsoids are shown at the 30% probability

level; hydrogen atoms except Si-O-H are omitted for clarity. Selected bond lengths [A], angles,
and dihedral angles [°]: P—Ru, 2.3599 (8); Ru—Cl\, 2.3955(8); Ru—0 2.144 (2); P—Cy, 1.837(3);
Si-0, 1.659(3); Si-Cz, 1.853(5); Si-Cs, 1.859(5); P-Ru—Cl; 87.20(3); P-Ru—O 80.11(7);

Cli—Ru—0 86.92(7); Si-O-Ru 132.75(13).

Crystallization Method; single crystals suitable for XRD measurements were grown by the

vapor diffusion of n-hexane over dichloromethane solution of the complex 5 at room

temperature.

Table S6. Crystal data and structure refinement parameters of 5

CCDC identification number 2368152
Empirical formula C31H37CI4OPRuSi
Formula weight 727.53
Temperature/K 250(6)
Crystal system monoclinic
Space group P2i/n
a/A 10.6049(2)
b/A 23.5234(4)
c/A 13.4560(2)
o/° 90
pB/e 95.060(2)
v/° 90
Volume/A3 3343.70(10)
z 4
Pealeg/cm’ 1.445
w/mm’! 7.707
F(000) 1488.0

Crystal size/mm?

0.3 x0.29 x0.26
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Radiation CuKa (A=1.54184)

20 range for data collection/° 7.592 to 156.58
Index ranges -13<h<12,-29<k<21,-17<1< 14
Reflections collected 26806
Independent reflections 7026 [Rint = 0.0541, Rsigma = 0.0343]
Data/restraints/parameters 7026/0/358
Goodness-of-fit on F? 1.020
Final R indexes [[>=2c (I)] R1=0.0496, wR> =0.1293
Final R indexes [all data] R1=0.0514, wR>, =0.1310
Largest diff. peak/hole / e A 0.61/-1.94

Single crystal X-ray structural data of ruthenium complex §’
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Figure S180. Solid-state structure of 5°. Ellipsoids are shown at the 30% probability level;
hydrogen atoms are omitted for clarity. Selected bond lengths [A], angles, and dihedral angles
[°]: P—Ru, 2.3295(13); Ru—Cly, 2.4159(12); Ru—0, 2.070(3); P—Ci, 1.840(5); Si-O, 1.602(4);
P—Ru—Cl; 86.95(4); P-Ru—0 80.94(10); Cl;—Ru—0 90.25(10), and Si-O-Ru 130.9(2).
Crystallization Method; single crystals suitable for XRD measurements were grown by the
vapor diffusion of n-hexane over dichloromethane solution of the complex 5’ at 5 °C.

Table S7. Crystal data and structure refinement parameters of 5°

CCDC identification number 2368154
Empirical formula C34.5H445C1OPRuSI
Formula weight 670.78
Temperature/K 100.03
Crystal system monoclinic
Space group P2i/c
a/A 18.7334(2)
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b/A 8.79540(10)

c/A 19.4148(2)
o/° 90
/e 109.4670(10)
v/° 90
Volume/A3 3016.06(6)
Z 4
Pealeg/cm’ 1.477
w/mm! 6.104
F(000) 1398.0
Crystal size/mm? 0.31 x0.21 x 0.18
Radiation CuKa (A =1.54184)
20 range for data collection/° 9.284 to 156.05
Index ranges 23<h<23,-11<k<10,-24<1<23
Reflections collected 39265
Independent reflections 6279 [Rint = 0.0592, Rsigma = 0.0310]
Data/restraints/parameters 6279/0/321
Goodness-of-fit on F? 1.088
Final R indexes [[>=2c ()] R1=0.0675, wR>, =0.2071
Final R indexes [all data] R1=0.0700, wR2 =0.2106
Largest diff. peak/hole / e A 1.26/-1.12
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